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Abstract: Hepatocellular Carcinoma is a primary malignancy of the liver. It is the fifth most common cancer around the 

world and is a leading cause of cancer related deaths. For about 40 years HCC has been predominantly linked with Hepatitis B 

and Hepatitis C infection. This work aims to find out potential biomarkers for HBV and HCV infected HCC through rigorous 

computational analyses. This was achieved by collecting gene expression microarray data from GEO (Gene Expression 

Omnibus) database as GSE series (GSE38941, GSE26495, GSE51489, GSE41804, GSE49954, GSE16593) and pre-processing 

it using Bioconductor repository for R. Following a robust mechanism including the use of statistical testing techniques and 

tools, the data was screened for DEGs (Differentially Expressed Genes). 3354 down regulated genes and 785 up regulated 

genes for HBV and 3462 down regulated and 251 up regulated genes for HCV were obtained. For a comparative study of 

DEGs from HBV and HCV, they were merged to look for potential biomarkers whose differential expression may result in 

carcinoma. A total of 17 biomarkers (1 up-regulated and 16 downregulated), was obtained which were further subjected to 

Cytoscape to generate a GRN using STRING app. Furthermore, module level analysis was performed as it offers robustness 

and a better understanding of complex GRNs. The work also focuses on the topological properties of the network. The results 

point out to the presence of a hierarchical framework in the network. They also shed a light on the interactions of biomarkers 

whose down regulation may result in HCC. These results can be used for future research and in exploring drug targets for this 

disease. 
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1. Introduction 

Hepatocellular carcinoma, also known by the name of 

malignant hepatoma, is a primary malignancy of the liver. 

It represents a poor prognostic cancer and is the fifth most 

common cancer in the world [1]. The primary cause for 

this cancer appears to be chronic liver disease and liver 

cirrhosis [2]. Annually, the cancer is diagnosed in about 

more than half a million people worldwide. Early diagnose 

can sometimes be cured with surgery or transplant but in 

more advanced cases it cannot be cured. The few cases 

(less than 5%) of HCC that do not develop on the 

background of chronic liver disease, are diagnosed late 

and usually have poor chances of cure [3]. 

Age is an important factor for this cancer as the people 

of 50 years or more have a higher risk of HCC as 

compared to the young population. Interestingly, the rate 

of this malignancy is higher in males than in females. 

Being the fifth most common cancer in men it appears to 

be the seventh most common cancer in women [4]. For 

more than 30 years HCC has been predominantly 

associated with chronic infection of Hepatitis B and 

Hepatitis C virus. Thus, the problem is even more over-

whelming in regions where the incidence of chronic viral 

hepatitis B and/or C is of high prevalence [5]. 

It should be noted that the occurrence of HCC is 

increasing in several developing nations and is likely to 
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increase in the same manner [6]. Although the rate of this 

tumor is low for the developed world, there is a distinct 

geographical variation in its incidence, with 81% of cases 

occurring in the developing world and 54% of these 

occurring in China [5]. In Chinese and black African 

population, mainly infected with HBV, the patients are 

younger, while in Sub-Saharan Africa (high incidence of 

HBV infection), where the incidence of HCC is the 

highest, it can appear in the third decade of life. In Asia 

and sub-Saharan Africa there are as many as 120 cases per 

100,000. However for the Asia-Pacific region, it appears 

to be the third most common cause of cancer-related 

deaths [7]. 

According to the data from Surveillance Epidemiology 

and End Results (SEER), HCV infected HCC is a major 

cause of cancer mortality in the United States. 

For a better understanding of the disease the biological 

data can be viewed using a computational approach and 

analysed accordingly. Comparative studies on HBV and 

HCV-infected HCC have shown that there exists distinct 

differential gene expression pattern (for each of them). In 

this work we use gene expression microarray data and 

analyse it to generate a Gene Regulatory Network using R 

and Cytoscape. We further find subnetworks and 

communities and then trace the biomarkers following the 

network. We also perform module enrichment and GO 

enrichment analysis.  

2. Methodology 

2.1. Pre-processing of Data 

The microarray data was downloaded from GEO (Gene 

expression Omnibus, http://www.ncbi.nlm.nih.gov/geo/) 

database on NCBI. A stepwise search was performed for 

the identification of HCC-related gene expression profiles 

of humans using the keyword ‘hbv’ and ‘hcv’ for the 

corresponding GSE series. The datasets containing a 

comparison between normal and control tissues were 

preferred. A total of six datasets was downloaded 

(GSE38941, GSE26495, GSE51489; GSE41804, 

GSE49954, GSE16593) i.e. three for each type. For the 

pre-processing of microarray data Affy package was used. 

The packages were loaded onto the R environment from 

Bioconductor for data normalization and background 

correction was done [8]. Later, the text files generated 

were converted into a gene expression matrix with 

probe_id as rows and gene expression as the columns. 

2.2. Screening for Differentially Expressed Genes 

The gene expression matrix was used to obtain DEGs. 

The infected and normal controls were separated and 

average value of gene expression was calculated for each 

probe number. The probe numbers of the expression 

profile were later converted into the corresponding gene 

symbols following the correlation between gene and probe 

from the platform GPL570. 

The fold change (FC) was calculated by subtracting the 

average values of infected samples from the corresponding 

values of normal controls [9]. A threshold of 0.5 was used 

for HBV and of 1 for HCV. Further, FC values were 

filtered to obtain DEGs. The common genes between HBV 

and HCV were found using VENNY 2.1.0. They were 

further screened for cancerous genes using NCG (Network 

of Cancer Genes, ncg.kcl.ac.uk) [10]. 

2.3. Network Construction and Topological Properties 

The cancerous genes obtained from NCG (Network of 

Cancer Genes) were mapped onto Cytoscape to construct a 

gene regulatory network [11]. It is one of the common uses 

of Cytoscape to map attribute data onto a biological network, 

such as a protein-protein interaction network or metabolic 

pathway. The network was constructed using STRING 

database application (in the public database section) in 

Cytoscape [12]. Furthermore, the topological properties of 

the GRN were considered by constructing plots for degree 

distribution: node-degree distribution P(K), clustering 

coefficient C(K) and neighbourhood connectivity CN(K) and 

centralities: betweeness CB(K), closeness CC(K), eigen vector 

CE(K). 

2.4. Finding Communities 

The final and most important step of the process was to 

generate potential modules from the GRN so obtained. The 

modules were generated using R and Cytoscape 

simultaneously. An sif file was generated for the GRN from 

Cytoscape which was loaded onto R to be broken into 

communities. Text files containing the gene names of the 

respective modules were also generated through R by 

following a series of commands. The gene names were then 

used in Cytoscape to break the network into corresponding 

modules and biomarkers were traced following the hierarchy. 

This process was carried out until no communities were left 

that could be broken further and no genes were left to be 

traced. GO enrichment analysis was performed using DAVID 

6.8 (Database for Annotation Visualization and Integrated 

Discovery, https://david.ncifcrf.gov/) [13]. 

3. Results and Discussion 

3.1. Analysis of Topological Properties 

The topological analysis of different large-scale biological 

networks highlights some recurrent properties: power law 

distribution of degree, scale-freeness, small world, which 

have been proposed to confer functional advantages such as 

robustness to environmental changes and tolerance to random 

mutations [14]. Network analysis acts as a powerful way for 

understanding the function and evolution of biological 

processes, provided that smaller functional modules are 

equally focused establishing a link between their topological 

properties and their dynamical behaviour. 
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Figure 1. Plots showing topological properties of GRN. First three plots representing degree distribution (P(K), C(K), CN(K)) and last three plots representing 

centralities (CB(K), CC(K), CE(K)). 

The topological parameters namely probability of degree 

distributions (P(K)), clustering co-efficient (C(K)) and 

neighbourhood connectivity (CN(K)) exhibit power law and 

are analysed here.  

The behaviour of the network is characterized by equations 

(K) ~ �	−�	  

(K) ~ �	−�	  

(K) ~ �	∅  

The +ve value in theta of connectivity parameter shows 

assortative nature of the network. While, the -ve value in 

alpha (α) of degree distribution shows availability of each 

node in the network. The -ve value in beta of clustering 

parameter shows dissociation in the communication between 

the nodes in network.  

The basic centrality parameters, namely, betweeness 

CB(K), closeness CC(K), eigen vector CE(K) of the network 

also exhibit hierarchical behaviour given by,  

CB(K) �	= 3.78 

CC(K) �	= 0.21 

CE(K) �= 1.05 

The + ve values of the centralities exponents shows the 

strong regulating behaviour of the nodes in the network. 

3.2. Gene Ontology (GO) Enrichment Analysis 

To understand the DEGs so obtained, it is essential to have 

the knowledge of their specific function. The genes obtained 

from the microarray data were divided into up-regulated and 

down-regulated elements from which cancerous genes were 

found namely BUB1B, RUNX1T1, COL3A1, EGFR, 

FGFR2, GPC3, LAMA4, MKI67, NEK2, PEG3, PLCG2, 

R1T1, TTK, CCNB2, AKR1B10, CASC5 (up-regulated) and 

MALAT1 (down-regulated). For these genes, the Gene 

Ontology was found using DAVID and three important 

categories namely Biological Process (bp), Cellular 

Component (cc) and Molecular Function (mf) were noted. It 

gave the results as in Table 1. 

Table 1. Gene Ontology (GO) enrichment table showing bp, cc and mf. 

Symbol GO_id Biological Process (bp) GO_id 
Cellular 

Component (cc) 
GO_id Molecular Function (mf) 

BUB1B GO:0007091 

metaphase/anaphase 

transition of mitotic cell 

cycle 

GO:0000778 

condensed nuclear 

chromosome 

kinetochore 

GO:0004672 protein kinase activity 
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Symbol GO_id Biological Process (bp) GO_id 
Cellular 

Component (cc) 
GO_id Molecular Function (mf) 

RUNX1T1 GO:0045892 

negative regulation of 

transcription, DNA-

templated 

GO:0005634 Nucleus GO:0003700 

transcription factor activity, 

sequence-specific DNA 

binding 

COL3A1 GO:0007160 cell-matrix adhesion GO:0005578 
proteinaceous 

extracellular matrix 
GO:0005201 

extracellular matrix structural 

constituent 

EGFR GO:0007169 

transmembrane receptor 

protein tyrosine kinase 

signaling pathway 

GO:0016021 
integral component 

of membrane 
GO:0004714 

transmembrane receptor protein 

tyrosine kinase activity 

FGFR2 GO:0008284 
positive regulation of cell 

proliferation 
GO:0005654 Nucleoplasm GO:0005007 

fibroblast growth factor-

activated receptor activity 

GPC3 GO:0001658 
branching involved in 

ureteric bud morphogenesis 
GO:0005578 

proteinaceous 

extracellular matrix 
GO:0043395 

heparan sulfate proteoglycan 

binding 

LAMA4 GO:0001568 blood vessel development GO:0005604 
basement 

membrane 
GO:0005102 receptor binding 

MKI67 GO:0006259 DNA metabolic process GO:0000775 
chromosome, 

centromeric region 
GO:0000166 nucleotide binding 

NEK2 GO:0006468 protein phosphorylation GO:0005813 Centrosome GO:0004674 
protein serine / threonine 

kinase activity 

PEG3 GO:0000122 

negative regulation of 

transcription from RNA 

polymerase II promoter 

GO:0005654 Nucleoplasm GO:0003676 nucleic acid binding 

PLCG2 GO:0032237 
activation of store-operated 

calcium channel activity 
GO:0005886 plasma membrane GO:0004871 signal transducer activity 

RIT1 GO:0007265 
Ras protein signal 

transduction 
GO:0005622 Intracellular GO:0005525 GTP binding 

TTK GO:0007093 mitotic cell cycle checkpoint GO:0016020 Membrane GO:0004712 
protein serine / threonine / 

tyrosine kinase activity 

CCNB2 GO:0000086 
G2/M transition of mitotic 

cell cycle 
GO:0005634 Nucleus GO:0004693 

cyclin-dependent protein 

serine/threonine kinase activity 

AKR1B10 GO:0016488 farnesol catabolic process GO:0070062 
extracellular 

exosome 
GO:0001758 retinal dehydrogenase activity 

CASC5       

 

3.3. Network and Module Representation 

A visual representation of the network and its 

corresponding sub-networks i.e. modules was done using 

Adobe Illustrator or AI. Each level was represented in 

different colours and the biomarkers in higher level of the 

network were highlighted in red. The result obtained marked 

the presence of hierarchy in the network. Table 2 shows the 

potential biomarkers that occurred in the higher levels of 

hierarchy. The hierarchical network is represented in Fig. 2. 

Table 2. Biomarkers highlighted in higher levels. 

Level Module name Gene name 

Level 4 C1121 EGFR 

Level 4 C1121 FGFR 

Level 4 C1211 RUNX1T1 

Level 4 C1211 AKR1B10 

Level 4 C1212 MKI67 

Level 4 C1212 PEG3 

Level 4 C1213 RIT1 

Level 4 C1221 GPC3 

Level 4 C1222 COL3A1 

Level 5 C1212a PEG3 

Level 5 C1212a MKI67 

 

Figure 2. Gene Network and its sub-networks or modules. The figure shows 

a five-level network where different colours are used for each level. Bio 

markers are highlighted in red at level 4 and 5. 
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3.4. Network Properties and Gene Tracing 

We can identify potential hubs from the network by 

knowing the maximum number of interactions each node has. 

The potential hubs identified in the network were: PEG3, 

MKI67, RUNX1T1, GPC3, FGFR2, EGFR, RIT1 and 

COL3A1. A plot for Hamiltonian energy was then generated 

for the potential biomarkers at different levels (Fig. 3.). The 

plot shows an active participation in the lower levels as 

compared to higher ones. 

A plot was generated for modularity at different levels 

[15]. The plot shows a decreasing trend as it moves towards 

the higher levels, meaning modularity decreases from one 

level to the other and follows the same trend as we go on. 

Fig. 4. shows the plot for Modularity. 

 
Figure 3. Plot for Hamiltonian Energy of the system at different levels. 

 
Figure 4. Modularity Plot showing a decreasing trend for modularity at 

consecutive levels. 

At first two communities emerge from the network i.e. C1 

and C2 which further divide into two more communities. C1 

has 10 biomarkers namely GPC3, COL3A1, EGFR, PLCG2, 

RIT1, PEG3, AKR1B10, RUNX1T1, MKI67, FGFR2 while 

C2 contains 5 biomarkers namely NEK2, TTK, CASC5, 

CCNB2, BUB1B. As the divergence increases each 

community divides into two except for C121, which diverges 

into 3 communities. The communities are represented in 

different colour for different levels (Fig. 5). EGFR, FGFR, 

RUNX1T1, RIT1 and AKR1B10 go till the fourth level. The 

community at fourth level i.e. C1212 diverges into 1212a and 

1212b and gives rise to the last level that is the fifth level 

which has PEG3 and MKI67 in community 1212a. 

 
Figure 5. Emergence of Modules at different levels of network. 



 Computational Biology and Bioinformatics 2017; 5(3): 36-42 41 

 

We then represent the hierarchy in the network and trace the potential biomarkers till the last level of the hierarchy. Fig. 6 

represents the hierarchical network and the division of genes into different communities and modules. Each level is shown in a 

different colour for a better understanding. 

 
Figure 6. Network hierarchy and Biomarkers dividing into different modules. 

4. Conclusion 

This work aims at providing an insight into the regulatory 

network of HBV and HCV infected Hepatocellular 

Carcinoma. The communities (and sub-networks) provide an 

insight into the interactions of the biomarkers involved in 

causing the malignancy. It can be noted that potential 

biomarkers for HCC, like AKR1B10, COL3A1, FGFR2, 

EGFR, PEG3 and MKI67 are present till the higher levels of 

the network. Also the topological properties suggest two 

things: degree distribution plots (P(K), C(K), CN(K)) suggest 

the presence of hierarchy in the network while the centralities 

(CB(K), CC(K), CE(K)) suggest the assortative nature of the 

network. The presence of biomarkers in higher levels, the 

plot for modularity and the topological properties together 

suggest the presence of potential hubs at every level of the 

hierarchy of network. In conclusion, this work can be used 

for future research to explore for potential drug targets and 

when worked upon can provide methods for the development 

of better treatment against HBV and HCV infected HCC. 
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