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Abstract: Genes are the basic blue print of life in an organism containing the physiological and behavioral 

characteristics. A gene regulatory network (GRN) is a set of genes, or parts of genes, that interact with each other to 

control a specific cell function. GRN inference is the reverse engineering approach to predict the biological network from 

the gene expression data. Biochemical system theory based S-System is a popular model in GRN inference and the model 

is defined with its different parameters. The task of S-System based GRN inference is its parameter estimation which is an 

optimization problem. Several studies employed Particle Swarm Optimization (PSO) and other pioneer optimization 

techniques to estimate S-System model. In this paper several prominent swarm intelligence (SI) techniques have been 

studied and adapted for S-System parameter estimation. They are Group Search Optimizer, Grey Wolf Optimizer and PSO. 

Proficiency of optimization techniques are compared to infer GRN from SOS DNA real gene expression data and DREAM 

4 Silico data. 
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1. Introduction 

Genes are the basic blue print of life in an organism 

containing the physiological and behavioral characteristics 

[1]. There are thousands of genes situated in the DNA double 

helix, contained in the chromosomes inside cell nucleus in 

wounded form. Each gene codes for a protein. The protein is 

produced from a gene through a sequence of bio-chemical 

reaction when the cell environment is undergone some 

internal or external change [2]. The process of protein 

production is called the gene expression and the rate of 

expression is called the gene expression level. The protein 

from one gene may affect the expression of any other gene 

contained in the same cell or in any other cell of the organism. 

This phenomenon is called the regulation of the first gene to 

the second. For a set of genes the pairwise regulatory 

relationship forms the network called Gene Regulatory 

Network (GRN). 

GRN inference is the reverse engineering approach to 

uncover the dynamic and intertwined nature of gene 

regulation in cellular systems [3]. In GRN inference the gene 

regulation network is inferred from gene expression data. 

The inference of genetic networks faces a great challenge in 

which mutual interactions among genes are estimated using 

time-series data of gene expression patterns. The inferred 

model of a genetic network is considered as an idea tool 

which helps biologists generate hypotheses as long as 

facilitate the design of their experiments. 

For GRN inference researchers have used a number of 

approaches [4, 5]. They proposed numerous models to 

describe biochemical networks have ranged from simple 

Boolean networks to detailed sets of differential equations of 

an arbitrary form [6, 7]. Nowadays, S-System model is a 

popular model derived from biochemical system theory to 

infer GRN from gene expression data [8, 9]. 

The GRN inference through S-System means estimation of 

its parameters values from time-series data of gene 

expression patterns. S-System has many different parameters 

and they have different optimal values for a unique set of 

genes. The number of S-System parameters is proportional to 

the number of network components. Hence, S-System model 

based GRN inference is an optimization problem and any 
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optimization technique can be used. For this reason, 

researchers have used optimization techniques such as 

genetic algorithms (GA) [10], global optimization methods 

[11], Particle Swarm Optimization (PSO) [26], and linear 

time variant models [12] to estimate parameters of S-System 

model for different gene expression data. 

In recent years nature inspired Swarm Intelligence (SI) has 

become popular in the field of optimization. PSO is the 

pioneer SI based optimization technique and used for S-

System model [26]. Other recently developed SI based 

methods might also interesting for S-System model and the 

aim of this study is to investigate several prominent SI based 

methods for S-System parameter estimations. In this study, 

PSO, Group Search Optimizer and Grey Wolf Optimizer are 

investigated to estimate the S-System parameters. 

This paper is organized in the following way. A brief 

description about S-System based GRN inference technique 

is given in Section 2. In Section 3, adaptation of selected SI 

techniques for S-System model is explained. Experimental 

studies have been discussed in Section 4. Finally the 

conclusion is drawn in Section 5. 

2. S-System Based GRN Inference 

Technique 

A number of approaches have been investigated to infer 

GRNs from gene expression data with the aim of improving 

the network inference accuracy and scalability. Basically, the 

methods can be categorized into two types: information 

theoretic approaches and model based approaches. In the 

information theoretic approach, the network is inferred 

through measuring the dependences or causalities between 

transcription factors and target genes. A number of 

prominent methods in this category use Mutual Information 

(MI) and its variants [13, 14, 15]. On the other hand, in a 

model based approach nonlinear differential equations are 

used to express the chemical reaction of transcription, 

translation and other cellular processes. In model based 

approach, S-System model is one of the most widely used 

models for GRN inference. 

The S-System model is provided by the Biochemical 

system theory (BST) [16] to represent and analyze biological 

systems. The model is a nonlinear differential equation 

model of GRNs, and it can describe various dynamics of the 

relationships among genes. It represents a network as a set of 

differential equations: 
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where,		� represents the expression level of the ith gene of 

the network; �	 is the number of genes in the network; 
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  are kinetic 

orders. It is to mention that the kinetic orders ��
 	and	��
  

regulate the synthesis and degradation of 		� due to 		
. The 

GRN shown in Figure 1 contains 5 genes. 

 

Figure 1. A GRN with 5 genes. 

In this network the rate constants are {α1, α2, α3, α4, α5} and 

{β1, β2, β3, β4, β5} and the kinetic orders are {gi, 1, gi, 2, gi, 3, gi, 4, 

gi, 5} and {hi, 1, hi, 2, hi, 3, hi, 4, hi, 5} where i=1 to 5. The kinetic 

orders gij and hij determine the structure of the regulatory 

network. If gij > 0 gene j induces the synthesis of gene i. If gij 

< 0 gene j inhibits the synthesis of gene i. Analogously, a 

positive (negative) value of hij indicates that gene j induces 

(suppresses) the degradation of the mRNA level of gene i. So 

in Figure 1, as g12 > 0, so gene 2 activates gene 1. As well as, 

for being h23 > 0, gene 3 deactivates gene 2. 

For the purpose of evaluation of an S-System model for 

GRN, a numerical solver has to be used such as Runge–Kutta. 

In the Runge–Kutta method, we have the following 

differential equation: 
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where f (t, x) is a nonlinear differential equation. For the case 

of the S-System 
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Using a fourth-order Runge–Kutta method, we can 

integrate the solution as 
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The numerical solutions often take a long time to calculate 

given that (4) depends on each of the N variables to do an 

update when the networks are large. On the other hand, to 

optimize the parameters with an optimization technique, it is 

necessary to evaluate the S-System for multiple candidates 

and multiple iterations. Linear Lagrange polynomial was 

used by Tsai and Wang [8] to reduce the calculation’s time 
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by introducing experimental while they used the Runge–

Kutta method for solving the S-System of a network. Thus, 

each new step in the numerical solution of the S-System is 

defined as: 

	&�� � 	& ' 0.5 ∗ 1 ∗  �2	&��,3�4 , 56 	+ �[	&, 5]	),   (11) 

where the		3�4(!) on the right side of the equation represents 

the value of the experimental values at time t and �[", 5] is 

evaluated at x with parameters	5 according to equation (1). 

The parameter 1 denoted the smoothness rate which is to set 

small, as a result the approximation does not overshoot. In 

this paper, for notation convenience	5	is named to the set of 

all parameters 9��
 , ℎ�
 , ��, ��:;, <	ϵ	1…�@  in the S-System. 

With a view to decreasing the calculations and the inference 

time, equation (11) is used instead of the update in (5). 

Instead of performing the joint solution of all genes in the 

classical Runge–Kutta method in (4), the experimental values 

are used for the solution of "(!) so that the system can solve 

each gene’s solution independently. 

Since the aim of this study to find the best parameters θ for 

the network, it is necessary to formulate it as an optimization 

problem. Tominaga et al. [17] standardized the use of the 

mean squared error (MSE) evaluation to measure a 

candidate’s fitness in the S-System. Thus, the fitness function 

is 

� = ∑ ∑ B��,CDE(�)F��,GHI(�)
��,GHI(�) J

*
���K��� ,                     (12) 

where, T represents the number of time samples in the 

experimental data, N is the number of genes, and cal and exp 

refer to the calculated and experimental values of the gene 

expression’s data, respectively. Since different networks can 

have the same time series data, in this study experimental 

time series have been divided in M sets. This will force the 

parameters θ to recreate the same dynamics at different initial 

points, which helps to infer the true parameters of the 

network. Each of the N genes’ time expression is divided on 

M sets, which will create N×M training sets for the system. In 

this study, the values of the parameters θ have been inferred 

using several SI techniques with regularization parameters. 

A regularization term λE (θ) is often introduced in an error 

function to avoid over fitting as well as to restrict the search 

space. It achieves this by restraining the growth of the 

parameters. There are different regularization terms, which 

are chosen according to the data. Ng [18] showed that an L1 

regularizer is a good choice when trying to infer sparse 

parameters in a logistic regression. Thus, the regularization 

term for each of the N genes i will take the form, 

LM�(5∗) = L ∑ :��
 + ℎ�
:
�,
�� ,                   (13) 

where, the parameters θ
*
 for large GRNs. The L1 

regularization is only used on sparse parameters. It has been 

applied to the hij and gij parameters, while the parameters α 

and β are left without regularization. Thus, with the 

regularization term and the decoupling included the 

following optimization function is defined for each gene i as 

� = ∑ ∑ B��,CDE(�)F��,GHI(�)
��,GHI(�) J

*
���K��� + LM�(5∗),     (14) 

where, M represents the different time series in which the 

data have been divided and		�,NOP(!) is calculated using (11). 

In this study S-System has been decoupled so that this value 

has been calculated for each individual gene. The problem 

then has two objective functions, where the parameters {hij, 

gij} have been constrained to be small and at the same time 

to have the best MSE fitness for the original time series 

data. 

In this study, experimental time series have been divide in 

M sets because different networks can have the same time 

series data. As a result, this has forced the parameters θ to 

recreate the same dynamics at different initial points and 

helped us to infer the true parameters of the network. Each of 

the N genes’ time expression is divided on M sets and they 

create N×M training sets for the system. 

3. Adaption of Prominent SI Techniques 

for S-System Model 

In general, the GRN inference problem is formulated as a 

function optimization problem to minimize the sum of the 

squared relative error by Tominaga et al. [17] in (12). 

Where 	�,3�4(!)  is an experimentally observed gene 

expression level at time t of the ith gene, 	�,NOP(!)  is a 

numerically computed gene expression level acquired by 

solving (1). Where, N is the number of components in the 

network and T is the number of sampling points of observed 

data. Since 2N (N+1) S-System parameters need to be 

determined in order to solve (1), so this function 

optimization problem is 2N (N+1) dimensional. 

In this study, Particle Swarm Optimization, Group Search 

Optimizer and Grey Wolf Optimizer are investigated to 

estimate the S-System parameters. Table 1 demonstrates the 

parameters for network with 5 genes as shown in Figure 1. 

For 5 network components the dimension of the problem (for 

N=5) is D= 2×N (N+1) = 2×5 (5+1) = 60. Therefore, it is 

required to optimize 60 parameter values for network 

presented in Figure 1. It is notable that number of parameters 

will be larger for network with more genes. The following 

section briefly describe the SI based methods and their 

adaptation to estimate S-System parameters. 

Table 1. S-System parameters for GRN with 5 genes. 

1 .. 5 6 .. 10 11 .. 35 36 .. 60 

α1 .. α5 β1 .. Β5 g1 .. g25 h1 .. h25 

3.1. Particle Swarm Optimization (PSO) 

PSO was proposed by Eberhart and Kennedy [21]. The 

algorithms is evaluated according to the idea of swarm 

intelligence based on the swarming habits by certain kinds of 

animals (such as birds and fish). The basic operations of PSO 

are performed simultaneously maintaining several candidate 

solutions in the search space. During each iteration of the 



40 Md Julfikar Islam et al.:  Gene Regulatory Network Inference Using Prominent Swarm Intelligence Methods 

 

algorithm, the fitness of each candidate solution is 

determined by the objective function being optimized. In 

PSO, each particle represents a potential solution. At every 

iteration each particle moves to a new position (i.e., search a 

new point) based on the calculated velocity. 

In PSO, each particle updates position based on the 

calculated velocity comparing the best solution of population 

and its own best solution. Population of particles is 

distributed uniformly for multi-dimension search space 

optimization problem. Equation (15) is to calculate velocities 

of particles and (16) to update positions. 

Q
��� = R ∗ Q
� + S� ∗ T�UV
 − 	
�W + S* ∗ T*UV� − 	
�W (15) 

	
��� = 	
� + Q
���                        (16) 

In (1) the global best location is denoted by V�  and 

V
 	 represents the best location ever encountered by this 

particle. An inertia weight R is included in (1) to avoid the 

swarm being trapped into a local minimum. Both T�and T* 

are learning parameters and	S�, S* are random parameters in 

a range of [0, 1]. 

In PSO the position of each particle is considered as the 

solution of the problem. So that to adapt PSO for S-System 

model, each particle position 	
� has been adapted according 

to Table 1. As well as the velocity will be adapted according 

to the equations (15) and (16). Finding the best particle 

position in PSO denotes the estimation of proper S-System 

model. In every particle, value of each dimension, must be 

within the pre-defined range. For getting the best particle 

fitness function is shown in (14). 

3.2. Group Search Optimizer (GSO) 

GSO is a novel optimization technique developed inspired 

by animal searching behavior [22]. Animal searching 

behavior may be described as an active movement through 

which animal can find resources such as foods, mates, 

nesting sites. One major consequence of living together is 

that it is group searching strategy which allows group 

members to increase patch finding rates. Simply this has led 

to the adoption of two foraging strategies within groups 

which are 1) producing, e.g., searching for food; and 2) 

scrounging, e.g., joining resources uncovered by others. The 

second one is also referred to as conspecific attraction, 

kleptoparasitism. 

In GSO algorithm population is called a group and each 

individual animal is called a member. In an n dimensional 

search space, the ith member at the kth searching bout has a 

current position which is "� ∈ 	S&  and a head angle 	5�X =
Y5�Z

X , … . , 5�([\Z)
X ] ^S&F� . The search direction of the ith 

member is a unit vector _�X(5�X) = Y`�Z
X , … . , `�([)

X ] ^S& 

which is measured from 5�X  polar to Cartesian coordinate 

transformation. 

`�Z
X = ∏ Cos Y5�d

X ]&F�e�� , 

`��
X = Sin Y5�(�\Z)

X ] .hCos Y5�d
X ]	(< = 2,… . . , j − 1)

&F�

e�

, 

`�[
X = Sin Y5�([\Z)

X ]	                          (17) 

Practically in a 3-D search space, if at the k-th searching 

bout, the ith member’s head angle is 5�X= (k/3, k/4), then 

the search direction unit vector is _�X = (1/2, √6 /4, √2 /2). 

Each iteration, a group member located in the most 

promising area and which confers the best fitness value 

chosen as the producer. It then stops and scans the 

environment to seek resources actually that is the optima. At 

the kth iteration producer "4 will scan at zero degree in (18) 

and then scan laterally by randomly sampling other two 

points in right according to (19) and left by (20). 

"q = "4X + S�rsO�_4X(5X),                 (18) 

"t = "4X + S�rsO�_4X(5X + S*usO� 	/2),      (19) 

"t = "4X + S�rsO�_4X(5X − S*usO� 	/2),      (20) 

S�^S� is a normally distributed random number with mean 

0 and standard deviation 1 and S*^S&F� is random number 

sequence in the range (0, 1). If the resource of the best point 

among the three is better than producer’s current position, 

then it will fly to that point; otherwise it will have to stay in 

its present position and turn its head to a new randomly 

generated angle, 5X�� = 5X + S*�sO�. If the producer fails 

to find a better area after a iterations, it will have to turn its 

head back to zero degree, 5X�O = 5X . In GSO, some group of 

members are selected as scroungers and they try to get 

opportunities from the producer. The random walk toward 

the producer of the ith scrounger is modeled in (21) at kth 

iteration. 

	"�X�� = "�X + S+vU"4X − "�XW,                  (21) 

S+^S&  is constant in a uniform random sequence which 

range is (0, 1). In this equation “v” is the Hadamard product, 

which calculates the entry wise product of the two vectors. A 

few worst members in GSO are considered as dispersed or 

ranger members who perform random walks. At the k-th 

iteration, ranger generates a random head angle	5�; chooses a 

random distance w� = x. S�wsO� and move to the new point 

using (22). 

"�X�� = "�X + w�_�(5X��),	                 (22) 

In GSO the expected solution is denoted through the 

efficient location 	�X�� of the producer. For GRN inference, 

GSO has been adapted to S-System model through the 

parameter according to the declaration of Table 1. The best 

location found by the producer is identified by (14). 

3.3. Grey Wolf Optimizer (GWO) 

GWO is the most recently developed SI technique based 

on the hunting behaviors of Grey wolf (Canis lupus) which 

belongs to Canidae family [23]. It is seen in nature that Grey 
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wolves prefer to live in a pack. The main phases of their 

hunting are i) tracking, chasing, and approaching the prey; ii) 

Pursuing, encircling, and harassing the prey until it stops 

moving; and iii) attack towards the prey. In the pack, wolves 

are categorized into several different types and each type 

perform specific task. 

In GWO, the wolf with fittest solution mark as the alpha 

(α). Consequently, the second and third best ones are named 

beta (β) and delta (δ) respectively. The rest of the candidate 

solutions are assumed to be omega (ω). In the GWO, the 

hunting (optimization) is guided by α, β, and δ. The ω wolves 

have to follow these three types of wolves. During hunting 

Grey wolves encircle the prey. The mathematical model of 

encircling behavior is illuminated through the following (23) 

and (24). 

ỳ = 	 :cy. y|}}}}y(t) − y|}}}}y(t):,                  (23) 

$y(! + 1) = $y4(!) − �y. ỳ,                 (24) 

Here, t shows the current iteration, �y  and Ty  are both 

coefficient vectors, $y4  represents the position vector of the 

prey, and the position vector of a grey wolf is indicated by	$}}}y. 
The vectors �y and Ty are calculated through (25) and (26). 

�y = 2�}y. S}y� − �}y,                       (25) 

Ty = 2. S}y*,                            (26) 

In (25) and (26), component �}y is decreased from 2 to 0 

linearly over the course of iterations and 	S}y� , S}y*  are both 

random vectors in [0, 1]. The mathematical simulation of the 

hunting behavior of grey wolves illustrates that the alpha, 

beta, and delta have fair knowledge about the potential 

location of prey. As a result, the first three best solutions 

obtained so far are saved and also oblige the other search 

agents (including the omegas). The following equations are 

used to fulfill this purpose. 

ỳ� = :Ty�. $y� − $y:, ỳ� = :Ty*. $y� − $y:, ỳ� = :Ty+. $y� − $y:, (27) 

$y� = $y� − �y�. U ỳ�W, $y* = $y� − �y*. U ỳ�W, 
$y+ = $y� − �y+. U ỳ�W                            (28) 

$y(! + 1) = �}yZ��}y���}y�
+                            (29) 

According to GWO the best solution is the position of 

alpha wolf 	$�}}}}y . And to adapt GWO for S-System model, 

every position of wolf has been adapted according to the 

Table 1. The best position of alpha is identified by the fitness 

function in (14). The beta and gamma wolf also identified by 

the same fitness function. 

4. Experimental Studies 

This section gives experimental settings S-System model 

parameters and gene expression data. After that settings of 

PSO, GSO and GWO are explained. Finally experimental 

results have been presented and discussed accordingly. 

4.1. Gene Expression Benchmark Datasets 

In this study, both synthetic and real gene expression 

benchmark data are considered. The gene expression data is 

available in a two dimensional matrix form in which each 

column represents an individual gene and each row 

represents the expression level of all genes within an 

experiment. Table 2 shows the brief description of the 

datasets which shows a considerable variety in the number of 

types, gene number, series, and sample size. 

Table 2. Benchmark datasets for GRN inference. 

Network Name 
Gene 

Size 
Series Samples Type Source 

SOS DNA 

network 
8 4 50 Real 

Uri Alon 

[24] 

InSilico_Size10_1 10 5 21 Synthetic 
DREAM4 

[25] 

SOS DNA network is a well-known real genetic network 

published by the Uri Alon [24] group. It is the time series 

data of different multi array experiments. In their 

experiments, eight genes are expressed (uvrD, lexA, umuD, 

recA, uvrA, uvrY, ruvA, and polB). They irradiate their DNA 

with ultraviolet light, which will affect some genes, and the 

network will repair itself, thus expressing auto regulation. 

They did four experiments for different light intensities. Each 

experiment had 50 time steps spaced by 6 min. During each 

time step, they take measures of the eight genes. 

In DREAM4 [25] the datasets are provided for InSilico 

Network Challenge. The goal of the in silico network 

challenge is to reverse engineer gene regulation networks 

from given in silico gene expression datasets. Network 

topologies are obtained by extracting subnetworks from 

transcriptional regulatory networks of E. coli and S. 

cerevisiae. They adapted the subnetwork extraction method 

to preferentially include parts of the network with cycles. 

Auto-regulatory interactions were removed, i.e., there are no 

self-interactions in the in silico networks. All networks and 

data are generated with version 2.0 of GNW. There are three 

different datasets provided in this challenge. They are 

InSilico_Size10, InSilico_Size100, and InSilico_Size100_ 

Multifactorial. 

In silico network challenge the dataset InSilico_Size_10 

contains the gene expression data of the network that 

contains 10 genes. There are 5 different datasets 

(InSilico_Size_10_1, InSilico_Size_10_2, 

InSilico_Size_10_3, InSilico_Size_10_4 and 

InSilico_Size_10_5). In this study InSilico_Size_10_1 

dataset has been used. 

4.2. Experimental Setup 

In this study search region has been set in the range of [−2, 

2] for the kinetic orders 	��
 , ℎ�
  and [0, 5] for the rate 

constants α and β. The search region is set in such a manner 

that the search will be fast to converge. Population size and 
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generation are set to 40 and 5000 respectively to draw the 

comparison among these algorithms. In PSO acceleration 

coefficients are 2.0 and the inertia weight ω is in range [0. 2, 

0.9]. In GSO the initial head angle of each individual, 5% is 

set to be (π/4,..., π/4). The constant a was given 

by	���j`(√j + 1) where n is the dimension of the search 

space. The maximum pursuit angle 	usO�  is π/a
2
. The 

maximum turning angle �sO�  is set to be 	usO�/2 . The 

maximum pursuit distance rsO� 	  is calculated from the 

following equation: 

rsO� � ‖U � L‖ � �∑  �� � w�#*&
��� ,               (30) 

where,	w� and 	��  are the lower and upper bounds for the ith 

dimension. In this study the result is taken from the best 

among 5 trials. The experiments have been done on a PC 

(Intel Core i7 @4.40GHz CPU, 8GB RAM, Windows 7 OS, 

MATLAB 2015). 

4.3. Evaluation Technique 

To evaluate the performance any GRN inference 

techniques the inferred network is compared with the true 

network parameters. Also when the true network parameters 

are not given then the network is inferred from time series 

gene expression data. After that, time series data is generated 

from the new inferred network. Finally the newly generated 

time series data is matched with the corresponding previous 

time series data. If the two datasets get matched then the 

network is inferred correctly. 

The performance evaluated by receiver operator 

characteristic (ROC) curve. In general, ROC curve is a 

graphical tool for depicting true hit rate along the vertical axis 

(the number of target events correctly classified as targets) as 

compared to false alarm rate along the horizontal axis (the 

number of target events incorrectly classified as non-targets). 

In GRN inference evaluation, the ROC curve is created by 

plotting the fraction of true positive rate (i.e., true positives out 

of the total actual positives) vs. false positive rate (i.e., the 

fraction of false positives out of the total actual negatives), at 

various threshold settings. The following equations are used to 

calculate true positive rate (TPR) and false positive rate (FPR). 

�VS � �V  �V ' ��#⁄ 	                       (31) 

�VS � �V  �V ' ��#⁄ 	                        (32) 

Here TP=True Positive (i.e., links are correctly identified), 

FP=False Positive (i.e., identified links are not correct), 

TN=True Negative (i.e., correctly identified that there is no 

links between genes), FN=False Negative (i.e., failed to 

identify links between genes). 

4.4. Evaluation on SOS DNA Real Gene Expression Data 

To infer SOS DNA network, at first the S-System 

parameters have been estimated from time-series data provided 

by the Uri Alon Laboratory [24]. Among the 8 genes, 2 genes 

(uvrY, ruvA) have little involvement in regulations [26]. 

Therefore, this study considered 6 genes as like study of Leon 

et al. [26] and actual network is shown in Figure 2. 

The S-System parameters are estimated first then the 

network is reconstructed. The kinetic orders gij and hij 

determine the structure of the regulatory network. In the case 

gij > 0, gene j induces the synthesis of gene i. If gij < 0, gene 

j inhibits the synthesis of gene i. analogously, a positive 

(negative) value of hij indicates that gene j induces 

(suppresses) the degradation of the mRNA level of gene i. 

Now the graphical representation of the SOS network and the 

networks inferred by the SI techniques are represented in 

Figure 3. The performance evaluation of the algorithms used 

in this study on the SOS DNA dataset are shown in the Table 

3. And the ROC plot is shown in Figure 4. 

 

Figure 2. The graphical representation of the actual SOS DNA network [24]. 

Table 3. Summary of inferred connections through GSO, GWO, PSO for 

SOS DNA Network. 

Connection Status True Network GSO GWO PSO 

True Positive (TP) 5 2 2 2 

True Negative (TN) 31 18 17 18 

False Positive (FP) - 14 14 13 

False Negative (FN) - 2 3 3 
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Figure 3. Inferred SOS DNA networks by (a) PSO, (b) GSO, (c) GWO. 

 

Figure 4. ROC plot of the results in the SOS DNA network. 

From Table 3 it is observed that TP and TN in SOS DNA 

true network are 5 and 31, respectively. In experimental 

result, it is seen that all the methods identified TP as 2; GSO 

and PSO identified TN as 18; and GWO showed TN 17. For 

good inference of GRN, FP and FN are expected to minimum. 

From this point of view, PSO and GSO are competitive and 

GWO is worse. To visualize these result ROC plot has been 

drawn in Figure 4, where the x-axis represents the FPR and 

the y-axis represents the TPR. In the ROC plot, the algorithm 

having a high TPR and a low FPR GSO is the best in SOS 

DNA experiment. 

4.5. Evaluation on DREAM4 Data 

Synthetic DREAM4 InSilico_Size10_1 dataset is for 10 

genes and is relatively larger than SOS DNA. Table 4 shows 

the summary of true and inferred networks. From Table 4 it 

is observed that, in InSilico_Size10_1 true network, TP is 15 

and TN is 75. It is noticeable that GSO identified all true 

connections showing TP value as 15. On the other hand, 

GSO and PSO showed TP values 10 and 12, respectively. 

Moreover, FN is zero for GSO; whereas FN values for GWO 

and PSO are 5 and 3, respectively. From the ROC plot drawn 

in Figure 5, GSO is also shown the best among the three SI 

methods for DREAM4 data. 

Table 4. Summary of inferred connections through GSO, GWO, PSO for 

InSilico_Size10_1. 

Connection Status True Network GSO GWO PSO 

True Positive (TP) 15 15 10 12 

True Negative (TN) 75 6 17 17 

False Positive (FP) - 69 58 58 

False Negative (FN) - 0 5 3 

 

Figure 5. ROC plot of the results in the InSilico_Size10_1. 

5. Conclusions 

Network systems are easy to understand and visualize the 

genetic interactions in cell organisms. So GRN is a 

significant way to represent the gene regulations. S-System 

model is considered as an effective way of GRN inference. 

S-System parameter estimation as an optimization task and 

three prominent SI based methods are investigated in this 

study for to estimate its parameter. In this study both real (i.e., 

SOS DNA) and synthetic (i.e., DREAM4 InSilico_Size10_1) 

datasets have been used for S-System model based GRN 

inference. Among these techniques GWO has shown fair 

performance in both datasets for GRN inference. Finally, the 

study revealed the scope of SI based optimization in GRN 

inference through S-System parameter estimation. 
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