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Abstract: Understanding the interrelationship among genes in a cellular system is fundamental to the investigation of 

cellular activities, because the interrelated genes are either functionally related, controlled by the same transcriptional 

regulatory process or generally take part in a common biological process, and most importantly are known to be co-expressed 

genes. Most latent Mtb genes have been discovered but their functions, interrelationship and correlations that will help to 

develop protocol (s) to tame the menace of tuberculosis disease at latency have not been fully uncovered. We have developed a 

computational technique called Fuzzified Adjusted Rand Index (FARI) to effectively discover the co-expressed genes from 

identified latent Mtb genes and perform functional analysis of the gene sets using an annotation database. FARI, a modification 

of Adjusted Rand index used to compare clustering results, is designed to analyze, establish and quantify the expression trend 

of two genes with different sample points. Rank matrix of all the genes in consideration is produced after each gene has been 

analyzed with others, and the rank matrix serves as the basis of the co-expression discovery. A synthetic gene expression 

dataset, the biological benchmark dataset (E. coli), and different set of genes containing latent Mtb genes from an experiment 

result were fed into the computational tool, and different gene sets (modules) representing co-expressed genes were discovered. 

The discovered gene modules from latent Mtb genes are used to uncover the hub genes and their molecular functions. We have 

been able to identify different co-expression network from this analysis and assign biological functional meanings to some of 

the important Mtb genes that emerge from the experiment. Also, discovering gene co-expression module births gene 

co-expression network, which is a preliminary step towards gene regulatory network discovery. 
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1. Background 

Cellular activities are complex systems and have their 

foundation in the relationships or correlations among the cell 

constituents, which are represented as genes. The 

interrelationship among genes in a cellular system is called 

Gene Co-expression Network (GCN) because genes of the 

same network are known to be either functionally related, 

controlled by the same transcriptional regulatory process or 

generally take part in a common biological process (i.e 

member of the same pathway or protein complex) [5]. A 

GCN is an undirected graph where each node represents a 

gene and an edge between two nodes represents only a 

correlation or dependency relationship between the genes [2, 

5]. Gene co-expression networks are extracted from 

microarray or RNAseq data using expression pattern as the 

advent of microarray technology has given system biologist 

opportunity to study the dynamic behaviour of genes in 

multiple conditions [1, 5]. In a gene co-expression network, 

the genes signify a gene module and the edges indicate 

significant correlations [3]. Hence, a module is a set of genes 

with similar expression pattern in different samples of gene 

expression profiling. So, constructing GCN is a process of 

developing modular networks within a cellular system, which 

allows us to understand the properties of the system. 

Gene co-expression networks are represented in modules 

where a module is a set of genes with similar expression 

trends in different samples, but does not attempt to infer the 

causality relationship among the genes [4, 5]. Unlike Gene 
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Regulatory Networks (GRNs), the direction and type of 

relationship between pair of genes are not determined in 

GCN. A GRN is a directed graph where an edge between two 

genes represents a biochemical process such as a reaction, 

transformation, interaction, activation or inhibition. Hence, 

discovering gene co-expression network is a preliminary step 

towards gene regulatory network discovery. A module 

represents a highly connected sub-graph extracted from a 

co-expression network, which is a cluster of genes that have 

a similar function or involve in a common biological process 

that causes the genes to interact among themselves. 

Constructing GCN is therefore the process of discovering 

gene co-expression modules leading to developing modular 

networks within a cellular system. This is done by using gene 

expression profiles of a number of genes from microarray or 

RNAseq for several samples or experimental conditions. 

These modular networks are constructed by looking for pairs 

of genes which show a similar expression pattern across 

samples, since the transcript levels of two co-expressed genes 

rise and fall together across samples [1-5]. Two principles are 

important and fundamental in constructing GCN; first is to 

calculate co-expression measure and then selecting the 

significant threshold. Several methods have been developed 

to construct GCN using these fundamental principles in 

various modified and extended format. 

The most direct method for constructing GCN, detect gene 

modules and identify the hub genes within modules is 

Weighted Gene Co-expression Network Analysis (WGCNA) 

[2, 3]. WGCNA uses the Pearson Correlation to measure the 

magnitude of co-expression between nodes in a network. Li 

et al. [2] modified the existing WGCNA pipeline using the 

Linear Mixed-effect Model (LMM) to account for the 

within-pair correlation in data from paired designed. Random 

Matrix Theory (RMT) is used in a study to identify 

co-expression networks based on the microarray data. The 

focus is to determine the correlation threshold for revealing 

modular co-expression networks by characterizing the 

correlation matrix of the microarray profiles [1]. Gibson et al. 

[7] describes RMT as a knowledge-independent thresholding 

technique where highly connected genes in the thresholded 

network are grouped into modules that provide insight into 

their collective functionality. A variety of RNA-seq 

expression data was analyzed in another study to determine 

factors affecting functional connectivity and topology in 

co-expression networks, using a Guilty-By-Association 

framework in which genes are assessed for the tendency of 

co-expression to reflect shared function [6]. Another 

important method called Mutual Information (MI) was 

compared with other correlation measures over several data 

sets [8]. Although, one of the correlation measures called 

bi-weight mid-correlation outperformed MI in terms of 

elucidating gene pairwise relationship, there is a close 

relationship between MI and correlation in all the data sets, 

which reflects the fact that most gene pairs satisfy linear or 

monotonic relationships. The performance is based on gene 

ontology enrichment. 

In this work, we propose a rank-based algorithm by 

modifying the clustering evaluation technique called 

Adjusted Rank Index. The modified technique is called 

Fuzzified Adjusted Rank Index (FARI). Each gene is 

iteratively compared with all other genes for expression 

trends exploring both local and global pattern similarities. 

When two genes are checked for expression trend, a ranking 

value is generated and used to determine whether the two 

genes will be in the same expression module because a 

highly ranked gene against another gene is considered to 

have the same expression pattern with the gene in question. 

This is the reflection of the ordinary adjusted rank index, 

where a high value between 1 and 0 gives clustering 

similarity. A rank matrix that shows the ranking of each gene 

against all other genes in the dataset is later produced, and 

this is according to expression similarities of pairs of genes. 

Secondly, a threshold value of 5 (single celled organism) 

or 9 (multi-celled organism) genes per module is used to 

extract four or eight highly ranked genes with each gene to 

form a module. We picked the threshold of 5 and 9 genes 

because studies have shown that each gene is estimated on 

average to interact with four to eight other genes [2], and 

based on the fact that gene networks are topologically sparse, 

meaning that genes are regulated by a small constant number 

of other genes such as 2-4 in bacteria and 5-10 in eukaryotes. 

This process produces the number of discovered modules that 

equate the number of genes in the expression profiling 

because each gene produced a module with its highly ranked 

genes. We then pruned the number of modules by removing 

duplicates and redundancies. The third step involves the 

evaluation of the remaining modules to identify hub genes 

and their biological functions using a biological database for 

functional interpretation of gene lists. 

Our method is applied to construct and analyze 

co-expression networks based on the microarray large dataset 

from an extensive study of MTB. Finally, we discuss and 

report interesting results, which may be basis for further 

investigation.  

2. Measuring Expression Trend 

Computing association between a pair of genes gives 

insight into whether they are co-expressed or not, which is 

central to the construction of both co-expression network and 

regulatory network. The expression trend of two genes 

exposes their pattern similarity, where co-expressed genes 

show their expression levels increasing or decreasing 

together under the same experimental conditions or 

time-points across the samples. Most of the existing methods 

are based on correlation measures and Mutual Information 

(MI), which uses global similarity to draw the relationship 

between genes but expression profiles share local similarity 

rather than global similarity [5]. MI leads to information loss 

due to the discretization of expression values and 

bi-clustering tends to be computationally expensive though 

suitable [5]. 

We use both local and global similarity approaches in an 

attempt to measure expression trends of two genes at every 
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time-point or experimental conditions. Figure 1 shows the 

expression patterns of two genes recA and uvrA in ecoli 

dataset having the same trend, while figure 2 shows the 

expression patterns of uvrA and uvrY having different trend. 

Figure 3 shows a mixed regulation patterns. Expression trend 

measures are used to build the contingency table for two 

genes so as to calculate the adjusted rank index for the genes, 

which is used to determine whether they are co-expressed or 

not (details in section 4). The local similarity approach 

measures the expression trend of 2 the two genes at the same 

time-point/condition. That is, the expression pattern of gene 

X and gene Y at (X1, Y1), (X2, Y2), (X3, Y3)….. (Xn, Yn). The 

global similarity check considers the expression pattern of 

(X1, Y2), (X1, Y3), (X1, Y4)….. (X1, Yn), to further reinforce the 

analysis and observation of expression trend of the two genes. 

This is done to every sample of each gene against samples of 

the other gene. The global similarity check has little impact 

on the outcome of the similarity measure unlike the local 

similarity check. 

 

Figure 1. Expression patterns of two genes recA and uvrA in ecoli dataset having the same expression trend. 

 

Figure 2. Expression patterns of two genes recA and uvrA in ecoli dataset having the different expression trend. 

 

Figure 3. Expression patterns of two genes recA and uvrA in ecoli dataset having the mixed expression trend. 
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3. Method 

The approach used for the discovering of gene expression 

modules is to iteratively rank each gene against other genes 

to generate a rank matrix that will represent the level of 

expression trends each gene has with others. The statistical 

and computational model used to achieve this is called 

Fuzzified Adjusted Rand Index. 

3.1. Fuzzified Adjusted Rand Index (FARI) 

The traditional Adjusted Rand Index (ARI) is a data 

clustering metric that measures the similarity between two 

clustering results. It returns a single value indicating the level 

of agreement between two partitions. An ARI score of 1 

indicates that the two clustering results are the same while 0 

indicates that the two clustering results are not the same. 

Computing ARI starts by building the Contingency Table 

(similar to confusion matrix) for the two clusters. The 

contingency table is filled in by calculating the size of 

intersection of each group in the clusters against each other, 

which is formed by the number of items that are either in 

agreement or disagreement in the groups of the two clusters. 

However, it is impractical to get the measure of agreement of 

gene expression values because they are usually real values. 

In order to overcome this challenge, fuzzy concept of rule 

sets is incorporated in the process of building the 

contingency table. 

ARI is given as: 
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Where nij, ai, bj and n are values from the contingency 

table: 

-2
3 ., combination of m and k, for 1≤k≤m. 

-2
3 . = 0, for k<0, m<k. 

3.2. Contingency Table Algorithm 

The building of contingency table is very central to the use 

of adjusted rank index because all the values used in the 

calculation of the adjusted rand index are taken from the 

contingency table. A contingency table is a tabular form of 

relationship between variables filled in with integer numbers, 

which shows the level of agreement or disagreement among 

the categorical variables of the two clusters. 

Given a set S of n elements, and two groupings or 

partitions (clusters) of these points, i.e: 

X = {x1, x2, ………., xr} 

Y = {y1, y2, ………., ys} 

The overlap/intersection between X and Y can be 

summarized in a contingency table nij, each entry nij denotes 

the number of objects in common between Xi and Yj. 

i.e, nij = |Xi∩Yj| 

The overlap is a measure of proximity between a pair of 

genes across samples, showing the transcript levels of two 

co-expressed genes rising and falling together. Since gene 

expression data are real values; hence, it is difficult to 

calculate number of common objects in two gene sample 

profiles. Fuzzy rules concept is applied to eliminate this 

challenge, where levels of agreement of samples of a gene 

against other samples of the other gene are distributed into 

different bins and clusters. Different values (measures) 

representing class labels are attached to bins and clusters 

accordingly. Each value is then used to fill contingency table 

of two gene objects of different samples. 

3.3. Building of Fuzzy Rules 

The process to separate data into groups according to their 

respective class labels, which is the first step in fuzzy rule 

generation is perform by applying two conditions. The 

conditions are whether the two samples between a pair of 

genes are the same time-point or not. The first condition 

separates data into discrete interval (bins), while the second 

condition separates the data into clusters.  

Given a pair of genes X and Y and the expression values 

rescaled to interval [0, 1] by use of a linear transformation; 

i. The first condition checks similar expression pattern of 

two samples Xi and Yi. This is at the same experimental 

condition or time point (i.e local similarity) 

Let Xp and Yp be expression patterns of genes X and Y at 

point i, we have two discrete values as class labels nij = 10 

and nij = 0. 

The membership function, which is the first step in fuzzy 

rule generation of these groups is constructed as follow: 

Xp = exp (Xi – Xi-1 

Yp = exp (Yi – Yi-1) 

If (Xp>0 and Yp>0) OR (Xp<0 and Yp<0) Then: 

nij = 10 > bin 1 

Else, 

nij = 0 > bin 2 

where Xi-1 = 0.0 if i = 1. 

ii. The second conditions checks similar expression pattern 

of two samples Xi and Yj when i≠j. other similarity 

across samples (i.e global similarity). 

Let AD be the absolute difference (AD) of expression 

values of genes X and Y at Xi and Yj when i≠j being the size 

of their intersection, the values of the intersection are 

partitioned into six (6) different clusters as the class label 

using integer values, scale = [5, 4, 3, 2, 1, 0]. 
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The membership function is constructed as follow; 

AD = exp (|Xi – Yj|) 

Table 1. The data point clusters defined for AD. 

Data-points Clusters 

0.00 – 0.049 Cluster 1 

0.05 – 0.09 Cluster 2 

0.10 – 0.19 Cluster 3 

0.20 – 0.349 Cluster 4 

0.35 – 0.49 Cluster 5 

0.50 – 1.00 Cluster 6 

nij = µAD: AD → [5, 4, 3, 2, 1, 0] 

The values assigned to each partition shows the measure of 

agreement or disagreement between gene expression values, 

where the highest value indicates relatedness and lower value 

indicates disagreement. The ranges of partitions are assumed 

between 0 and 1 because the original gene expression data 

has been normalized between 0 and 1. 

3.4. Generation of Rank Matrix 

Application of FARI to construct gene expression modules 

from expression data is an iterative process, where the 

algorithm is applied to a pair of genes at a time. At every 

point of its application, a single value is returned signifying 

the level of closeness in expression trends of the two genes. 

This value is stored in a kind of an adjacency matrix before 

picking the next pair of genes to analyze, until all the gene 

objects are compared in pairs. The table below gives the 

description of the rank matrix. 

Table 2. Description of a rank matrix. Each cell gives the rank value of 

similarity expression trend of a Gene in the row against another Gene in the 

column. 

 Gene1 Gene2 Gene3 Gene4 Gene5 

Gene1 0.99 0.65 0.12 0.81 0.83 

Gene2 0.18 0.98 0.11 0.87 0.42 

Gene3 0.87 0.11 0.99 0.43 0.91 

Gene4 0.88 0.38 0.39 0.99 0.47 

Gene5 0.97 0.46 0.69 0.05 0.98 

4. Result and Discussion 

4.1. Co-expression Modules Construction 

This work presents the power of a novel method called 

Fuzzified Adjusted Rank Index (FARI) to determine the 

magnitude of co-expression of a pair of genes among other 

several genes by checking similar expression pattern of two 

genes samples locally and globally. Local similarity 

determines the level of co-expression where a gene sample is 

at the same sample point or experimental condition with the 

other gene, while global similarity determines the level of 

co-expression a gene sample across samples or experimental 

conditions of the other gene. These metrics are used to 

determine the overall magnitude of co-expression of the pair 

of genes. Input dataset used include a synthetic data, E. coli 

SOS DNA repair data and Mtb microarray data (GSE11199) 

generated by Thuong et al. [15], which was updated in 2017. 

The experiment was to identify tuberculosis susceptibility 

genes from ex vivo Mtb-stimulated human macrophages. 

Gene expression levels of over 38,500 genes were measured 

in 12 subjects with 3 clinical phenotypes: latent, pulmonary, 

and meningeal TB (n = 4 per group), which contain probe 

sets for 47,000 transcripts. A web server called g: Profiler (a 

web server for functional interpretation of gene lists) was 

used to convert the probe IDs to their corresponding gene 

names and functional annotations after the co-expressed 

modules have been created. There are two categories of 

exceptional probe IDs, the first category is a set of few probe 

IDs that got converted to more than one gene names. This set 

of genes made the number of genes in some modules to be 

increased and they are treated the same as they were 

discovered to have the same functional annotation attached to 

them. The second category is the set of probe IDs, which 

their gene names are not available in the annotation database 

and are indicated as N/A. These ones are filtered out of their 

corresponding co-expression modules making the number of 

genes in some modules to be reduced. 

Due to the size of the dataset and the number of genes 

generated from this experiment, corroborated by Luo et al. [1] 

that the process of identifying cellular network in an 

automatic and objective fashion from genome-wide 

expression data remain challenging, we investigated the 

co-expression of the genes in scales and ranges such as the 

first 100 genes or genes 500 – 850. We later analyzed the 

modules generated from different investigations to identify 

the hub genes and analyze the functional activities of the hub 

genes using an annotation databases. A gene module is a 

cluster of densely interconnected genes in terms of 

co-expression [2]. FARI analyses the expression patterns of 

the genes under investigation and produces a rank matrix 

showing different values that depict the magnitude of 

co-expression of each gene with all other genes.  

The co-expression modules are constructed from each 

gene under investigation. That is, for each gene, we extract 

the genes that have the same expression pattern with it using 

the rank matrix produced by FARI. So, four or eight 

co-expressed genes are extracted for each gene as a target to 

form a gene co-expressed module. This procedure is based on 

three factors; firstly, owning to the submissions that modular 

co-expression network structure and topology (number, size, 

content and connection) are subjective depending on the 

threshold chosen, secondly that co-expressed genes do 

interact together [1, 5], and thirdly that each gene is 

estimated on average to interact with four (in bacterial and 

prokaryotes) to eight (in Eukaryotes) other genes [2].  

4.2. Analysis of the Rank Matrix with Synthetic Data and  

E. coli SOS DNA Repair Data 

The major analysis involved in the construction of gene 

co-expression module or network is the analysis of 

expression pattern of two gene objects across several samples 

or experimental conditions. FARI is the novel statistical and 
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computational model developed to do this analysis, which 

produces rank matrix of values depicting the levels of 

co-expression of each gene with other genes. Two dataset are 

used to examine and validate the efficiency of our model, the 

first is five (5) synthetic noiseless gene expression dataset 

containing 30 genes with 50 time-points, containing 250 

samples altogether [11]. The second is E. coli SOS DNA 

repair dataset containing 8 genes with 50 samples [11-13]. 

After proper inspection of the rank matrix generated from 

the two datasets, we discovered that the diagonal values are 

mostly the highest values across each row. These are the rank 

values gotten when expression pattern of a gene is analyzed 

against itself because the process is automated. It is 

instructive to know that the traditional Adjusted Rank Index 

from which our model is developed produces values between 

1 and 0 when used to compare clustering results, and gives 1 

when the clustering results are closely related while it gives 0 

when they are not related at all. Going by this fact, we 

normalized the initial rank matrix produced between 0 and 1 

in order to represent the true picture of the expression 

pattern. 

Table 3 shows the rank matrix generated for ecoli while 

the synthetic gene expression dataset is given in the 

supplementary file. 

Table 3. Rank Matrix of Ecoli SOS DNA repair data. 

  uvrD lexA umuDC recA uvrA uvrY ruvA polB 

uvrD 1.0000 0.2644 0.0000 0.2155 0.1147 0.5949 0.3439 0.3197 

lexA 0.6280 1.0000 0.0000 0.1254 0.3040 0.7783 0.5437 0.4007 

umuDC 0.1554 0.0042 1.0000 0.1708 0.0914 0.0000 0.3515 0.9280 

recA 0.6941 0.5908 0.0000 1.0000 0.6423 0.5698 0.5650 0.8359 

uvrA 0.2825 0.1390 0.0325 0.0631 0.9451 0.5480 0.0000 1.0000 

uvrY 0.4123 0.1935 0.0000 0.1930 0.0549 1.0000 0.4560 0.3096 

ruvA 0.7370 0.4303 0.3723 0.4403 0.2915 0.5993 1.0000 0.0000 

polB 0.2608 0.2490 0.3275 0.5930 0.3704 0.2254 0.0000 1.0000 

 

4.3. Co-Expression Modules and Networks from the Ecoli 

SOS DNA Repair Data 

Identification of co-expression modules in particular gene 

expression dataset involves the process of grouping the genes 

with the same expression pattern into different clusters. Our 

method found the number of clusters being equivalent to the 

number of genes under investigation because the expression 

patterns were analyzed per each gene. Moreover, each 

module contains not greater than five genes because each 

gene is estimated on average to interact with four (in 

bacterial and prokaryotes) to eight (in Eukaryotes) other 

genes [2]. Table 4 shows different modules from Ecoli SOS 

DNA repair data while Figure 4 shows the frequency of each 

gene in modules. uvrY, uvrD and polB are suspected to be the 

hub genes, which is established with the co-expression 

network (Figure 5) constructed from the module. We query 

this discovery by searching the E. coli SOS DNA repair 

network genes on KEGG database 

(https://www.genome.jp/kegg/pathway.html ) and discovered 

that these genes engage in more pathway networks than all 

other genes as shown in Table 5. 

Table 4. Co-expression Modules of Ecoli SOS DNA Repair Data. 

Module1 Module2 Module3 Module4 Module5 Module6 Module7 Module8 

uvrD lexA umuDC recA uvrA uvrY ruvA polB 

uvrY uvrY polB polB polB ruvA uvrD recA 

ruvA uvrD ruvA uvrD uvrY uvrD uvrY uvrA 

polB ruvA recA uvrA uvrD polB recA umuDC 

lexA polB uvrD lexA lexA lexA lexA uvrD 

 

Figure 4. Frequency of each gene participating in co-expression modules. 
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Figure 5. Co-expression network of Ecoli SOS DNA Repair Data. 

Table 5. KEGG Pathways of E. coli SOS DNA Repair Network. 

Gene  Entry Name Description Class  

polB 

map03410 Base excision repair 

Base excision repair (BER) is the predominant DNA damage repair 

pathway for the processing of small base lesions, derived from oxidation 

and alkylation damages. 

Genetic Information 

Processing; Replication and 

repair 

map01100 Metabolic pathways - Metabolism 

map00230 Purine metabolism - 
Metabolism; Nucleotide 

metabolism 

map00240 Pyrimidine metabolism - 
Metabolism; Nucleotide 

metabolism 

map03030 DNA replication 

A complex network of interacting proteins and enzymes is required for 

DNA replication. Generally, DNA replication follows a multistep 

enzymatic pathway. 

Genetic Information 

Processing; Replication and 

repair 

map05166 
Human T-cell leukemia 

virus 1 infection 

Human T-cell leukemia virus type 1 (HTLV-1) is a pathogenic retrovirus 

that is associated with adult T-cell leukemia/lymphoma (ATL). 

Human Diseases; Infectious 

diseases: Viral 

map05203 Viral carcinogenesis 
There is a strong association between viruses and the development of 

human malignancies. 

Human Diseases; Cancers: 

Overview 

uvrD 

map03430 Mismatch repair 
DNA mismatch repair (MMR) is a highly conserved biological pathway 

that plays a key role in maintaining genomic stability. 

Genetic Information 

Processing; Replication and 

repair 

map03420 
Nucleotide excision 

repair 

Nucleotide excision repair (NER) is a mechanism to recognize and repair 

bulky DNA damage caused by compounds, environmental carcinogens, 

and exposure to UV-light. 

Genetic Information 

Processing; Replication and 

repair 

uvrY 
map02026 

Biofilm formation - 

Escherichia coli 

Bacteria inhabiting a biofilm are protected from physical stress, 

antimicrobials, and the host immune system, and thereby cause severe 

medical, environmental, and technical problems. 

Cellular Processes; Cellular 

community - prokaryotes 

map02020 Two-component system Two-component signal transduction systems enable bacteria to sense, Environmental Information 
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Gene  Entry Name Description Class  

respond, and adapt to changes in their environment or in their intracellular 

state. 

Processing; Signal 

transduction 

map02025 

Biofilm formation - 

Pseudomonas 

aeruginosa 

Surface colonization and subsequent biofilm formation and development 

provide numerous advantages to microorganisms. 

Cellular Processes; Cellular 

community - prokaryotes 

map05111 
Biofilm formation - 

Vibrio cholerae 

Surface colonization and subsequent biofilm formation and development 

provide numerous advantages to microorganisms. 

Cellular Processes; Cellular 

community - prokaryotes 

recA map03440 
Homologous 

recombination 

Homologous recombination (HR) is essential for the accurate repair of 

DNA double-strand breaks (DSBs), potentially lethal lesions. It is 

investigated that RecA/Rad51 family proteins play a central role. 

Genetic Information 

Processing; Replication and 

repair 

uvrA map03420 
Nucleotide excision 

repair 

Nucleotide excision repair (NER) is a mechanism to recognize and repair 

bulky DNA damage caused by compounds, environmental carcinogens, 

and exposure to UV-light. 

Genetic Information 

Processing; Replication and 

repair 

 

4.4. Co-Expression Modules and Networks from the 

Mtb-Stimulated Human Macrophages Data 

Due to the size of the dataset and the number of the genes 

generated from the experiment, we investigated different 

co-expression of the experiment in ranges of gene sets; where 

each set represent the input data of each investigation. We 

decided to break the dataset into subsets based on regions 

because Gene-to-Gene analysis has shown that the 

biochemical activities within a region in DNA sequence are 

functions of contributions of individual gene within the 

neighbourhood [19]. That is, the genomic location has some 

impact on gene expression which generally has influence on 

the gene function within a framework of expression defined 

by that neighbourhood. The theoretical study, [18] listed gene 

neighbourhood as one of the factors that affect gene 

expression but was quick to assume that the existence of gene 

expression neighbourhoods is not necessary for the correct 

and coordinated expression of genes that have the same 

expression profiles. The gene sets are described in Tables 6 

and 7 below, where each is used to generate different 

co-expression modules. 

Table 6. Details of the Data Inputs in Scales. 

S/N Gene Scales in the Dataset No of Gene 

1 1 – 50 50 

2 1 – 100 100 

3 1 – 200 200 

4 1 – 350 350 

5 1 - 500 500 

Table 7. Details of the Data Inputs in Ranges. 

S/N Gene Scales in the Dataset No of Gene 

1 1 – 350 350 

2 101 – 450 350 

3 201 – 550 350 

4 301 – 650 350 

5 401 – 750 350 

6 501 – 850 350 

The breaking down of the original dataset gives us 11 

input datasets, which is just a fractional part of the original 

dataset. Table 6 gives the dataset in scales, which describes 

the scope and magnitude of gene coverage of the original 

dataset (i.e the first 50, 100, 200, 350 and 500 genes). Table 7 

describes the input dataset in ranges from the original dataset, 

which is in form of interval data points at the size of 350 

genes per interval (i.e from 1-350, 101-450, 201-550, 

301-650, 401-750 and 501-850). This procedure is employed 

in order to appropriately capture the hub genes in the dataset 

from the co-expression modules, by comparing the 

co-expression modules at different scales and ranges instead 

of using the whole dataset at once that could lead to 

under-representation of the underline expression pattern due 

to the size of the dataset and the potential noise in the data. 

Only the first 500 genes from the original dataset were 

investigated using the scaled datasets while the first 850 

genes were investigated using the datasets by ranges. 

4.5. Analysis of Hub Genes 

Hub genes are the notable and central nodes in a 

co-expression network with highly interconnected nodes, 

which have been shown to be functionally significant [20]. In 

this study, we identify the hub genes by calculating the 

frequency at which each gene appears in the co-expression 

modules generated by each dataset, and the genes with not 

less than 15 connected nodes are considered to be the 

potential hub genes for each dataset. We later identify the 

common hub genes from the co-expression networks 

constructed from each dataset across the ranges, which are 

considered as “real” hub genes for further analysis. 

Frequency of each gene participating in co-expression 

modules and co-expression network of the first 50 genes in 

the dataset are displayed in Figures 6 and 7. Both the hub 

genes of the scaled dataset and the hub genes from the 

datasets in ranges are given in the supplementary file, 

including the common and the most common hub genes. 
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Figure 6. Frequency of each gene participating in co-expression modules of 1-50 Genes in the Dataset. 

 

Figure 7. Co-expression network of 1-50 Genes in the Dataset. 

The results from the scaled datasets shows that that the hub 

genes discovered when small dataset is used are also parts of 

the hub genes when large dataset is used, though not as highly 

connected as others in the large dataset. They include PTPN21, 

CNOT7, FAM122C, MSANTD3, LEAP2, GIMAP1, GAPT, 

AK9, UBA7, MIR4435-2HG, RBBP6, PXK, CFAP53, 

SCARB1, CCDC65, C4ORF33, FAM71A, MIR5193. 

4.6. Functional Analysis of Identified Hub Genes 

The functional activities that the most common (real) 

hub genes engage in were identified through an annotation 

database called g: profiler. We decided to analyze the hub 

genes from dataset in ranges and investigate their 

functional activities (Table 8) because the datasets 

intersect at different points, which will make the whole 

dataset representational. The constructed co-expressed 

gene networks of each datasets in ranges showed that there 

are other highly connected genes apart from the identified 

most hub genes. We picked the genes that have more than 

50 interactions from each network and find their 

functional activities (Table 9).  
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Table 8. Functional activities of most common hub genes. 

Gene Functional Activities 

KNL1 kinetochore scaffold 1 

CNBD2 cyclic nucleotide binding domain containing 2 

ABRA actin binding Rho activating protein 

SLC2A13 solute carrier family 2 member 13 

USP28 ubiquitin specific peptidase 28 

ARL11 ADP ribosylation factor like GTPase 11 

SLC4A1 solute carrier family 4 member 1 

RXFP1 relaxin family peptide receptor 1 

CNBD2 cyclic nucleotide binding domain containing 2 

Gene Functional Activities 

ARPP21 cAMP regulated phosphoprotein 21 

CARD16 caspase recruitment domain family member 16 

ZMYM6 zinc finger MYM-type containing 6 

TAF1L TATA-box binding protein associated factor 1 like 

RECQL4 RecQ like helicase 4 

DEFB105B defensin beta 105B 

HAS3 hyaluronan synthase 3 

CBLL2 Cbl proto-oncogene like 2 

DEFB105A defensin beta 105A 

 

Table 9. Functional activities of hub genes with highest interactions in each dataset. 

Gene Set Hub Genes with >50 Interactions No of Interactions involved Functional Profiling 

1-350 

ACVR1C 69 activin A receptor type 1C 

ZSCAN20 66 zinc finger and SCAN domain containing 20 

NLRC4 62 NLR family CARD domain containing 4 

MSANTD3 53 Myb/SANT DNA binding domain containing 3 

LACTB 53 lactamase beta 

KNL1 50 kinetochore scaffold 1 

101-450 

ACVR1C 72 activin A receptor type 1C 

ZSCAN20 71 zinc finger and SCAN domain containing 20 

NLRC4 60 NLR family CARD domain containing 4 

LACTB 59 lactamase beta 

RTP3 57 receptor transporter protein 3 

KNL1 57 kinetochore scaffold 1 

RAB42 56 RAB42, member RAS oncogene family 

C9ORF66 51 chromosome 9 open reading frame 66 

RAB42P1 56 RAB42, member RAS oncogene family, pseudogene 1 

201-550 

ZMYM6 81 zinc finger MYM-type containing 6 

NLRC4 69 NLR family CARD domain containing 4 

RAB42 63 RAB42, member RAS oncogene family 

RTP3 59 receptor transporter protein 3 

KNL1 58 kinetochore scaffold 1 

C9ORF66 54 chromosome 9 open reading frame 66 

CNBD2 51 cyclic nucleotide binding domain containing 2 

SIGLEC10 51 sialic acid binding Ig like lectin 10 

SIGLEC11 51 sialic acid binding Ig like lectin 11 

RAB42P1 63 RAB42, member RAS oncogene family, pseudogene 1 

301-650 

ZMYM6 75 zinc finger MYM-type containing 6 

RAB42 65 RAB42, member RAS oncogene family 

KNL1 63 kinetochore scaffold 1 

SIGLEC10 55 sialic acid binding Ig like lectin 10 

C9ORF66 54 chromosome 9 open reading frame 66 

CNBD2 51 cyclic nucleotide binding domain containing 2 

RAB42P1 65 RAB42, member RAS oncogene family, pseudogene 1 

401-750 

SLC36A1 78 solute carrier family 36 member 1 

ZMYM6 61 zinc finger MYM-type containing 6 

RAB42 55 RAB42, member RAS oncogene family 

RAB42P1 55 RAB42, member RAS oncogene family, pseudogene 1 

501-850 

SLC36A1 70 solute carrier family 36 member 1 

PCDH15 64 protocadherin related 15 

ZMYM6 58 zinc finger MYM-type containing 6 

 

5. Conclusion 

Although, co-expression module techniques generally 

depend on proximity measures based on global similarity to 

draw the relationship between genes, but it is observed that 

expression profiles share local rather that global similarity [5]. 

By using FARI, we are evaluating each gene sample 

discriminant power and we rank the genes according to the 

computed ARI values while making connection between the 

curse of dimensionality and sparseness property of biological 

network. In this paper, the described model is used to create 
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co-expression modules in Mtb data, which is used to 

construct co-expression networks from which 

highly-connected genes are characterized by their functions. 

FARI gives us an insight into the relationship between genes, 

which eventually gives us the opportunity to pick the most 

plausible genes as the best combination of 

affecting/regulatory genes in constructing gene regulatory 

network unlike creating hypothetical connections by using 

conditional combinations of gene as input in the study or 

using constraint to prune the network in these studies 

[10-12]. 

Meanwhile, further analysis could include the enrichment 

analysis of the gene modules using Kyoto Encyclopedia of 

Genes and Genome (KEGG) and Gene Ontology (GO) 

databases. Also parallelism could be incorporated into FARI 

so that the comparison of gene pairs would be done 

simultaneously according to the computing power of the 

machine instead of iteratively. 
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