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Abstract: Motif finding problem is a major challenge in biology with significant applications in the detection of 

transcription factor binding sites and transcriptional regulatory elements that are crucial in understanding gene expression and 

function, human disease, drug design, etc. Two type of motif finding problems have been investigated. Planted Motif Search 

Problem (PMSP) which is defined as finding motifs that appear in all sequences and a restricted version of it “Planted Motif 

Search Problem-Sample Driven” (PMSP-SD) where the motifs themselves are found in the input. The first version is NP-

Complete and the second version can be trivially solved in polynomial time. In this paper, a new idea is used to speed up the 

PMS-SD algorithm. Although PMS-SD is a polynomial time algorithm and the new idea does not improve its asymptotic 

runtime, but since most of the motif search algorithms combine a sample driven approach with a pattern driven approach, the 

speed up of PMS-SD running time would result in speed up of PMS algorithm. To verify the performance of the modified 

algorithms which are called PMS-two step and PMS-SD-two step, these algorithms are tested on simulated data. The 

experimental results approve the improvements. 

Keywords: Pattern and Motif Discovery, Planted (l,d)-Motif Search Problem, Closest Substring Problem 

 

1. Introduction 

Motifs which approximate conserved sequences across 

DNA/protein sequences, lead biologists to new biological 

discoveries. Regulatory regions in a genome such as 

promoters, enhancers, locus control regions contain motifs 

that control many biological processes such as gene 

expression [1] and [2]. In fact, some proteins known as 

transcription factors that bind to motif locations in regulatory 

regions can regulate gene expression. 

A large number of methods have been proposed to 

investigate motifs in biological sequences. A class of 

approaches are combinatorial approaches such as Planted 

Motif Search (PMS), Simple Motif Search (SMS), and 

Edited-distance-based Motif Search (EMS) [3]. 

Among different versions of combinatorial approaches, 

PMS problem is more popular due to its closeness to motif 

reality. Motif in PMS problem is referred as a (l,d)-motif, 

where l is the length of the motif and d is the number of 

mismatches allowed for its instances. This problem is trying to 

extract common substrings that appear in every input sequence 

with pre-specified mismatches allowed. In fact, these instances 

are (l,d)-motifs which has length l and allowed to have d 

mismatches in different places in each of them. An algorithm 

that solves PMS problem is called PMS Algorithm. Motif 

finding problem is based on two categories, Sample-Driven 

and Pattern-Driven approaches. Using pattern-Driven 

approaches, one tries all possible | |Σ l  l-mers as motif 

candidates which is an exponential search space, but in 

Sample-Driven approaches, all possible motifs generated from 

the l-mers in input strings are of interest which could be found 

in polynomial time. It has been proven that PMS problem is 

NP-hard which means unlikely any algorithm solves it in 

polynomial time [4]. Du to NP-hardness, two kinds of PMS 

algorithms are exact and approximate algorithms. An exact 

algorithm can find all the motifs in input sequences, while an 
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approximate algorithm may not be able to find all of them. All 

existing exact algorithms solve PMS problem in exponential 

time in some of its parameters. Some of the most important 

exact algorithms are PMS1 [5], PMS2 [5], PMS3 [5], PMSi 

[6], PMSP [6], PMSP4 [7], Stemming [8], PMS5 [9], PMS6 

[10], PMS8 [11], qPMS9 [12], PMS Prune [13], Algorithm 

Voting [14] and RISSOTO [15]. On the other side, 

approximate algorithms take less time than exact algorithms. 

They usually employ heuristics such as local search, Gibbs 

sampling, exponential optimization, etc. Some examples of 

approximate algorithms are Algorithm MEME [16], Algorithm 

PROJECTION [17], Algorithm Gibbs DNA [18], Algorithm 

WINNOWER [19], and Algorithm Random Projection [20]. 

Some other approximate PMS algorithms are 

MULTIPROFILER [21], Algorithm Pattern Branching [22], 

Algorithm Profile Branching [22], Algorithm CONSENSUS 

[23] and genetic algorithm [24]. 

In this paper a new simple idea is proposed to speed up the 

PMS-SD algorithm and since PMS algorithms use PMS-SD 

as subroutines the faster PMS-SD algorithm results in speed 

up of PMS algorithm. The remainder of this paper is 

organized as follows. In section2, some definitions and 

theorems are introduced. In section 3, Algorithm PMS will 

be described briefly, and then a new algorithm is proposed 

based on PMS. Then, in section 4 PMS-SD algorithm in 

which the searched zone is restricted to input sequences is 

improved. Experimental results are shown in section 5 and 

section 6 ends the paper with conclusion. 

2. Definitions and Theorems 

Definition 1. Let x and x
+
 be two strings with length l over 

an alphabet Σ . We show them as � � ��, ��, … , ��  and 

�� � ��
�, ��

�, … , ��
�. ��

 is called an 1-right neighbour of x if 

��
� � ��, ��

� � �	, … , ��
�
� � �� . 

Definition 2. Let s be a string with length n and x be a 

string with length l (l<n). x is called an l-mer of s  and is 

shown with � �� 
 if x is a contiguous substring of s . 

Theorem 1. [19] Let 
� and 
�  be two strings over an 

alphabet Σ , � �� 
�  and � �� 
� . Let ����, �� � �, where �� 

is the Hamming distance between two strings with equal 

length, i.e., the number of positions where the two strings 

differ. Then  

�����, ��� � � � 1 �� � �� � � 1 

Figure 1. shows two strings si  and s j with two contiguous 

l-mers in each one. 

 

Figure 1. Two strings si  and s j  with two contiguous l-mers in each one. 

Theorem 2. Let 
� and 
� be two strings over an alphabet Σ 

and � �� 
� and � �� 
� and ����, �� � � then 

1. If �� � �� and��
� � ��

� then �����, ��� � � � 1. 

2. If �� � �� and��
� � ��

� then �����, ��� � �. 

3. If�� � �� and ��
� � ��

� then �����, ��� � �. 

4. If �� � �� and ��
� � ��

� then  �����, ��� � � � 1. 

Proof. �����, ��� � ������	 … ����
�, ���	 … ����

� �
������	 … �� , ���	 … ��� � �����

�, ��
�� 

If �� � ��  and ��
� � ��

�  then �����, ��� � �� � 1� �
0 � � � 1 

(2), (3) and (4) would be proven in exactly the same way 

as (1). 

Definition 3. Let s and x be two strings with lengths n and 

l, such that l<n, respectively. We define 

����, 
� � �� �� 
   ����, �� ! �" 

#���, 
� � �� �� 
   ����, �� � �" 

#���� � ��: |�| � 1, ����, �� � �" 

Based on theorem 2, if � �� 
  and ����, �� ! � � 1 then 

��  has a chance to be in �����, 
� . The next theorem is 

based on this fact. 

Theorem 3. Let 
� and 
�  be two strings over an alphabet 

Σ . 

1. If ����, �� & �
 
then �� � �����, 
��. 

2. If ����, �� � �
 
and �� � �� 

then �� � �����, 
��. 

3. If ����, �� � � , �� � ��  and ��
� � ��

� then �� �
�����, 
��. 

4. If ����, �� � � � 1, �� � �� and ��
� � ��

� then �� �
��'��, 
�(. 

Proof. If ����, �� & �  then using theorem1 we have 

�����, ��� ! �  thus �� � ��'��, 
�(.  Using theorem1 and 

theorem 2, it will be trivial to prove (2), (3), and (4). 

Corollary1 enables us to reduce the number of 

comparisons when ( , ) =d x y dH . 

Corollary 1. Let si and s j be two strings over an alphabet

Σ . 

1. If ����, �� & � then �� � �����, 
��. 

2. If ����, �� � � , �� � ��  and ��
� � ��

�  then �� *
�����, 
��. 

3. If ����, �� � � � 1  �� � ��  and ��
� � ��

�  then 

�� � �����, 
��. 

Proof. (1) and (3) are similar to (1) and (4) in theorem3. 

(2) is exactly opposite of theorem3’s (2) and (3).  

Theorem1 and definition of #���, 
�  help us to reduces 

local search in input sequences which is a part of all motif 

search algorithms. This result would be proposed in the next 

theorem.  

Theorem 4. Let si  and s j  be two strings over an alphabet

Σ . 

1. If ����, �� � � � 1  �� � ��  and ��
� � ��

�  then 

�� � #����, 
��. 

2. If ����, �� � �  �� � ��  and ��
� � ��

�  then �� �
#����, 
��. 
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3. If ����, �� = �  �� = ��  and ��
� = ��

�  then �� ∈
#�(��, 
��. 

4. If ��(�, �� = � + 1  �� ≠ ��  and ��
� = ��

�  then 

�� ∈ #�(��, 
��. 

Proof. As we know 

��(��, ��� = ��(���	 … ����
�, ���	 … ����

�� 

=��(���	 … �� , ���	 … ��� + ��(��
�, ��

�� 

If ��(�, �� = � − 1  �� = ��  and ��
� ≠ ��

�  then we have 

��(��, ��� = (� − 1� + 1 = �  thus �� ∈ #�(��, 
��. 

(2), (3) and (4) can be proven in exactly the same way as 

(1). 

Definition 4 (planted motif search problem). Let �
�"�+�
,  is 

a set of strings with length n over an alphabet Σ  and 

nonnegative integers l, d, satisfying 0 ≤ � < - < . . The 

(l,d)-motif search problem is to find a string x, called motif, 

of length l such that  

∀0 = 1, … , 1 ∃3 ∈� 
� ∶  ��(�, 3� = � 

Now, we use corrolary1 and theorem4 to propose a 

technique for speed up the PMS algorithm which we call it 

PMS two-step. 

3. PMS Two-Step Algorithm for  

Pattern-Driven Motif 

First of all, we describe Algorithm PMS briefly, because 

our new idea is applied to it. For more details about 

Algorithm PMS, the reader is referred to [13]. 

The main trend of the algorithm is as follows. First for 

each l-mer x of the first string, find all of its neighbors with 

distance d. Each of these neighbors could be a motif 

candidate. Let x′ be one of these neighbors. To investigate 

whether x′ could be a motif, we do as follows. If there is an l-

mer with distance d from x′ in each string that is in distance 

2d from x, then x′ is introduced as an instance of motif. 

Algorithm PMS could be presented as the following 

pseudocode. 

Algorithm PMS 

Input: 4 = �
�, 
�, … , 
5" 

Output: A set M of candidate motifs  

=M φ  

For each x, � ∈� 
�: 

Construct ���(�, 
�� for j=2,…,t 

For each �6 ∈ #�(�� 

If for each j, (2 ≤ 8 ≤ 1) 3� ∈ ���(�, 
�� exists such that 

��'�6, 3�( = � 

Add �6 to M. 

Return M. 

Theorem 6 [5]. Algorithm PMS can be implemented in 

� 91.� 9 -
�: |Σ|�: time and in �(1.�� space.  

We use corollary1 to propose Algorithm PMS two-step. 

Algorithm PMS two-step is similar to PMS for odd l-mers 

of the first string, but for even l-mers there is no need to 

construct ���(�, 
�� for j=2,…,t since we can extract it from 

���(�, 
�� which was calculated for odd l-mers at previous 

step, according to corollary1. The pseudo code of the 

Algorithm PMS two-step is as follows. 

Algorithm PMS two-step 

Input: 4 = �
�, 
�, … , 
5" 

Output: A set M of candidate motifs 
M φ=  

For each x, � ∈� 
�  that started from odd positions of 
� 

( n l−  must be odd): 

Construct #��(�, 
�� and #����(�, 
�� for j=2,...,t. 

For each  �6 ∈� #�(�� 

If for each j, (2 ≤ 8 ≤ 1) there exists  3� ∈ ���(�, 
�� such 

that ��'�6, 3�( = � 

Add �6 to M. 

If � ∈ ���'�, 
�(  and is started from position n-l+1 of 
� 

then delete it from ���'�, 
�(  for j=2,…,t. 

For each � ∈ ���'�, 
�(  add ��  to ���'��, 
�(  for 

j=2,…,t. 

For each � ∈ #��'�, 
�(  for j=2,…,t 

If �� = �� and ��
� ≠ ��

� then delete �� from ���'��, 
�(. 

For each  � ∈ #����'�, 
�(  for j=2,…,t 

If �� ≠ �� and ��
� = ��

� then add �� to ���'��, 
�(. 

For � ∈� 
�  which started from position 1 of 
�  if 

��(��, �� ≤ 2�  add y to ���'��, 
�( for j=2,…,t. 

For each �6 ∈ #�(��� 

If for each j, (2 ≤ 8 ≤ 1) there exists 3� ∈ ���(��, 
�� such 

that ��'�6, 3�( = � 

Add �6 to M. 

Return M 

Steps 1 to 6 of this algorithm are similar to PMS algorithm. 

In steps 7 to 13 ���'��, 
�(  is constructed for  �� ∈� 
� 

according to corollary 1. The key step of Algorithm PMS 

two-step is step7 in which n-l+1
 

position of string 
�  for 

j=2,…,t
 
are omitted from ���'�, 
�(. On the other hand, since 

the elements of ���'�, 
�(  are ordered, if element n-l+1
 

exists, it is the last element of ���'�, 
�(.
 

Steps 8 to 12 are according to corollary 1. Step 13 is based 

on the fact that the first l-mers of strings 2 to t cannot be 

obtained based on corollary 1. So we have to investigate 

these t-1 remained l-mers for 2d distances. 

After constructing ���'��, 
�( in steps 7 to 13, candidate 

motifs are investigated for ��regarding the new ���'��, 
�(. 

Steps 14 to 16 are similar to steps 4 to 6. 

Theorem 8. The PMS two-step algorithm can be 

implemented in � 91.�- 9 -
�: |Σ|�: time and in �(1.�� space. 

Proof. The PMS two-step algorithm implements in 
5
� 91.- + 2 9 -

�: |Σ|�1.- + 21. + 1-:  time and therefore its 

running time is � 91.�- 9 -
�: |Σ|�: . On the other hand, this 

algorithm uses #��(�, 
� , #����(�, 
�, ���(�, 
�  and 

���(��, 
��  space. Our algorithm uses �(41.�� = �(1.�� 
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space to does this process.  

If �6 � #���� is changed to �6 � #���, 
<� for k=1,2,…,t 

PMS algorithm is restricted to find motifs which are present 

in input sequences and is called PMS-SD algorithm. 

In this section, we use corollary 1 and theorem 4 to 

improve PMS algorithm for sample-driven motif search 

problem. In other words, we search motifs which are present 

in the given strings. 

Algorithm PMS-SD two-step  

Input: 4 = �
�, 
�, … , 
5" 

Output: A set M of candidate motifs  
M φ=

 
For each x,� ∈� 
� that started from odd positions of 
� (n-l 

must be odd) 

Construct ���(�, 
�� , #��(�, 
��  and #����(�, 
��  for 

j=2,..,t. 

Construct #�(�, 
�� , #�
�(�, 
��  and #���(�, 
��  for 

j=2,..,t. 

For each �6 ∈ #�(�, 
<� for k=1,…,t 

If for each 8 (2 ≤ 8 ≤ 1�  there exists 3� ∈ ���(�, 
��  such 

that ��'�6, 3�( = � 

Add x′  to M. 

If � ∈ ���(�, 
��  and started from position n-l+1 of 
� 

delete it from ���(�, 
�� for j=2,…,t. 

If � ∈ #�(�, 
�� is started from position n-l+1 of 
� delete 

it from #�(�, 
�� for j=1,…,t. 

For each � ∈ ���(�, 
�� add �� to ���(��, 
�� for j=2,…,t. 

For each � ∈ #��(�, 
�� for j=2,…,t 

If �� = �� and ��
� ≠ ��

� then delete �� from ���(��, 
��. 

For each � ∈ #����(�, 
�� for j=2,…,t 

If �� ≠ �� and ��
� = ��

� then add �� to ���(��, 
��. 

For each � ∈ #�
�(�, 
�� for j=2,…,t 

If �� = �� and ��
� ≠ ��

�
 
then add �� to #�(��, 
��. 

For each � ∈ #�(�, 
�� for j=2,…,t 

If �� ≠ �� and ��
� ≠ ��

�
 
then add �� to #�(��, 
��. 

If �� = �� and ��
� = ��

�
 
then add �� to #�(��, 
��. 

For each � ∈ #���(�, 
�� for j=2,…,t 

If �� ≠ �� and ��
� = ��

� then add �� to #�(��, 
�� 

For � ∈� 
�  that started from position 1 of 
�  if 

��(��, �� = � add y to #�(��, 
�� 

For each � ∈� 
�  that started from position 1 of 
�  for 

j=2,…,t 

If ��(��, �� = �
 
add y to #�(��, 
�� and ���(��, 
�� 

Else if ��(��, �� ≤ 2�
 
add y to ���(��, 
�� 

For each �6 ∈ #�(��, 
<� for k=1,…,t 

If for each 8 (2 ≤ 8 ≤ 1� if 3� ∈ ���(��, 
�� exists such that 

��'�6, 3�( = � 

Add �6 to M  

Return M 

Steps 1 to 7 are similar to PMS algorithm. In steps 8 to 25 

the two sets ���(��, 
��  and #�(��, 
��  are constructed. In 

steps 8 and 9 positions n-l+1 are omitted from 
�. In steps 10 

to 14 and 15 to 21 ���(��, 
�� and #�(��, 
�� are constructed 

according to corollary 1 and theorem 4, respectively. In steps 

22 to 25 the construction process of ���(��, 
��  and 

#�(��, 
�� are completed by calculating the distance between 

the first t sequences of these strings and �� . Finally, the 

motif search process among motif candidates would be 

completed in steps 26 to 28. 

Theorem 9. PMS-SD two-step algorithm can be 

implemented in � 91.�- 9 -
�: |Σ|�: time and in �(1.�� space. 

Proof. The PMS two-step algorithm for sample-Driven 

motif implements in 
5
� 91.- + 2 9 -

�: |Σ|�1.- + 21. + 21.: 

time and therefore we have � 91.�- 9 -
�: |Σ|�: time. On the 

other hand, this algorithm uses sets #��(�, 
�, #����(�, 
�, 

#�
�(�, 
� , #���(�, 
� , ���(�, 
��  and ���(��, 
��  as space. 

Our algorithm uses �(61.�� = �(1.��  space to does this 

process. 

4. Experimental Results 

4.1. Finding the Simulated DNA Motif 

The PMS-SD two-step and PMS two-step algorithms are 

evaluated by computational experiments. To do this, a set of 

random data is generated according to what described in [13]. 

First of all, 20 strings of length 600 are generated randomly 

such that each letter has the equal probability 1
| |Σ . Then, a 

motif of length l is generated randomly in the same manner. 

Next, 20 instances are generated from the motif by the 

mutating the letter at exactly d random positions. Finally, 

they are planted in each sequence where each position is 

selected randomly. 

The proposed algorithms have been written in C. The 

computational comparison has been performed in a laptop 

computer with an Intel Core i3-M330 CPU (2.13 GH) and 4 

GB memory. PMS and PMS two-step’s running time have 

been reported in table 1 and Algorithm PMS-SD and 

Algorithm PMS-SD two-step in table 2. Based on Table 2, 

PMS-SD two-step has reduced PMS-SD’s running time for 

about 40 percent. 

Table 1. Time comparison of PMS, PMS two-step and voting algorithms for 

DNA sequences. 

(l,d) PMS PMS two-step Voting [14] 

(11,3) 4.6s 4.4s 5.7s 

(13,4) 102.1s 93.5s 72.5s 

(15,5) 23.5m 22.7m 14.8m 

(17,6) 8h 7.8h * 

‘*’ denotes that its time was not reported. 

Table 2. Time comparison of Algorithm PMS-SD and Algorithm PMS-SD 

two-step for DNA sequences. 

(l,d) PMS-SD PMS-SD two-step 

(9,2) 1.03s 0.76s 

(11,3) 1.2s 0.89s 

(13,4) 1.37s 1.03s 

(15,5) 1.58s 1.13s 

(17,6) 1.71s 1.23s 

(19,7) 1.83s 1.29s 

(21,8) 2s 1.37s 
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(l,d) PMS-SD PMS-SD two-step 

(23,9) 2.17s 1.43s 

(25,10) 2.26s 1.5s 

(29,12) 2.55s 1.63s 

(29,13) 3.01s 2.04s 

(29,14) 4.95s 4.06s 

(51,23) 3,54s 2s 

(51,24) 3.56s 2.03s 

(51,25) 3.59s 2.08s 

4.2. Finding Real DNA Motif 

The proposed algorithm tested with the real DNA data sets, 

preproinsulin, DHFR, metallothionein, c-fos and Yeast ECB 

data sets as in [25]. Algorithm PMS two-step found 

transcription regulatory elements on these data set. 

5. Conclusion 

In this paper, a new idea was used to speed up the PMS 

algorithm’s running time. Using some characteristics of DNA 

strings, some theorems has been proven to reduce the number 

of calculations of distances between two strings with the 

same length. Algorithms PMS two-step and PMS-SD two-

step based on Algorithm PMS were proposed. As Table 1 

shows, although the voting algorithm finds the (15,5) motif 

in 14.8 m which is better than PMS two-step (22.7 m) and 

PMS (23.5 m), this algorithm fails to find (17,6) motif which 

is found by PMS two-step (8 h) and PMS (7.8 h). For SD 

motif search problem Table 2 shows the results obtained from 

Algorithm PMS-SD and Algorithm PMS-SD two-step. As it 

is seen for all tested (l,d) motifs, the running time of 

Algorithm PMS-SD two-step is better than Algorithm PMS-

SD. For example for (25,10) motif Algorithm PMS-SD two-

step serves 1.5 s while Algorithm PMS-SD needs 2.26 s to 

search the motif. 
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