

Computational Biology and Bioinformatics
2016; 4(2): 15-20

http://www.sciencepublishinggroup.com/j/cbb

doi: 10.11648/j.cbb.20160402.11

ISSN: 2330-8265 (Print); ISSN: 2330-8281 (Online)

A New Idea for Improving the Running Time of PMS
Algorithm

Saeed Alirezanejad Gohardani
1
, Mehri Bagherian

1, *
, Hamid Reza Vaziri

2

1Department of Applied Mathematics, Faculty of Mathematical Science, University of Guilan, Rasht, Iran
2Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran

Email address:

sgohardani@phd.guilan.ac.ir (S. A. Gohardani), mbagherian@guilan.ac.ir (M. Bagherian), vaziri@guilan.ac.ir (H. R. Vaziri)
*Corresponding author

To cite this article:
Saeed Alirezanejad Gohardani, Mehri Bagherian, Hamid Reza Vaziri. A New Idea for Improving the Running Time of PMS Algorithm.

Computational Biology and Bioinformatics. Vol. 4, No. 2, 2016, pp. 15-20. doi: 10.11648/j.cbb.20160402.11

Received: May 3, 2016; Accepted: May 16, 2016; Published: May 28, 2016

Abstract: Motif finding problem is a major challenge in biology with significant applications in the detection of

transcription factor binding sites and transcriptional regulatory elements that are crucial in understanding gene expression and

function, human disease, drug design, etc. Two type of motif finding problems have been investigated. Planted Motif Search

Problem (PMSP) which is defined as finding motifs that appear in all sequences and a restricted version of it “Planted Motif

Search Problem-Sample Driven” (PMSP-SD) where the motifs themselves are found in the input. The first version is NP-

Complete and the second version can be trivially solved in polynomial time. In this paper, a new idea is used to speed up the

PMS-SD algorithm. Although PMS-SD is a polynomial time algorithm and the new idea does not improve its asymptotic

runtime, but since most of the motif search algorithms combine a sample driven approach with a pattern driven approach, the

speed up of PMS-SD running time would result in speed up of PMS algorithm. To verify the performance of the modified

algorithms which are called PMS-two step and PMS-SD-two step, these algorithms are tested on simulated data. The

experimental results approve the improvements.

Keywords: Pattern and Motif Discovery, Planted (l,d)-Motif Search Problem, Closest Substring Problem

1. Introduction

Motifs which approximate conserved sequences across

DNA/protein sequences, lead biologists to new biological

discoveries. Regulatory regions in a genome such as

promoters, enhancers, locus control regions contain motifs

that control many biological processes such as gene

expression [1] and [2]. In fact, some proteins known as

transcription factors that bind to motif locations in regulatory

regions can regulate gene expression.

A large number of methods have been proposed to

investigate motifs in biological sequences. A class of

approaches are combinatorial approaches such as Planted

Motif Search (PMS), Simple Motif Search (SMS), and

Edited-distance-based Motif Search (EMS) [3].

Among different versions of combinatorial approaches,

PMS problem is more popular due to its closeness to motif

reality. Motif in PMS problem is referred as a (l,d)-motif,

where l is the length of the motif and d is the number of

mismatches allowed for its instances. This problem is trying to

extract common substrings that appear in every input sequence

with pre-specified mismatches allowed. In fact, these instances

are (l,d)-motifs which has length l and allowed to have d

mismatches in different places in each of them. An algorithm

that solves PMS problem is called PMS Algorithm. Motif

finding problem is based on two categories, Sample-Driven

and Pattern-Driven approaches. Using pattern-Driven

approaches, one tries all possible | |Σ l l-mers as motif

candidates which is an exponential search space, but in

Sample-Driven approaches, all possible motifs generated from

the l-mers in input strings are of interest which could be found

in polynomial time. It has been proven that PMS problem is

NP-hard which means unlikely any algorithm solves it in

polynomial time [4]. Du to NP-hardness, two kinds of PMS

algorithms are exact and approximate algorithms. An exact

algorithm can find all the motifs in input sequences, while an

16 Saeed Alirezanejad Gohardani et al.: A New Idea for Improving the Running Time of PMS Algorithm

approximate algorithm may not be able to find all of them. All

existing exact algorithms solve PMS problem in exponential

time in some of its parameters. Some of the most important

exact algorithms are PMS1 [5], PMS2 [5], PMS3 [5], PMSi

[6], PMSP [6], PMSP4 [7], Stemming [8], PMS5 [9], PMS6

[10], PMS8 [11], qPMS9 [12], PMS Prune [13], Algorithm

Voting [14] and RISSOTO [15]. On the other side,

approximate algorithms take less time than exact algorithms.

They usually employ heuristics such as local search, Gibbs

sampling, exponential optimization, etc. Some examples of

approximate algorithms are Algorithm MEME [16], Algorithm

PROJECTION [17], Algorithm Gibbs DNA [18], Algorithm

WINNOWER [19], and Algorithm Random Projection [20].

Some other approximate PMS algorithms are

MULTIPROFILER [21], Algorithm Pattern Branching [22],

Algorithm Profile Branching [22], Algorithm CONSENSUS

[23] and genetic algorithm [24].

In this paper a new simple idea is proposed to speed up the

PMS-SD algorithm and since PMS algorithms use PMS-SD

as subroutines the faster PMS-SD algorithm results in speed

up of PMS algorithm. The remainder of this paper is

organized as follows. In section2, some definitions and

theorems are introduced. In section 3, Algorithm PMS will

be described briefly, and then a new algorithm is proposed

based on PMS. Then, in section 4 PMS-SD algorithm in

which the searched zone is restricted to input sequences is

improved. Experimental results are shown in section 5 and

section 6 ends the paper with conclusion.

2. Definitions and Theorems

Definition 1. Let x and x
+
 be two strings with length l over

an alphabet Σ . We show them as � � ��, ��, … , �� and

�� � ��
�, ��

�, … , ��
�. ��

 is called an 1-right neighbour of x if

��
� � ��, ��

� � �	, … , ��
�
� � �� .

Definition 2. Let s be a string with length n and x be a

string with length l (l<n). x is called an l-mer of s and is

shown with � ��
 if x is a contiguous substring of s .

Theorem 1. [19] Let
� and
� be two strings over an

alphabet Σ , � ��
� and � ��
� . Let ����, �� � �, where ��

is the Hamming distance between two strings with equal

length, i.e., the number of positions where the two strings

differ. Then

�����, ��� � � � 1 �� � �� � � 1

Figure 1. shows two strings si and s j with two contiguous

l-mers in each one.

Figure 1. Two strings si and s j with two contiguous l-mers in each one.

Theorem 2. Let
� and
� be two strings over an alphabet Σ

and � ��
� and � ��
� and ����, �� � � then

1. If �� � �� and��
� � ��

� then �����, ��� � � � 1.

2. If �� � �� and��
� � ��

� then �����, ��� � �.

3. If�� � �� and ��
� � ��

� then �����, ��� � �.

4. If �� � �� and ��
� � ��

� then �����, ��� � � � 1.

Proof. �����, ��� � ������	 … ����
�, ���	 … ����

� �
������	 … �� , ���	 … ��� � �����

�, ��
��

If �� � �� and ��
� � ��

� then �����, ��� � �� � 1� �
0 � � � 1

(2), (3) and (4) would be proven in exactly the same way

as (1).

Definition 3. Let s and x be two strings with lengths n and

l, such that l<n, respectively. We define

����,
� � �� ��
 ����, �� ! �"

#���,
� � �� ��
 ����, �� � �"

#���� � ��: |�| � 1, ����, �� � �"

Based on theorem 2, if � ��
 and ����, �� ! � � 1 then

�� has a chance to be in �����,
� . The next theorem is

based on this fact.

Theorem 3. Let
� and
� be two strings over an alphabet

Σ .

1. If ����, �� & �

then �� � �����,
��.

2. If ����, �� � �

and �� � ��

then �� � �����,
��.

3. If ����, �� � � , �� � �� and ��
� � ��

� then �� �
�����,
��.

4. If ����, �� � � � 1, �� � �� and ��
� � ��

� then �� �
��'��,
�(.

Proof. If ����, �� & � then using theorem1 we have

�����, ��� ! � thus �� � ��'��,
�(. Using theorem1 and

theorem 2, it will be trivial to prove (2), (3), and (4).

Corollary1 enables us to reduce the number of

comparisons when (,) =d x y dH .

Corollary 1. Let si and s j be two strings over an alphabet

Σ .

1. If ����, �� & � then �� � �����,
��.

2. If ����, �� � � , �� � �� and ��
� � ��

� then �� *
�����,
��.

3. If ����, �� � � � 1 �� � �� and ��
� � ��

� then

�� � �����,
��.

Proof. (1) and (3) are similar to (1) and (4) in theorem3.

(2) is exactly opposite of theorem3’s (2) and (3).

Theorem1 and definition of #���,
� help us to reduces

local search in input sequences which is a part of all motif

search algorithms. This result would be proposed in the next

theorem.

Theorem 4. Let si and s j be two strings over an alphabet

Σ .

1. If ����, �� � � � 1 �� � �� and ��
� � ��

� then

�� � #����,
��.

2. If ����, �� � � �� � �� and ��
� � ��

� then �� �
#����,
��.

 Computational Biology and Bioinformatics 2016; 4(2): 15-20 17

3. If ����, �� = � �� = �� and ��
� = ��

� then �� ∈
#�(��,
��.

4. If ��(�, �� = � + 1 �� ≠ �� and ��
� = ��

� then

�� ∈ #�(��,
��.

Proof. As we know

��(��, ��� = ��(���	 … ����
�, ���	 … ����

��

=��(���	 … �� , ���	 … ��� + ��(��
�, ��

��

If ��(�, �� = � − 1 �� = �� and ��
� ≠ ��

� then we have

��(��, ��� = (� − 1� + 1 = � thus �� ∈ #�(��,
��.

(2), (3) and (4) can be proven in exactly the same way as

(1).

Definition 4 (planted motif search problem). Let �
�"�+�
, is

a set of strings with length n over an alphabet Σ and

nonnegative integers l, d, satisfying 0 ≤ � < - < . . The

(l,d)-motif search problem is to find a string x, called motif,

of length l such that

∀0 = 1, … , 1 ∃3 ∈�
� ∶ ��(�, 3� = �

Now, we use corrolary1 and theorem4 to propose a

technique for speed up the PMS algorithm which we call it

PMS two-step.

3. PMS Two-Step Algorithm for

Pattern-Driven Motif

First of all, we describe Algorithm PMS briefly, because

our new idea is applied to it. For more details about

Algorithm PMS, the reader is referred to [13].

The main trend of the algorithm is as follows. First for

each l-mer x of the first string, find all of its neighbors with

distance d. Each of these neighbors could be a motif

candidate. Let x′ be one of these neighbors. To investigate

whether x′ could be a motif, we do as follows. If there is an l-

mer with distance d from x′ in each string that is in distance

2d from x, then x′ is introduced as an instance of motif.

Algorithm PMS could be presented as the following

pseudocode.

Algorithm PMS

Input: 4 = �
�,
�, … ,
5"

Output: A set M of candidate motifs

=M φ

For each x, � ∈�
�:

Construct ���(�,
�� for j=2,…,t

For each �6 ∈ #�(��

If for each j, (2 ≤ 8 ≤ 1) 3� ∈ ���(�,
�� exists such that

��'�6, 3�(= �

Add �6 to M.

Return M.

Theorem 6 [5]. Algorithm PMS can be implemented in

� 91.� 9 -
�: |Σ|�: time and in �(1.�� space.

We use corollary1 to propose Algorithm PMS two-step.

Algorithm PMS two-step is similar to PMS for odd l-mers

of the first string, but for even l-mers there is no need to

construct ���(�,
�� for j=2,…,t since we can extract it from

���(�,
�� which was calculated for odd l-mers at previous

step, according to corollary1. The pseudo code of the

Algorithm PMS two-step is as follows.

Algorithm PMS two-step

Input: 4 = �
�,
�, … ,
5"

Output: A set M of candidate motifs
M φ=

For each x, � ∈�
� that started from odd positions of
�

(n l− must be odd):

Construct #��(�,
�� and #����(�,
�� for j=2,...,t.

For each �6 ∈� #�(��

If for each j, (2 ≤ 8 ≤ 1) there exists 3� ∈ ���(�,
�� such

that ��'�6, 3�(= �

Add �6 to M.

If � ∈ ���'�,
�(and is started from position n-l+1 of
�

then delete it from ���'�,
�(for j=2,…,t.

For each � ∈ ���'�,
�(add �� to ���'��,
�(for

j=2,…,t.

For each � ∈ #��'�,
�(for j=2,…,t

If �� = �� and ��
� ≠ ��

� then delete �� from ���'��,
�(.

For each � ∈ #����'�,
�(for j=2,…,t

If �� ≠ �� and ��
� = ��

� then add �� to ���'��,
�(.

For � ∈�
� which started from position 1 of
� if

��(��, �� ≤ 2� add y to ���'��,
�(for j=2,…,t.

For each �6 ∈ #�(���

If for each j, (2 ≤ 8 ≤ 1) there exists 3� ∈ ���(��,
�� such

that ��'�6, 3�(= �

Add �6 to M.

Return M

Steps 1 to 6 of this algorithm are similar to PMS algorithm.

In steps 7 to 13 ���'��,
�(is constructed for �� ∈�
�

according to corollary 1. The key step of Algorithm PMS

two-step is step7 in which n-l+1

position of string
� for

j=2,…,t

are omitted from ���'�,
�(. On the other hand, since

the elements of ���'�,
�(are ordered, if element n-l+1

exists, it is the last element of ���'�,
�(.

Steps 8 to 12 are according to corollary 1. Step 13 is based

on the fact that the first l-mers of strings 2 to t cannot be

obtained based on corollary 1. So we have to investigate

these t-1 remained l-mers for 2d distances.

After constructing ���'��,
�(in steps 7 to 13, candidate

motifs are investigated for ��regarding the new ���'��,
�(.

Steps 14 to 16 are similar to steps 4 to 6.

Theorem 8. The PMS two-step algorithm can be

implemented in � 91.�- 9 -
�: |Σ|�: time and in �(1.�� space.

Proof. The PMS two-step algorithm implements in
5
� 91.- + 2 9 -

�: |Σ|�1.- + 21. + 1-: time and therefore its

running time is � 91.�- 9 -
�: |Σ|�: . On the other hand, this

algorithm uses #��(�,
� , #����(�,
�, ���(�,
� and

���(��,
�� space. Our algorithm uses �(41.�� = �(1.��

18 Saeed Alirezanejad Gohardani et al.: A New Idea for Improving the Running Time of PMS Algorithm

space to does this process.

If �6 � #���� is changed to �6 � #���,
<� for k=1,2,…,t

PMS algorithm is restricted to find motifs which are present

in input sequences and is called PMS-SD algorithm.

In this section, we use corollary 1 and theorem 4 to

improve PMS algorithm for sample-driven motif search

problem. In other words, we search motifs which are present

in the given strings.

Algorithm PMS-SD two-step

Input: 4 = �
�,
�, … ,
5"

Output: A set M of candidate motifs
M φ=

For each x,� ∈�
� that started from odd positions of
� (n-l

must be odd)

Construct ���(�,
�� , #��(�,
�� and #����(�,
�� for

j=2,..,t.

Construct #�(�,
�� , #�
�(�,
�� and #���(�,
�� for

j=2,..,t.

For each �6 ∈ #�(�,
<� for k=1,…,t

If for each 8 (2 ≤ 8 ≤ 1� there exists 3� ∈ ���(�,
�� such

that ��'�6, 3�(= �

Add x′ to M.

If � ∈ ���(�,
�� and started from position n-l+1 of
�

delete it from ���(�,
�� for j=2,…,t.

If � ∈ #�(�,
�� is started from position n-l+1 of
� delete

it from #�(�,
�� for j=1,…,t.

For each � ∈ ���(�,
�� add �� to ���(��,
�� for j=2,…,t.

For each � ∈ #��(�,
�� for j=2,…,t

If �� = �� and ��
� ≠ ��

� then delete �� from ���(��,
��.

For each � ∈ #����(�,
�� for j=2,…,t

If �� ≠ �� and ��
� = ��

� then add �� to ���(��,
��.

For each � ∈ #�
�(�,
�� for j=2,…,t

If �� = �� and ��
� ≠ ��

�

then add �� to #�(��,
��.

For each � ∈ #�(�,
�� for j=2,…,t

If �� ≠ �� and ��
� ≠ ��

�

then add �� to #�(��,
��.

If �� = �� and ��
� = ��

�

then add �� to #�(��,
��.

For each � ∈ #���(�,
�� for j=2,…,t

If �� ≠ �� and ��
� = ��

� then add �� to #�(��,
��

For � ∈�
� that started from position 1 of
� if

��(��, �� = � add y to #�(��,
��

For each � ∈�
� that started from position 1 of
� for

j=2,…,t

If ��(��, �� = �

add y to #�(��,
�� and ���(��,
��

Else if ��(��, �� ≤ 2�

add y to ���(��,
��

For each �6 ∈ #�(��,
<� for k=1,…,t

If for each 8 (2 ≤ 8 ≤ 1� if 3� ∈ ���(��,
�� exists such that

��'�6, 3�(= �

Add �6 to M

Return M

Steps 1 to 7 are similar to PMS algorithm. In steps 8 to 25

the two sets ���(��,
�� and #�(��,
�� are constructed. In

steps 8 and 9 positions n-l+1 are omitted from
�. In steps 10

to 14 and 15 to 21 ���(��,
�� and #�(��,
�� are constructed

according to corollary 1 and theorem 4, respectively. In steps

22 to 25 the construction process of ���(��,
�� and

#�(��,
�� are completed by calculating the distance between

the first t sequences of these strings and �� . Finally, the

motif search process among motif candidates would be

completed in steps 26 to 28.

Theorem 9. PMS-SD two-step algorithm can be

implemented in � 91.�- 9 -
�: |Σ|�: time and in �(1.�� space.

Proof. The PMS two-step algorithm for sample-Driven

motif implements in
5
� 91.- + 2 9 -

�: |Σ|�1.- + 21. + 21.:

time and therefore we have � 91.�- 9 -
�: |Σ|�: time. On the

other hand, this algorithm uses sets #��(�,
�, #����(�,
�,

#�
�(�,
� , #���(�,
� , ���(�,
�� and ���(��,
�� as space.

Our algorithm uses �(61.�� = �(1.�� space to does this

process.

4. Experimental Results

4.1. Finding the Simulated DNA Motif

The PMS-SD two-step and PMS two-step algorithms are

evaluated by computational experiments. To do this, a set of

random data is generated according to what described in [13].

First of all, 20 strings of length 600 are generated randomly

such that each letter has the equal probability 1
| |Σ . Then, a

motif of length l is generated randomly in the same manner.

Next, 20 instances are generated from the motif by the

mutating the letter at exactly d random positions. Finally,

they are planted in each sequence where each position is

selected randomly.

The proposed algorithms have been written in C. The

computational comparison has been performed in a laptop

computer with an Intel Core i3-M330 CPU (2.13 GH) and 4

GB memory. PMS and PMS two-step’s running time have

been reported in table 1 and Algorithm PMS-SD and

Algorithm PMS-SD two-step in table 2. Based on Table 2,

PMS-SD two-step has reduced PMS-SD’s running time for

about 40 percent.

Table 1. Time comparison of PMS, PMS two-step and voting algorithms for

DNA sequences.

(l,d) PMS PMS two-step Voting [14]

(11,3) 4.6s 4.4s 5.7s

(13,4) 102.1s 93.5s 72.5s

(15,5) 23.5m 22.7m 14.8m

(17,6) 8h 7.8h *

‘*’ denotes that its time was not reported.

Table 2. Time comparison of Algorithm PMS-SD and Algorithm PMS-SD

two-step for DNA sequences.

(l,d) PMS-SD PMS-SD two-step

(9,2) 1.03s 0.76s

(11,3) 1.2s 0.89s

(13,4) 1.37s 1.03s

(15,5) 1.58s 1.13s

(17,6) 1.71s 1.23s

(19,7) 1.83s 1.29s

(21,8) 2s 1.37s

 Computational Biology and Bioinformatics 2016; 4(2): 15-20 19

(l,d) PMS-SD PMS-SD two-step

(23,9) 2.17s 1.43s

(25,10) 2.26s 1.5s

(29,12) 2.55s 1.63s

(29,13) 3.01s 2.04s

(29,14) 4.95s 4.06s

(51,23) 3,54s 2s

(51,24) 3.56s 2.03s

(51,25) 3.59s 2.08s

4.2. Finding Real DNA Motif

The proposed algorithm tested with the real DNA data sets,

preproinsulin, DHFR, metallothionein, c-fos and Yeast ECB

data sets as in [25]. Algorithm PMS two-step found

transcription regulatory elements on these data set.

5. Conclusion

In this paper, a new idea was used to speed up the PMS

algorithm’s running time. Using some characteristics of DNA

strings, some theorems has been proven to reduce the number

of calculations of distances between two strings with the

same length. Algorithms PMS two-step and PMS-SD two-

step based on Algorithm PMS were proposed. As Table 1

shows, although the voting algorithm finds the (15,5) motif

in 14.8 m which is better than PMS two-step (22.7 m) and

PMS (23.5 m), this algorithm fails to find (17,6) motif which

is found by PMS two-step (8 h) and PMS (7.8 h). For SD

motif search problem Table 2 shows the results obtained from

Algorithm PMS-SD and Algorithm PMS-SD two-step. As it

is seen for all tested (l,d) motifs, the running time of

Algorithm PMS-SD two-step is better than Algorithm PMS-

SD. For example for (25,10) motif Algorithm PMS-SD two-

step serves 1.5 s while Algorithm PMS-SD needs 2.26 s to

search the motif.

Acknowledgments

This work is supported by a grant from university of

Guilan. The authors appreciate the valuable comments

provided by the anonymous referees which lead to this

improved version of the paper.

References

[1] D. Laurent and B. Philipp, "Searching for regulatory elements
in human noncoding sequences," Current Opinion in
Structural Biology, vol. 7, pp. 399-406, 1997.

[2] D. S. a. D. I. Ratne, "Use of a Probabilistic Motif Search to
Identify Histidine Phosphotransfer Domain-Containing
Proteins," PLOS one, pp. 1-18, 2016.

[3] S. Rajasekaran, "Computational techniques for motif search,"
Frontiers in Bioscience, no. 14, pp. 5052-5065, 2009.

[4] M. Frances and A. Litman, "On Covering Problems of Codes,"
Theory of Computing Systems, vol. 30, no. 2, pp. 113-119,
1997.

[5] S. Rajasekaran, S. Balla and C. Huang, "EXACT
ALGORITHMS FOR PLANTED MOTIF CHALLENGE
PROBLEMS," APBC, pp. p249-259, 2005.

[6] J. Davila, S. Balla and S. Rajasekaran, "Space and Time
Efficient Algorithms for Planted," Proc. Second Int Workshop
Bioinformatics Research and Applications, May 2006.

[7] S. Rajasekaran and H. Dinh, "A Speedup Technique for (l, d)
Motif Finding Algorithms," BMC Research Notes, vol. 4, no.
54, Mar. 2011.

[8] P. Kuksa and V. Pavlovic, "Efficient Motif Finding Algorithms
for Large-Alphabet Inputs," BMC Bioinformatics, vol. 11,
May 2010.

[9] H. Dinh, S. Rajasekaran and V. Kundeti, "PMS5: An Efficient
Exact Algorithm for the (l, d) Motif Finding Problem," BMC
Bioinformatics, vol. 12, Oct. 2011.

[10] S. Bandyopadhyay, S. Sahni and S. Rajasekaran, "PMS6: A
Fast Algorithm for Motif Discovery," in Proc. IEEE Second
Int’l Conf. Computational Advances in Bio and Medical
Sciences (ICCABS ’12), Feb. 2012.

[11] M. N. a. S. Rajasekaran, "Efficient sequential and parallel
algorithms for planted motif search," BMC Bioinformatics, pp.
DOI: 10.1186/1471-2105-15-34, 2014.

[12] M. N. a. S. Rajasekaran, "qPMS9: An Efficient Algorithm for
Quorum Planted Motif Search," Scientific Reports, p. doi:
10.1038/srep07813, 2015.

[13] Davila, J.; Balla, S.; Rajasekaran, S., "Fast and Practical
Algorithms for Planted (l,d) Motif Search," IEEE/ACM Trans.
on Computational Biology and Bioinformatics, vol. 4, no. 4,
pp. 544-552, 2007.

[14] F. Chin and H. Leung, "Voting Algorithms for discovering
long motifs," in Proceedings of the Third Asia-Pacific
Bioinformatics Conference (APBC2005), Singapore, pages
261-271, 2005.

[15] N. Pisanti, A. Carvalho, L. Marsan and M. Sagot, "Risotto:
Fast extraction of motifs with mismatches," in Proceedings of
the 7th Latin American Theoretical Informatics Symposium,
2006.

[16] T. Baily and C. Elkan, "Fitting a mixture model by expectation
maximization to discover motifs in biopolymers," in
Proceedings of Second International Conference on Intelligent
Systems for Molecular Biology, 1994.

[17] J. Buhler and M. Tompa, "Finding motifs using random
projections," Proceedings of Fifth Annual International
Conference on Computational Molecular Biology (RECOMB),
pp. 69-76, 2001.

[18] C. Lawrence, S. Altschul, M. Boguski, J. Liu, A. Neuwald and
e. al, "Detecting subtle sequence signals: a gibbs sampling
strategy for multiple alignment," Science, vol. 262, pp. 208-
214, 1993.

[19] P. Pevzner and S. Sze, "Combinatorial approaches to finding
subtle signals in dna sequences," Proceedings of Eighth
International Conference on Intelligent Systems for Molecular
Biology, pp. 269-278, 2000.

[20] E. Rocke and M. Tompa, "An algorithm for finding novel
gapped motifs in dna sequences," Proceedings of Second
International Conference on Computational Molecular
Biology (RECOMB), pp. 228-233, 1998.

20 Saeed Alirezanejad Gohardani et al.: A New Idea for Improving the Running Time of PMS Algorithm

[21] U. Keich and P. Pevzner, "Finding motifs in the twilight
zone," Bioinformatics, vol. 18, pp. 1374-1381, 2002.

[22] A. Price, S. Ramabhadran and P. Pevzner, "Finding subtle
motifs by branching from sample strings," Bioinformatics, vol.
1, pp. 1-7, 2003.

[23] G. Hertz and G. Stormo, "Identifying dna and protein patterns
with statistically significant alignments of multiple
sequences," Bioinformatics, vol. 15, pp. 563-577, 1999.

[24] A. M. J. L. A. a. A. K. Joan Serr, "A Genetic Algorithm to
Discover Flexible Motifs with Support," arXiv:1511.04986v2
[cs.LG], pp. 1-9, 2016.

[25] M. Blanchette, "Algorithms for phylogenetic Footprinting,"
Proc. Fifth Ann. Int'l Conf. Computational Molecular Biology
(RECOMB01), Apr. 2001.

[26] J. Davila, S. Balla and S. Rajasekaran, "Pampa: An improved
branch and bound algorithm for planted (l, d) motif search,"
Technical report, 2007.

