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Abstract: During treatment in an intensive care unit (ICU), traumatic brain injury (TBI) patients sometimes suffer an 

increase in intracranial pressure (ICP). An increase beyond a currently unknown and to-be-determined threshold is very often 

life-threatening and requires intervention by the clinical staff. Because this threshold value is considered unknown, 

‘conventional wisdom’ of practitioners argue it to be 20 mm Hg. No published studies include statistical methods that could 

supply a rigorous outcome for the threshold value. Here, we use a clustering algorithm (K-means clustering) to find three-

dimensional clusters of the 984 triples of ICP, temperature and patient state index (PSI, a proxy for sedation level). The 

algorithm outputs three clusters and two gaps. One gap separates two clusters from a third and is almost planar, and 

perpendicular to the ICP axis (implying a threshold across all temperatures and all sedation levels); the other is perpendicular 

to the temperature axis, which terminates at the aforementioned gap. The first gap provides a statistically rigorous threshold of 

13.625 mm Hg for ICP intervention. The second gap defines a threshold temperature (36.5°C). The gap between the two 

temperature regimes does not continue into Cluster 3, implying that the intervention threshold for ICP is independent of 

temperature. 

Keywords: Intracranial Pressure, Traumatic Brain Injury, Clustering Algorithms, Patient State Index,  

Akaike’s Information Criterion, ICP Intervention Threshold, K-means Clustering 

 

1. Introduction 

Patients being treated for traumatic brain injury (TBI) 

occasionally suffer an elevated intracranial pressure (ICP), 

requiring intervention, because an elevated ICP is a medical 

emergency. [1] The criterion of when ICP is ‘elevated’ 

obviously needs to be known; otherwise, a necessary medical 

intervention may be missed. Current literature defines the 

threshold for elevated ICP as 20 mm Hg [2–6] or higher (up 

to 30 mm Hg [7]). We note that the most recent review of the 

ICP threshold guidelines relies on “conventional wisdom” to 

justify this threshold, [8, 9] rather than on statistical 

methodology, as Level I evidence is lacking. [10] The 20 mm 

Hg value is claimed to be related to observed increased 

mortality. [11] However, as many vital parameters are 

interrelated with ICP, we infer that looking at increased 

mortality via univariate statistics is fraught with unreliability. 

The interrelation between vital parameters necessitates a 

multivariate approach. Because some vital parameters are 

strongly correlated, we initially rely on ICU clinicians’ 

observations that ICP, body temperature and sedation level 

are the ones that are least straightforwardly controllable in an 

ICU setting. When they vary, many correlated vital 
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parameters vary as a result. As we will show in this paper, 

the clustering algorithm that we use indicates that body 

temperature and sedation level are quite independent of each 

other and of ICP only below a certain level, which we label 

ICPthreshold. 

Because the volume of the intracranial cavity is fixed, any 

increase in ICP beyond some threshold will cause secondary 

brain injury. We investigate, in this paper, whether this 

threshold depends on the other two physiological parameters 

temperature and sedation level monitored by clinicians while 

the patient is being treated in an ICU. For reasons that are 

supported by the outcomes of the statistical analyses we 

describe below, we look at body temperature
12

 and patient 

state index (PSI [13, 14]) — a proxy for 

consciousness/unconsciousness (as well as a degree of 

sedation [15]). 

In this paper, we introduce a statistical approach to 

determine a possibly new threshold for ICP. We find that 20 

mm Hg is far too high and argue that lowering the threshold 

value to slightly above 13 mm Hg is necessary. We also 

investigate how this threshold depends (or not) on 

temperature. Our statistical approach shows a further finding: 

that the threshold for elevated ICP does not (in a statistical 

sense) depend on PSI. 

2. Materials 

2.1. Patients 

The data set consists of 32 TBI patients treated in a neuro-

trauma intensive care unit (ICU) in Vienna (Trauma Center 

Vienna, Austria): 26 males and 6 females aged 21–80 years 

when they suffered a TBI (Table 1). 

Table 1. Patient data. The age of each patient at time of event causing TBI has been calculated to the nearest day, as both the date of birth and the date of 

injury have been documented (we note that otherwise coincidental birth and accident dates may introduce an error of ±1 year). Sex is listed, not gender, 

because we do not know the gender identity of the patients, but we do know their biological sex. The ages are beta-distributed, hence we refrain from 

calculating standard deviations; rather, we list the modes, the expectation values, the ±34·1% range about the mode (see Figure 1), and the extremes. Using 

Wilks’ Λ, we cannot exclude that the two distributions are drawn from the same population (details: see text). Expect is the expectation value of the 

distribution. 

Sex Mode (years) Expect (years) ±±±±34.1 % Interval about the mode (years) Min–Max (years) 

Male 45.1 46.1 28.8–61.2 21.0–80.0 

Female 61.5 60.5 51.6–71.6 45.0–73.2 

 

2.2. Measured and Recorded Variables 

The date of birth and date of the event that led to TBI have 

been recorded for each patient. 

Patients’ intracranial pressure (ICP), body temperature 

(TEMP), and patient state index (PSI) were monitored for 

intervention purposes. ICP, TEMP and PSI readings were 

taken at 4 time points each day (6 am, noon, 6 pm and 

midnight) and entered into the data set for subsequent 

analyses. Some triples (4.7 %) are incomplete or missing; 

due to therapeutic interventions taking place when the values 

are to be recorded, one or more of the 3 values had not been 

entered at the times noted above. In total, 984 triples were 

complete and used in the analyses. The data were stored in a 

patient data management system (PDMS COPRA
®
). 

3. Ethics 

This study was approved by The Ethics Committee of the 

Trauma Center Vienna. As the SHT patients were 

unconscious during their treatment in the ICU, their 

agreement to the terms of this study could not be requested 

from them. 

4. Methods 

4.1. Measurement Methods 

Intracranial Pressure (ICP) was measured with a 

Spiegelberg parenchymal catheter utilizing an air bladder 

technology (Spiegelberg GmbH & Co. KG, Hamburg, 

Germany). Continuous body core temperature monitoring 

was performed using a Rüsch Sensor (Teleflex Medical, 

Ireland) with a catheter for urinary drainage. Patient sedation 

depth was obtained from a processed EEG parameter 

provided by SEDLine


 brain function monitoring 

(MASIMO, Irvine, CA, USA); the (stored) outcome was the 

Patient State Index (PSI). [16]
 

4.2. Statistical Analysis Methods 

4.2.1. ML Distribution of Ages 

Ages are never normally distributed, because the domain 

of all possible ages is [0, max] ∈ ℜ, with max ≈ 1.2 centuries 

worldwide. We calculate the Julian days between birth date 

and date of accident and convert to centuries; in our study we 

use max = 1.0 centuries (because no patient was older than 

100 years). The domain of the distribution is thus [0, 1] ∈ ℜ, 

the most likely (ML) Beta distribution enables the 

determination of mode, expectation value, and the ±34.1 % 

uncertainty interval (Figure 1) for males and females 

separately or for the sample with the sexes pooled. 

We use the log-likelihood ratio test to determine, via 

Wilks’ Λ, whether the statistical populations from which the 

male and female samples are drawn are significantly 

different. [17–19] As we find that male and female samples 

are not significantly different, we continue our analysis with 

the pooled sample of (ICP, TEMP, PSI) triples, irrespective of 

age and (biological) sex of the TBI patients. In this analysis, 

we do not look at the temporal evolution of the ICP per 

patient. We use only those triples for which all 3 values had 
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been registered: a total of 984 points in 3D (horizontal axes: 

ICP, and TEMP; vertical axis: PSI), regardless of patient or 

registration time. 

All statistical analyses in this paper use non-symmetric 

distributions, so (a) the expectation value of the distribution 

differs from its mode, and (b) the conventional ±SD interval 

is not meaningful. We therefore compute asymmetric 

boundaries about the mode with probabilities ±34.1% (equal 

to the probability of ±1 SD from the mode for a 

normal/Gaussian distribution). 

 

Figure 1. The pdfs (probability density functions) of the ML (most likely) populations (beta-distributed in all three cases) from which the samples had been 

drawn: purple (male), red (female), and gray (both sexes pooled). The colored, short vertical lines along the abscissa show the actual ages that have been 

rescaled to centuries from the patients’ ages (in days, not in years) as described in the text. Arrows designate the modes and the colored areas are the ±34.1% 

intervals about the modes. The ladder-type band is the ML Beta distribution when the sexes are pooled. Wilks’ Λ shows that the segmentation of the data set 

into two sets (populations) is not significant (at 5% significance level), hence there is no need to calculate a confusion matrix or the area under the ROC 

curve. The ML Beta distribution for the males and females pooled shows a mode close to the mode for the males. 

4.2.2. 1D-Clustering of Each Parameter 

As a first step, we use one-dimensional K-means clustering 

[20] for ICP and TEMP components of the triple separately. 

We determine the boundaries between the clusters of each 

physiological parameter along its respective axes, fractions of 

occurrences per cluster, and the centroids (arithmetic means) 

for each of the clusters. 

4.2.3. Clustering of Parameter Triples in 3D 

We then use the three-dimensional K-means clustering 

algorithm [20, 21] to determine three clusters of the ICP-

TEMP-PSI triples. As we communicate in greater detail 

below, the gap between Cluster 3 and Clusters 1 & 2 is close 

to planar and the gap between Cluster 1 and Cluster 2 is 

planar and perpendicular to the ICP-TEMP coordinate axes 

plane (and therefore parallel to the PSI axis). 

4.2.4. Numerical Analyses of Gaps Between Clusters 

To find a planar approximation to the gap between Cluster 

3 and Clusters 1 & 2, we find points on the convex hulls of 

the clusters that are closest to the convex hulls of the other 

clusters and then determine a least-squares (LSq) fitting 

plane to these points (via PCA, not via LSq regression). The 

intersection of this plane with the ICP-TEMP coordinate axes 

plane determines the functional dependence of ICPthreshold on 

temperature. Likewise, it informs the ICU therapist of 

possible functional dependence of PSI on ICPthreshold. 

5. Results 

5.1. Homogeneity of Ages of Patients 

Table 1 lists the modes, the expectations values, the 

±34.1% uncertainties and the ranges of the ages of the female 

and male patients that had suffered TBI and were treated in 

the ICU. The distribution of the population from which the 

female sample has been drawn is not significantly different 

from that of the male sample (0.052 > P > 0.051 using Wilks’ 

Λ). The log-likelihood ratio used in this way is in lieu of 

statistical power analysis of separation of the sexes. 

5.2. Boundaries of Clusters of Each Parameter 

Table 2 shows the boundaries and the fraction of 

occurrences in the case of clustering of the TEMP, the PSI 

and the ICP of the triples independently. We note that the ICP 

intervention boundary — 16.5 mm Hg — is remarkably less 

than the 20 mm Hg conventionally adopted in the published 

literature. [6] Whether the boundaries of TEMP (as they are 

in the vicinity of the mean body temperature of 37°C) are 

diagnostically relevant is difficult to assess, [22] but these 
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boundary values indicate that the clustering algorithm can be considered reliable. 

Table 2. Listing of the diagnosed variables and their ranges for the patients included in this study. 

Variable Description of diagnosed variable 

ICP 
Intracranial Pressure [9] 

Observed Range: 0 to +42 (mm Hg) 

TEMP 
Body temperature [12] 

Observed Range: 34.6°C to 38.5°C  

PSI 
Patient state index [15] 

Observed Range: 6 to 100 (scale: 0–100) 

Table 3. Boundaries between and frequencies of occurrences within clusters of ICP and TEMP singly. Only components of complete ICP, TEMP and PSI 

triples were used, albeit, for this table, the one-dimensional clustering algorithm was applied to each variable separately. 

Variable Cluster 1 Boundary Cluster1 ↔↔↔↔ Cluster2 Cluster 2 Boundary Cluster1 ↔↔↔↔ Cluster2 Cluster 3 

ICP (mm Hg) n1 = 498 (50.6 %) 6.75 n2 = 376 (38.2 %) 16.5 n3 = 110 (11.2 %) 

TEMP (°C) n1 = 231 (23.5 %) 36.15 n2 = 476 (48.4 %) 37.15 n3 = 277 (28.2 %) 

 

5.3. Boundaries and Gaps of Clusters of Parameter Triples 

Table 4 shows the fractions of triples in each cluster, as 

well as the extremes of the convex hulls of the 3D-clusters 

(Figure 3a). The projected extremes can (and do) overlap 

because the gaps between the convex hulls need not be 

planes, let alone planes parallel to the planes formed by the 

coordinate axes. The gaps between the convex hulls are 

thresholds. The gap between Cluster 1 and Cluster 2 is 

indeed a plane which is perpendicular to the TEMP axis, at a 

temperature of 36.5°C, thus indicating that there exist two 

clusters of ICP-TEMP-PSI triples below the ICP intervention 

threshold, and they are separated at 36.5°C (one publication 

[22] discusses hypothermia), as expected by clinicians. There 

is no gap along the TEMP axis above the ICP threshold gap. 

The result of the clustering algorithm shows that, above ICP 

threshold, temperature is not an intervention indicator, let 

alone a necessary one. 

 

Figure 2. The complete ICP data set used for this study. Along the abscissa is the patient number. Data from each patient is within a strip bordered by thin 

vertical black lines. The points in every graph show registrations, but only those for which complete triples exist. The thin orange lines connecting the data 

points enhance the readability and suggest a time line; indeed, the leftmost point in each strip is the first registration and the rightmost point the last 

registration, but the spaces along the abscissa are not necessarily proportional to the time intervals between registrations (because of occasionally missing 

triples). To the left of the ordinate axis is the (90° rotated) histogram of the registrations. Frequencies of occurrences, as well as boundaries, are listed in Table 

3. The light yellow rectangle shows two boundaries: the upper boundary is the 20 mm Hg intervention limit often referred to in the literature. The lower 

boundary is the cluster boundary found by one-dimensional K-means clustering, as described in the text. The green/red points are those data registrations 

where — we argue in this study — intervention should take place and would not warrant intervention if the traditional 20 mm Hg boundary were used in ICUs. 
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Figure 3. The complete TEMP data set used for this study. Along the abscissa is the patient number. Data from each patient is within a strip bordered by thin 

vertical black lines. The points in every graph show registrations of TEMP, but only those for which complete triples exist. The thin orange lines connecting 

the data points enhance the readability and suggest a time line; indeed, the leftmost point in each strip is the first registration and the rightmost point the last 

registration, but the spaces along the abscissa are not necessarily proportional to the time intervals between registrations (because of occasionally missing 

triples). To the left of the ordinate axis is the (90° rotated) histogram of the registrations. Frequencies of occurrences, as well as boundaries, are listed in Table 

3. 

Table 4. Fractions of cluster membership, extremes and means of clusters in the three-dimensional space of ICP, TEMP and PSI triples using K-means 

clustering algorithms and the gap values (thresholds) for temperature and for ICP. We note that the clustering does not find a boundary along the PSI-axis, 

because three clusters imply at most two boundary surfaces (which are very close to being planes — see text for details). Because the convex hull (a 

polyhedron) of each cluster is akin to an irregular crystal surface (Figure 4), the random variable maximum of one cluster overlaps the minimum of the next 

cluster. 

 Number of triples Fraction of 984 triples 

Cluster 1 356 36.2 % 

Cluster 2 474 48.2 % 

Cluster 3 154 15.7 % 

 

ICP (mm Hg) ICPMinimum ICPMean ICPMaximum 

Cluster 1 0 6.1 16 

Cluster 2 0 6.0 15 

Cluster 3 12 20.4 44 

 

TEMP (°C) TEMPMinimum TEMPMean TEMPMaximum 

Cluster 1 34.4 35.96 36.5 

Cluster 2 36.6 37.21 39.1 

Cluster 3 34.6 36.74 38.7 

 

PSI (0–100) PSIMinimum PSIMean PSIMaximum 

Cluster 1 7 56.1 92 

Cluster 2 8 55.0 100 

Cluster 3 6 43.4 88 

 

Gap Thresholds 

Between Cluster 1 and Cluster 2 Tthreshold = 36.5°C 

Between Cluster 3 and Clusters 1 & 2 ICPthreshold = 13.625 mm Hg 
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6. Discussion 

ICU clinicians dealing with TBI patients point out that the 

changes in the three parameters ICP, TEMP and PSI are 

driven by the trauma, and can be, to some extent, controlled 

by intervention. A change in the position of the ICP-TEMP-

PSI triple (Figure 4), therefore, alerts clinicians to whether 

intervention is called for. We, heeding this recommendation, 

based our statistical analysis on an algorithm for clustering 

these triples and we discovered, remarkably, that the triples 

do indeed cluster with medically interpretable gaps between 

the convex hulls; they, we argue, indicate thresholds. In other 

words, we did not devise a model with a particular threshold 

as a target parameter (neither for ICP, nor for TEMP, nor for 

PSI), but let the clustering algorithm find these gaps. The 

three clusters we found supply, among other insights, an 

intervention threshold for ICP. 

The clustering algorithms applied to ICP and TEMP 

individually outputted two boundaries each, which we do not 

consider intervention thresholds (Table 3). The upper 

threshold for ICP is, however, notably lower than the 

recommended intervention threshold (20 mm Hg) listed in 

the literature. We do not recommend this 16.5 mm Hg 

threshold, however, because it is higher than the threshold 

found by the 3D clustering algorithm and because applying a 

clustering algorithm to the individual parameters separately 

implies the independence of intracranial pressure, 

temperature and sedation levels. Consequently, the outcome 

of the 3D clustering algorithm supports our rejection of 

ICPthreshold = 16.5 mm Hg. Currently, we cannot present 

medical arguments for the boundary values along each 

parameter axis independently, nor are we aware of a 

discussion of such threshold values published elsewhere. 

What we do observe: if the 3 parameters are not considered 

independently, then we find meaningful, interpretable 

thresholds, which differ from the thresholds obtained using 

1D clustering algorithms. In the context of the threshold 

outputted by the 3D clustering algorithm, we note that the 

one study that relates survival outcomes to ICP thresholds 

finds an asymptotic limit of 12–13 mm Hg for the threshold 

for durations of high ICP exceeding 6 h. [7] Although we do 

not look at the relationship between triples in Cluster 3 and 

survival outcomes (for two reasons: (a) because the number 

of non-survivors for this data set in our ICU is extremely 

small and (b) the clinicians at this ICU used 20 mm Hg as a 

threshold — the analysis we present here is retrospective) we 

do point out that we did sample the ICP triples every 6 hours. 

 

Figure 4. The graphical rendition of the outcome of the clustering algorithm applied to the triples (ICP, TEMP, and PSI) in 3D-space. There are three clusters 

separated by gaps. The convex hulls of these three clusters are shown as colored polyhedrons, and the triples as black points on and within these. Cluster 1 

and Cluster 2 have a gap at constant temperature (26.5°C); the gap terminates at the threshold for ICP. Cluster 3 is separated by an almost planar gap from 

Clusters 1 & 2. 
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Figure 5. The polygons which are the projections on the ICP-TEMP plane of the clusters shown as polyhedrons in Figure 4. There is a clear separation 

between Cluster 1 and Cluster 2 perpendicular to the temperature axis. There is no critical temperature for ICP values in Cluster 3 — implying that 

temperature does not play a role in the necessity of intervention for ICP values above the intervention threshold of 13.625 mm Hg. In first (and very good) 

approximation, the intervention boundary for ICP is a projected plane. The uncertainty in the intercept of this plane on the ICP axis is shown as a band. The 

open circles mark the projections of the centroids of the clusters. 

 

Figure 6. The projections of the polyhedrons shown in Figure 4 onto the ICP-PSI plane. There is a band/region separating Cluster 3 (the ICP registrations 

above the intervention threshold) from Clusters 1 & 2. In this projection, there is neither a gap nor a planar boundary separating clusters along the PSI axis. 
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Figure 7. The illusionary PSI dependency on ICP intervention threshold, 

including uncertainty. One band (cyan) shows the realm of 

traditional/conventional threshold for ICP intervention (20 mm Hg). The 

second band (light yellow) shows the shift in intervention threshold if one-

dimensional clustering of ICP is used (Figure 2). There is a further shift to a 

still lower ICP-intervention threshold if 3D clustering is used. The least-

squares plane for the gap (compare Figure 4 and Figure 5) and its 

uncertainties appear as straight lines in the projection. We note the slope of 

this intervention line is extraordinarily steep (the axes’ scales differ 

considerably), implying the ICP-intervention threshold is statistically 

independent of PSI. The change at the PSI endpoints in the projection is 

within the uncertainty intervals; therefore ICPthreshold does not depend on PSI, 

neither in a statistical sense, nor in medical relevance. 

Segmenting a data set in three-dimensional space into 

three clusters does not ensure that boundary planes are 

generated, because the convex hull surfaces of each cluster 

(Figure 4) at the gaps are not necessarily planar. However, 

we discover that the one gap is indeed planar and the second 

one is very close to planar. 

The temperature at the gap (36.5°C) between Cluster 1 and 

Cluster 2 is considered physiologically normal by ICU 

clinicians (however, see a discussion [22]), while 

temperatures above or below this gap value call for 

interventions. We note that this gap was not inputted prior to 

the execution of the clustering algorithm; rather, the 

algorithm outputted this temperature gap value. This result of 

the clustering algorithm can be considered corroborating its 

reliability. We stress that the clustering algorithm does not 

output clusters that provide a temperature gap for ICP values 

above the ICP gap, which, we argue, is therefore an ICP 

intervention threshold value. 

The second surprising result of this study is that the 

boundary between Cluster 3 and Clusters 1 & 2 is planar 

within statistical uncertainties and almost parallel to the 

TEMP and PSI axis, indicating that the ICP threshold for 

acute intervention is almost independent of PSI (Figure 7). 

The boundary between Cluster 1 and Cluster 2 is planar and 

perpendicular to the TEMP-axis, indicating that the 

temperature threshold is independent of PSI and independent 

of ICP for ICPthreshold < 13.5 mm Hg. 

The published literature refers (in the majority of studies) 

to an intervention threshold of ICPthreshold = 20 mm Hg. [4, 6, 

23–24] The most recent review states “The most widely 

accepted ICP threshold for therapy is 20 mm Hg.” [6] A 

further review also mentions that ICP thresholds are based on 

“a body of experience” — thereby implying: not based on 

rigorous statistical analysis. [10]
 

Sampling and measuring ICP once every 6 hours suggests 

there may be a “hit or miss” source of error: ICP might 

increase rapidly shortly after the ICP has been registered and 

then decrease rapidly enough so that the ICP value may be 

innocuous by the time of the next registration. Per definition, 

we have no way of evidencing this effect directly, but we can 

offer a few observations that allow an estimation of whether 

this effect occurs. In one study, 155 measurements of ICP 

above 20 mm Hg were registered in 200 patients with a 

measurement interval of 12 hours. [6] Here we registered 154 

measurements in Cluster 3 for 32 patients with 6-hour 

registration intervals. Assuming the ICPs in Cluster 3 occur 

close to uniformly throughout 24 hours (Figure 2) for all 

patients combined, we should expect 77 measurements for 

12-hour intervals (~2 ICPs above threshold per patient). Our 

observed rate is comparable to [6] (~80% ICPs above 

threshold per patient). However: the Cluster 3 threshold is, at 

13 mm Hg, considerably lower and, furthermore, we do not 

observe ICPs above 20 mm Hg in all patients (Figure 2). We 

do not, of course, know how often ICPs in [6] are above 13 

mm Hg, nor whether any patients in [6] ever had ICPs above 

threshold, while some of our SHT patients did. 

Although our analyses are rigorous, they do not address 

the issue of whether the ICP intervention threshold for young 

patients might differ from that of older patients — or that it 

might differ between the sexes. Despite the rather large 

number of data triples we use in this study, we caution 

against suggestions to split the data into young vs. old or 

male vs. female patients. (We have demonstrated — Figure 1 

— that there is no observed age-related sexual dimorphism.) 

While every interpretation of data tries to identify statistical 

estimators that extract information from the noisy data set, 

there is a theoretical limit as to how much information can be 

extracted, given a prognostic model with likelihood L; this 

limit is Akaike’s Information Criterion corrected for finite 

samples size (AICc), namely 

2 ln
( 1)

n
AICc K

n K

 = − − − + 
L
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where K is the number of parameters in the model and n is 

the sample size. [25, 26]
 

The second term, called the “penalty term” [27], ensures 

that making a model more complex by increasing the number 

of parameters K (and thereby also increasing the likelihood 

of the more complex model) does not include the modeling 

of statistical noise. If one were to partition the 984 triples into 

young versus old, say, then L might increase while K stays 

constant for each age group or sex group. For example, by 

estimating the likelihood L with the same number K of 

prognostic model parameters, but defining ML (maximum 

likelihood) distribution parameters for young and for old 

separately. But the penalty term increases nonlinearly with 

decreasing sample size n; so AICc need not decrease. If it 

does not, then modeling noise will have been included in the 

ML parameter estimation. [28] In particular, with the very 

noisy data set of ICP-TEMP-PSI triples we cannot assume 

that the likelihood L increases strongly enough (and it must 

increase exponentially, because its logarithm must outrun the 

nonlinear increase in the penalty term). 

We agree with [6] that a single ICP threshold may not be 

optimal. But our analysis of insignificant age segmentation 

(Table 1 and Figure 1) shows that a considerably vast 

increase in data triples is necessary to statistically rigorously 

estimate target intervention thresholds that are age- or sex-

dependent — if at all. Our analysis therefore does not 

provide an indicator of the hypothesis in [6] being valid. 

Rather, we infer that the intervention threshold ICPthreshold 

seems to be age independent. In any case, the conventionally 

assumed intervention threshold of 20 mm Hg is most 

probably far too high. 

Much of the early literature (quoted in [3]) derives an 

ICPthreshold value based on indicators for reduction in 

mortality. [29] Here we look at the pattern inherent in the 

data — mortality rates may also change with our pattern-

derived ICPthreshold = 13 mm Hg — but we would not infer 

that they would increase. Furthermore, reduction in mortality 

is not the only ICU goal; post TBI health is also an issue, for 

which no statistical analysis has yet been published. 

The observed incline of the gap at ICP threshold relative to 

the PSI axis can be misleading (Figure 7). The change in 

ICPthreshold from PSI = 0 to PSI = 100 is less than the ±34.1% 

interval overlaps because the slope is so steep. Consequently, 

there is no statistically rigorous dependence of ICPthreshold on 

PSI that is consequential for ICU clinicians. 

7. Conclusion 

The literature cited in the most recent reviews about ICP 

thresholds for intervention in the case of TBI list 20 mm Hg 

as the recommended value. [6, 10, 30] The 20 mm Hg 

threshold is based on ‘conventional wisdom’. Here we 

presented a statistical analysis that supplies an intervention 

threshold, based on the results of a 3D clustering algorithm. 

We observed that a meaningful clustering algorithm may not 

be applied to a one-dimensional data set; i.e. the vital 

parameters (ICP, TEMP and PSI) cannot be regarded as 

physiologically independent. We found the intervention limit 

for ICP is much lower than the conventional 20 mm Hg: 

namely, 16 mm Hg (for clustering in 1D) and 13.625 mm Hg 

(for clustering in 3D). Remarkably, the ICP threshold found 

by clustering in 3D is de facto independent of body 

temperature and patient state index, the proxy for degree of 

unconsciousness and/or sedation. The 3D clustering 

algorithm had no input parameters, only the 984 triples. It is 

noteworthy (and unexpected, from an algorithmic point of 

view) that the algorithm finds a planar gap perpendicular to 

the temperature axis, but only below the gap (13.625 1.5

1.4

+
−

 

mm Hg) which defines the lowest ICP values for Cluster 3. 

This gap is, within statistical fluctuations along the convex 

hull of Cluster 3, also planar and perpendicular to the other 

gap (Figure 6). 

We argue, based on the analysis presented here, that the 

threshold for ICP, above which intervention is expedient, 

should be 13–14 mm Hg. 
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