

Science Journal of Circuits, Systems and Signal Processing
2013; 2(1) : 6-15

Published online February 20, 2013 (http://www.sciencepublishinggroup.com/j/cssp)

doi: 10.11648/j. cssp.20130201.12

Context adaptive variable length decoding optimization
and implementation on tms320c64 dsp for h.264/avc

Taheni Damak
1,*

, Imen Werda
2
, Mohamed Ali Ben Ayed

3
, Nouri Masmoudi

4,*

1
Higher Institute of Computer Sciences and Communication Technologies of Hamam Sousse, University of Sousse, Sousse, Tunisia

2Higher Institute of Applied Sciences and Technology, University of Sousse, Sousse, Tunisia
3Higher Institute of Electronics and Communication of Sfax, University of Sfax, Sfax, Tunisia
4National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia

Email adress:
damak.taheni@gmail.com (T. Damak), Nouri.Masmoudi@enis.rnu.tn (N. Masmoudi)

To cite this article:
Taheni Damak, Imen Werda, Mohamed Ali Ben Ayed, Nouri Masmoudi. Context Adaptive Variable Length Decoding Optimization and

Implementation on Tms320c64 Dsp for H.264/Avc, Science Journal of Circuits, Systems and Signal Processing. Vol. 2, No. 1, 2013, pp.

6-15. doi: 10.11648/j.cssp.20130201.12

Abstract: Context Adaptive Variable Length Decoding (CAVLD) module takes the lion chair of the H.264/AVC video

decoder time due to its complexity. In order to ameliorate decoding speed, a new CAVLD algorithm and an efficient

internal memory design were implemented on Digital Signal Processor (DSP). The proposed CAVLD algorithm, Zero

Length Prefix (ZLP), was designed to optimize the first syntax element: the CoeffToken. ZLP implementation reduces

CAVLD execution time to 21% instead of 41% from decoding time with a throughput of 1.28 MegaMB/s. In addition, the

decoder speed was increased from 36 frames per second (fps) to 44 fps for a CIF compressed bitstream.

Keywords: H.264 Video Coding Standard, Decoder, CAVLD, Coefftoken, TMS320C64 DSP

1. Introduction

H.264/AVC[1] is an advanced digital video codec

standard that can deliver high resolution video even at low

bit rates. To provide high throughput and high

compression ratio context-based, an adaptive variable

length decoding (CAVLD) is adopted as an entropy

decoding method in H.264/AVC video compression

standard for baseline profile. Variable length coding (VLC)

is a widely technique used in many image and video

compression applications. The main idea of VLC is to

reduce data redundancy and to minimize the average

codeword length by exploiting data statistics. Shorter

codewords are assigned to frequently occurred data while

longer codewords are assigned to less occurred symbols.

In the CAVLD decoder, look-up tables are used to

decode syntax element. Typically decoding process, based

on look-up table, requires multiple memory accesses until

the desired codeword is found. It is well known that

memory access induces a higher power consumption in

hardware platform, and reduces the speed in software

platform[2]. In addition, CAVLD process uses variable-

length technique. Consequently there is no boundary

information for detecting the end or the beginning of the

codeword[3]. This characteristic substantially complicates

the decoder design and decreases its performance. Thus

efficient CAVLD algorithm and implementation

optimizations are necessary to improve decoder speed.

In this paper, an efficient CAVLD decoding algorithm

based on TMS320C6416 DSP is suggested. The remaining

of this paper is organized as follows: In section 2, state of

art is presented. Section 3 describes briefly the decoder

processing and especially the CAVLD module. Section 4

details DSP platform and implementation. The proposed

ZLP CoeffToken decoding algorithm steps are explained

in section 5. The memory design of CoeffToken

parameters is proposed in section 6, followed by

performance results and a comparative study with related

works in section 7. Finally, conclusion and perspectives

are given in section 8.

2. Previous Works

Most CAVLD implementations were implemented on

hardware architectures because of its complexity and the

repetitive cheeking of look up tables. Reference[4] is a

typical example of a hardware implementation. An

optimized architecture for CAVLD on 0.13 µm CMOS

technology including CoeffToken decoder, Level decoder,

 Science Journal of Circuits, Systems and Signal Processing 2013, 2(1): 6-15 7

Total_zeros decoder and Run_before decoder was detailed.

In[5] also, a description of hardware architecture of the

five syntax elements of CAVLD on 0.18 µm CMOS

technology was proposed. The design detailed in[5]

exploits five different techniques in order to reduce both

hardware cost and power consumption.

In literature, many other works focused on the

algorithmic approaches that optimized methods to decode

one or several syntax elements, such as[6],[7],[8] and[9].

In[6], new look up tables are introduced to decode

TotalCoeff and TrailingOnes in one codeword of 19 bits

instead of 16 bits. The Cofftoken step determines also the

following skip steps, if they exist, to reduce the number of

decoding steps. In addition the design of[6] reduced the

number of cycles for computing the codeword length of

the current decoding block. This parameter is used to

determine the next input bitstream (valid bits).

Both[7] and[8] optimize only Level syntax. Reference[7]

suggested a very large-scale integrated implementation

under 90-nm CMOS technology. Since decoding the Level

syntax element depends on the previous one, pipeline

structure cannot be exploited. Moreover, the inter-

codeword dependency and the succession of the arithmetic

operations to decode a Level lead to an unavoidably long

critical path. Proposed solution in[7] broke the inter-Level

dependency and the inter-codeword dependency by a delay

balanced two-Level architecture. Reference[8] presented a

pipelined architecture of CAVLD on FPGA. Level module

was optimized by multi syntax decoding method that

decodes two Levels in parallel. The pipelining possibilities

were also explored between syntax elements modules. In

addition, the syntax element processing could begin at the

same time with reading and fixing the length of the next

syntax element.

Reference[9] proposes two methods to improve the

throughput of CAVLC decoder. The first one was called

Multiple Level Decoding (MLD). It could decode two

Levels in one cycle on most situations. The second one

was nonzero skipping for Run_before decoding (NZS). It

is able to detect coefficients whose Run_befores are null.

These Run_befores were decoded in the same clock cycle.

The architecture was also proposed on very large scale

integration circuits.

Other optimisation approach is based on statistic and

analysed method. Proposed algorithm in[10] analyzes the

correlation between bit patterns and 4x4 (or 2x2) blocks

and has an idea of a pattern-search method before CAVLC

decoding. If a pattern is matched in the proposed look-up

table, the standard CAVLD procedure is skipped and the

block is directly reconstructed. However, if there is no any

pattern matched in the table, CAVLD processing is used to

reconstruct the block. This method was applied on a

software implementation on ARM-based embedded

system.

When analyzing these previous works, it is clear that all

implementations were on hardware platform, expected

of[10] that was on standard processor. In fact, ASIC

solutions are not flexible. It can be changed to improve or

to update architecture. However, software implementation

on specific processor, such as DSP, can be often updated.

In addition DSP architecture is able to attend real time

execution.

Furthermore, all the proposed algorithms optimized

syntax element processing and not the reading’s technique

data from bitstream. The bottleneck of CAVLD is the

multiple access memory to found corresponding codword

from bitstream. The optimization of this step is primordial

to speed up CAVLD processing.

3. H.264 Decoding Process

The H.264/AVC decoder receives a compressed

bitstream as input for the entropy decoding module that

includes CAVLD and Exp-Golomb. The prime focus in

this work is CAVLD, witch is highlighted in Figure 1.

Outputs data of CAVLD are then reordered and will be

inverse quantized and inverse transformed. Resulting

block is added to the previously predicted one in order to

reconstruct frame blocks after a de-blocking filter process.

Two kinds of prediction can be used in H.264: intra

prediction and inter prediction.

Figure 1. H.264/AVC decoder block diagram.

3.1. Entropy Decoding Process The H.264 entropy decoding uses two ways to

8 Taheni Damak et al.: Context adaptive variable length decoding optimization and implementation on tms320c64 dsp for h.264/avc

reconstruct compressed value in bitstream. According to the

type of parameter, CAVLD or Exp-Golomb is used. The

Exp-Golomb decoding is a special VLC Huffman code

based on a regular construction. It is used to decode

macroblock header information such as prediction mode,

motion vector difference and macroblock type.

For residual coefficients, CAVLD is the appropriate used

technique. It decodes bitstream symbols to provide a zig-

zag ordered 4x4 blocks of transformed coefficients.

CAVLD is also a special VLC Huffman method but it is

based on look-up tables.

According to the previously decoded data, the CAVLD

module can adaptively choose one of several VLC tables,

and then decodes the current input codeword efficiently by

using the five syntax elements for each 4x4 block[11] as

follows:

1. First syntax element is CoeffToken wich encloses

two parameters: The number of none zeros

coefficients of a 4x4 block (TotalCoeff) and the

number of coefficients that the absolute values are

equal to one (TrailingOnes). The VLC look-up table

for CoeffToken is fixed by the mean of a parameter

N. Since neighbouring blocks in a frame have

similar number of none zero coefficients, for each

decoded 4x4 block, N is computed from the number

of none zero coefficients of the up and left

corresponding blocks. If up and left blocks of the

current block are available, N presents the average

of Nup and Nleft as given in equation (1):
Ν = (Nup+Νleft)/2 (1)

Nup and Nleft of a block are respectively the TotalCoeff

of the upper decoded block and the TotalCoeff of the left

decoded block. If only up or left neighbouring block is

available, N takes its value (Nup or Nleft).If no block is

available N takes zero.

1. Then a one bit parameter (Sign) is decoded to

inform about TrailingOnes signs. It is null if the

TrailingOnes sign is positive. Otherwise, it is equal

to one.

2. To reduce bit rate, only none zero coefficients are

decoded in CAVLD. The value of each non zero

coefficient, except of TrailingOnes, is decoded in

inverse zig-zag scan order as a Level. Then position

of each Level is indicated by the mean of two

following syntax elements: Total_zeros and

Run_before.

3. Total_zeros syntax element presents the total

number of zeros preceding non-zero coefficients.

The VLC tables selected to decode the Total_zeros

are decided according to the total number of the

none-zero coefficients in the current block.

4. Run_before syntax element is the number of zeros

preceding each non-zero coefficient. It is decoded

in reverse order. The VLC table for each

Run_before is chosen depending on the previous

number of zeros which was not decoded yet.

3.2. Inverse Prediction

Using header information decoded from the bitstream for

each macroblock, the decoder creates a predicted block that

is identical to the original resulted by the encoder

prediction. According to the predictor parameter, Intra or

Inter mode prediction may be selected. Inter coding uses

motion vectors to exploit temporal statistical dependencies

between different pictures. Intra coding uses various

prediction modes to exploit spatial statistical dependencies

in the same picture. Motion vectors and intra prediction

modes may be specified for a variety of block sizes in the

picture.

The predicted block is added to the residual block

generated by inverse transform and inverse quantization to

reconstruct a version of the original block.

3.3. Inverse Transform and Quantization

The result block of CAVLD is inverse quantized through

a quantization parameter (Qp) deducted from bitstream.

H.264 defines 52 quantization parameters in order to

manage the trade of between video quality and bitrate. Then,

an inverse Integer Cosines Tranfrom (ICT) is applied to

remove spatial correlation inside a block of samples.

The purpose of the transform stage is to convert residual

data into frequency domain. The inverse transform

reconstructs the block into temporal domain. The ICT is an

evolution of the Discrete Cosines Transform (DCT). Like

ICT, inverse ICT is also a 2D integer matrix multiplication.

It is applied on each 4x4 block output of the inverse

quantization. A non-integer matrix multiplication part of

transform is interned in the inverse quantization step to

keep an integer transform.

H.264/AVC defines also a supplementary Hadamard

transform for DC coefficients in 16x16 intra mode

prediction case.

3.4. De-blocking Filter

The de-blocking filter is applied to each decoded

macroblock to reduce blocking distortion. It is applied after

the inverse transform and the inverse quantization. It is the

last step to reconstruct and display the macroblock. In order

to improve the appearance of decoded video frames, the de-

blocking filter smoothes edges of blocks that transform and

quantization process can cause.

Filter is applied to vertical and horizontal edges of 4x4

blocks in a macroblock. First filtered boundaries are the 4

vertical one of luminance component in the following order:

a, b, c, d, as shown in Figure 2. Then 4 horizontal

boundaries of the luminance component proceed as per the

following order: e, f, g, h of Figure 2. Boundaries of

chrominance component are also filtered, starting by edge

“i” to edge “l”.

 Science Journal of Circuits, Systems and Signal Processing 2013, 2(1): 6-15 9

Figure 2. The order of Edge filtering in a macroblock.

According to the Boundaries Strength parameter (BS),

Standard or Strong filter is applied on adjacent samples of a

boundary. BS depends on the current Qp, the decoding

modes of neighbouring blocks and the gradient of image

samples across the boundary. Each filtering operation

affects up to three samples on each side of the boundary.

Figure 3 shows four samples on each side of vertical and

horizontal boundaries of adjacent blocks p (p0, p1, p2, p3)

and q (q0, q1, q2, q3). For more details, a previous

presented work[12] describes the de-blocking filter

development and implementation.

Figure 3. Horizontal and vertical boundaries of adjacent samples.

4. DSP Implementation

The TMS320C64x[13] is a fixed point DSP. It features

very long instruction word (VLIW) architecture. As shown

in Figure 4, C6416 Central Processing Unit is characterized

by two sets of functional units. Each set contains four units

which can execute parallel instructions. This architecture is

adapted to multi-function applications. The C6416 is a

1GHz cache-based architecture. The Level-one cache (L1)

is 16 Kbytes in size; it is only accessible by the CPU.

Figure 4. Architecture of TMS320C6416 core.

The Level-two cache (L2) is 1Mbytes in size, and it may

be configured as all memory mapped SRAM, all cache, or a

combination of the two.

Intrinsic instructions are allowed to program the DSP,

such as _abs, _dotp4, and _pack. Intrinsic instructions

combine the assembly programming language efficiency

and the simplicity of high abstraction programming

language level.

Preceding the proposed implementation, earlier works

were elaborated to implement an optimized H.264 baseline

encoder[14] on TMS320C6416 platform. Then, many

structural, algorithmic and architectural optimization

approaches presented in[15], were applied to attend real

time execution. Additional serious efforts were investigated

to develop the corresponding H.264 baseline decoder on the

same DSP platform[16]. First CAVLD implementation gave

the profile result of Figure 5. CAVLD block took 41% of

the total running time of the decoder[17]. It was the

decoder bottleneck. To improve the CAVLD complexity,

algorithmic and structural optimizations were elaborated.

Details of the two optimizations are given in the following

sections.

Figure 5. First Foreman decoder profile.

10 Taheni Damak et al.: Context adaptive variable length decoding optimization and implementation on tms320c64 dsp for h.264/avc

5. Proposed CAVLD Algorithm

CoeffToken look up tables are composed of 262

codewords[18]. This syntax element involves TotalCoeff

and TrailingOnes parameters. Many combinations of those

two parameters are possible: TotalCoeff can vary from 0 to

16 and TrailingOnes can take as value: 0, 1, 2 or 3. When

VLC table is fixed by N, the subsequent step is needed to

check the actual code in the selected table and to

determinate its corresponding value. As defined in H264

coding standard, CAVLD applies variable length decoding

method to code syntax elements. VLC technique gives an

advantage to reduce the bitstream length and to decrease

the bit rate, but at the same time, it represents a handicap to

the CAVLD time decoding. In fact, to find the value of the

actual codeword, all look up tables have to be checked for

different code length. Starting by the shorter possible, if

this codeword doesn’t correspond to any code in the table,

next possible length is applied to the codeword. This

standard method, shown in Figure 6, is not suitable for a

real time application since a computational time is needed

to decode a long codeword (the longest codeword for

CoeffToken is a 16 bits code).

Figure 6. Standard algorithm to decode CoeffToken.

To reduce CAVLD time execution, a new ZLP technique

which is detailed in Figure 7 was applied.

Figure 7. ZLP proposed algorithm to decode CoeffToken.

When examining CoeffToken VLC table, it is clear that

the number of zero at the beginning of each code makes the

difference between frequent and less frequent coefficients.

ZLP algorithm takes advantage from this propriety. It

makes use of a pre–analysis step to determinate the number

of zeros at the beginning of each code.

According to zero prefix number, the possible

corresponding code can be limited. New look up tables

(Zero_tab) are deduced from the VLC table. Instead of

VLC_0, VLC_1 and VLC_2 tables that H.264 standard

defines to determine CoeffToken, Zero_tab_0, Zero_tab_1

and Zero_tab_2 are the respectively used tables. Those

tables are given by table 1, table 2 and table 3.

 Science Journal of Circuits, Systems and Signal Processing 2013, 2(1): 6-15 11

Table 1. Zero_tab_0.

Zero

length
Code word length TotalCoeff TrailingOnes

3 5,4 1,2 0,1

4 5,4 3,5 2,3

5 7,6,5,4 2,3,4,6 0,1,2,3

6 7,6,5,4 3,4,5,7 0,1,2,3

7 7,6,5,4 4,5,6,8 0,1,2,3

8 7,6,5,4 5,6,7,9 0,1,2,3

9 15,11,8,14,10,13,9,12 6,7,8,7,8,8,9,10 0,0,0,1,1,2,2,3

10 15,11,14,10,13,9,12,8 9,10,9,10,10,11,11,12 0,0,1,1,2,2,3,3

11 15,11,14,10,13,9,12,8 11,12,11,12,12,13,13,14 0,0,1,1,2,2,3,3

12 15,11,14,10,13,9,12,8 13,14,14,15,14,15,15,16 0,0,1,1,2,2,3,3

13 7,4,6,5 15,16,16,16 0,0,1,2

Table 2. Zero_tab_1.

Zero

length
Code word length Total Coeff Trailing Ones

2 7,6,3,2,1,0 2,5,1,3,3,6 1,3,0,1,2,3

3 7,6,5,4 2,4,4,7 0,1,2,3

4 7,6,5,4 3,5,5,8 0,1,2,3

5 7,4,6,5 4,5,6,6 0,0,1,2

6 7,6,5,4 6,7,7,9 0,1,2,3

7 15,11,14,10,13,9,12,8 7,8,8,9,8,9,10,11 0,0,1,1,2,2,3,3

8 15,11,8,14,10,13,9,12 9,10,11,10,11,10,11,12 0,0,0,1,1,2,2,3

9 15,11,14,10,13,9,12,8 12,13,12,13,12,13,13,14 0,0,1,1,2,2,3,3

10 7,6,1,3,0,2 14,14,15,14,15,15 0,2,0,1,1,2

11 7,6,5,4 16,16,16,16 0,1,2,3

12 Taheni Damak et al.: Context adaptive variable length decoding optimization and implementation on tms320c64 dsp for h.264/avc

Table 3. Zero_tab_2.

Zero

length
Code word length TotalCoeff TrailingOnes

0 15,14,13,12,11,10,9,8 0,1,2,3,4,5,6,7 0,1,2,3,3,3,3,3

1 15,12,10,8,14,11,9,13 2,3,4,5,3,4,5,8 1,1,1,1,2,2,2,3

2 15,11,8,14,10,13,9,12 1,2,3,6,7,6,7,9 0,0,0,1,1,2,2,3

3 15,11,9,8,14,13,10,12 4,5,6,7,8,8,9,10 0,0,0,0,1,2,2,3

4 15,11,14,10,13,9,12,8 8,9,9,10,10,11,11,12 0,0,1,1,2,2,3,3

5 15,11,8,14,10,13,9,12 10,11,12,11,12,12,13,13 0,0,0,1,1,2,2,3

6 5,1,4,0,3,2 13,14,14,15,14,14 0,0,1,1,2,3

7 5,4,7,6 15,16,15,15 0,1,2,3

The new maximum code length is 4 instead of 16 in the

original tables. Zero_tab is partitioned into 11 sub-tables

organized as follows: codes that have similar prefix number

of zeros are grouped in the same sub-table Sub_Zero_tab.

Most codes in the Sub table have the same length.

Consequently, when the zero prefix is fixed, the remaining

bits (suffix) became a fix length code and resolve the

CAVLD decoding problem of variable length code. Hence,

only one codeword length is cheked in tables.

Furthermore, in each Sub_Zero_tab, only 8 CoeffToken

values are possible. Consequently, a CoffToken decoding

process needs a maximum of 8 memory accesses. For

standard algorithm, since 17 NumCoeff and 4 TrailingOnes

solutions are possible in a VLC table, 68 memory accesses

can take place to decode one CoeffToken. For example, to

decode CoeffToken (NumCoeff = 8, TrailingOnes = 3) in

VLC1 the following code has to be cheeked: “0000000101”.

To find a result using the standard method, 59 memory

accesses are necessery (8+3x17). The same result can be

found in only 3 memory accesses to Zero_tab. The ZLP

algorithm fixes the codeword length from the beginning to

avoid multiple bitstream tests. It reduces also the memory

access by replacing the VLC tables by an adaptive Zero

tables.

6. Proposed Memory Design

In addition to the intensive complexity of the CAVLD

algorithm, the use of look up tables intensified the

appropriate time execution. In fact, memory access not only

causes additional computations for generating memory

addresses but also limits the DSP speed. The primitive

solution was to avoid loading tables for each decoding

parameter in order to reduce memory access. Therefore, the

internal memory (L2) was configured as 256 Kbytes cache

and 754 Kbytes ISRAM. Look up tables were then

designed as persistent memories which alleviated the data

transfer rate.

The memory design optimization was also applied to the

first decoded VLC symbol in CAVLD, the CoeffToken. To

decode this syntax element, one of the three look up tables

is previously fixed: the adaptive VLC table (or Zero_tab) is

selected by using N parameter computed from the

CoeffToken value for the previously decoded neighbouring

blocks. As mentioned in equation 1, Nup and Nleft of a

block are respectively TotalCoeff of the earlier decoded

block and TotalCoeff of the block in the same position at

previously decoded row of block in frame. Consequently,

TotalCoeff of each block must be stored to be used later as

neighbours for other blocks. With a CIF (352x288)

sequence, (22 x 18 x16) TotalCoeff values should be stored

for each frame, since the frame contents (22x18x16) blocks.

Hence, an overpass of DSP internal memory can be

produced. To optimize memory size needed to calculate N,

two different cases of block neighbouring are emphasized

as follows and as illustrated in Figure 8 and figure 9:

Figure 8. First case : neighbouring block are in the same macroblock.

 Science Journal of Circuits, Systems and Signal Processing 2013, 2(1): 6-15 13

Figure 9. Second case : neighbouring block are from a different

macroblocks.

� If neighbouring blocks (Up and Left) are in the

same macroblock, the case of blocks 5, 6, 7, 9, 10,

11, 13, 14 and 15 as shown in figure 8.There is no

need to use supplementary buffer since TotalCoeff

of all blocks are already stored for the quantization.

� If neighbouring blocks (Up and Left) are from

different macroblocks, the case of figure 9, such

blocks 0, 1, 2 and 3 in figure 8. Corresponding up

block is localised in the upper macroblock. Also for

blocks 0, 4, 8 and 12, left block is taken from the

previously decoded one, the left one. Therefore, two

buffers are reserved for luminance coefficients in

this case to save up and left neighbours. The first

one, Numcoef_tab_up, is a (22x4) bytes buffer size.

After each macroblock decoding, TotalCoeff of

blocks 12, 13, 14 and 15 are stored in the

corresponding places in Numcoef_tab_up buffer in

order to be used as up neighbours for the

macroblock at the same position in the following

line of macroblock. The second table is called

Numcoef_tab_left. It saves TotalCoef of the blocks

3, 7, 11 and 15 of each macroblock in order to be

used as left neighbours for the next macroblock. For

Chrominance components, two tables are reserved.

Each table sizes 44 values. For Left neighbours, a

buffer of two values for each chrominance is

allocated.

7. Results

H.264 LETI baseline decoder was first implemented with

standard CAVLD method and then with ZLP algorithm, on

a TMS320C6416 DSP. Table 4 compares CAVLD

execution time between the two implementations,

benchmarked with popularly known CIF sequences such as

Foreman, Mobile, Paris and Akiyo which are respectively

encoded at 384, 512, 128, 1024 Kbps streams. ZLP effects

appear clearly on the CAVLD execution time. In fact, more

than 20% of CAVLD execution time is reduced for the

worst case of Forman bitstream. For Mobile bitstream, the

gain could attain 60%.

Table 4. ZLP effect on CAVLD execution time.

bitstream

Sequences

Standard

CAVLD(%)

CAVLD using

ZLP(%)

CAVLD

gain(%)

Foreman 41 21 20

Paris 37.83 27.43 42.3

Akiyo 25 19.44 30

Mobile 68.56 46.2 60

Throughput of CAVLD in term of mega macroblock per

second for Forman bitstream was 0.55 MegaMB/s with the

classic CAVLD algorithm. It became 1.28 MegaMB/s with

ZLP algorithm.

Consequently, ZLP algorithm affected the overall

decoder time execution. Table 5 lists the decoding

throughputs in terms of frame per second for different test

sequences, on TMS320C6416 DSP. For all test bitstreams,

decoder speed presents an apparent amelioration with the

ZLP algorithm.

Table 5. Decoder performances.

bitstream

Sequences

Pre CAVLD

optimization

Post CAVLD

optimization
Speed gain(%)

Foreman 36 fps 44 fps 18 %

Paris 37 fps 47,5 fps 22 %

Akiyo 45 fps 50 fps 10 %

Mobile 20 fps 34.7 fps 42 %

In addition to the speed results amelioration, the decoder

blocks partition becomes equilibrated due to the ZLP

algorithm. In fact, the comparison of profiles illustrated in

Figure 5 and in Figure 10 for Foreman test sequence at 384

Kbps, demonstrates that the transform and quantization

modules consume most of the decoder time execution

instead of CAVLD module. Based on[19] decoder profile,

proposed decoder with ZLP method gives more balanced

profile results.

Figure 10. Foreman Decoder profile with ZLP algorithm.

14 Taheni Damak et al.: Context adaptive variable length decoding optimization and implementation on tms320c64 dsp for h.264/avc

Table 6 summarizes previous works related to CAVLD

optimization and implementation where different

architectures are revealing.

Design presented in[20] is a full software

implementation. Therefore performance could be compared

to the proposed implementation on DSP TMS320C6416.

Architecture developed in[20] was applied on a CPU-

Pentium4 frequented at 3.6 Ghz and then on a CPU-Dual

Zeon with 3.06 Ghz. The first implementation gave a

throughput of 0.61 MegaMB/s which wass less than the

second one (3.44 MegaMB/s). This result is obvious since

it was implemented on a dual processor platform.

Table 6. Comparison with State of art.

 technology Cycles/MB Frequency megaMB/second

[4] 0.13 µm 141 250 Mhz 1.77

[5] 0.18 µm 294 175 Mhz 0.59

[6] 0.18 µm 126 30.8 Mhz 0.24

[7] 90 nm 127.13 125 Mhz 0.98

[8] Altera StratixIII FPGA 412.5 74.25Mhz 0.18

[9] 0.18µm 141 160 Mhz 1.13

[20]

CPU-Pentium4 5.9x10^3 3.6 Ghz 0.61

CPU-Dual Zeon 889 3.06 Ghz 3.44

Proposed DSP TMS320C6416 781 1 Ghz 1.28

The proposed implementation in a simple core platform

led to a throughput of 1Ghz. Therefore the number of

macroblocks per second is less than those in the

implementations proposed in[20] using dual core platform.

However the number of cycles per macroblock of the

proposed work is better than those in both implementations

of[20]. This parameter illustrates the impact of the

algorithm optimization. In fact, if the proposed CAVLD

algorithm was implemented on a higher frequency platform,

its throughput would clearly increase.

As mentioned in previous works section, most of

CAVLD implementations are based on hardware

architectures, as references[4],[5],[6],[7],[8]and[9].

Performance comparison is not possible since the huge

architectural difference. However, throughput results could

be taken on consideration to compare the final CAVLD

results. Only the algorithm in reference[4] is speeder than

the proposed implementation in term of macroblock per

second.

This can be explained by the fact that architecture in[4]

optimized each syntax elements. However, the proposed

design optimizes only CoeffToken syntax element.

Reference[6] optimized CoeffToken syntax element.

Compared to the proposed architecture, it cannot decode

more macroblock per second.

For reference[7],[8] and[9], they don’t assure better

throughput compared than the proposed architecture.

8. Conclusion

In this paper, a ZLP algorithm and an optimized memory

design is suggested to ameliorate CAVLD performance and

LETI decoder speed. This new method of decoding

CoeffToken parameter reduced CAVLD complexity and

limited the memory access that present the bottleneck of

decoder. Since CAVLD is a variable length coding

technique, multiple accesses to look up tables are necessary

until founding corresponding codeword. ZLP method

suggested a pre-analyses step to fix code length. The

advantages of DSP architecture were also exploited to

design efficiently the internal buffers in order to reduce

memory accesses. Finally throughput of CAVLD was 1.28

MegaMB. Thus, decoder speed was improved to be 44 fps

and to attend real time. As perspectives, other decoder

blocks can be optimized using optimal algorithm to attain

real time decoder with SD sequences.

References

[1] Joint Video Team (JVT) of ITU-T VCEG and ISO/IEC
MPEG, “Draft ITU-T Recommendation and Final Draft
International Standard of Joint Video Specification”, ITU-T
Rec. H.264 and ISO/IEC 14496-10 AVC, May 2003.

[2] Yong Ho Moon, Gyu Yeong Kim, and Jae Ho Kim, “An
Efficient Decoding of CAVLC in H.264/AVC Video Coding

 Science Journal of Circuits, Systems and Signal Processing 2013, 2(1): 6-15 15

Standard”, Transactions on Consumer Electronics, Volume:
51 , Issue: 3, pp 933 – 938, 2005.

[3] Jari Nikara, Stamatis Vassiliadis, Jarmo Takala, Mihai Sima,
and Petri Liuha, “Parallel Multiple-Symbol Variable-Length
Decoding”. International Conference on Computer Design.
Freiburg, Germany. ICCD 2002.

[4] MythriAlle,JBiswas,S.K.Nandy “High Performance VLSI
Architecture Design for H.264 CAVLC Decoder”,
Application-Specific Systems, Architecture and Processors.
Colorado, USA. ASAP 2006.

[5] Hsiu-Cheng Chang, Chien-Chang Lin, and Jiun-In Guo, “A
Novel Low-Cost High-Performance VLSI Architecture for
MPEG-4 AVC/H.264 CAVLC Decoding”, Circuits and
Systems, 2005. ISCAS 2005. IEEE International
Symposium on, volume 6, pp 6110 - 6113, May 2005.

[6] Myungseok Oh, Wonjae Lee, Yunho Jung, and Jaeseok Kim,
“Design of High-Speed CAVLC Decoder Architecture for
H.264/AVC”. ETRI 2008 Journal, Volume 30, Number 1,
February 2008.

[7] Yuan-Hsin Liao, Gwo-Long Li, and Tian-Sheuan Chang, “A
385MHz 13.54K Gates Delay Balanced Two-Level CAVLC
Decoder for Ultra HD H.264/AVC Video ”, IEEE
transactions on circuits and systems for video technology,
volume 22, no. 11, pp 1604-1610. , November 2012.

[8] Tony Gladvin George, Dr.N.Malmurugan, “A New Fast
Architecture for HD H.264 CAVLC multi-syn Decoder and
its FPGA Implementation”. International Conference on
Computational Intelligence and Multimedia Applications.
Sivakasi, India. ICCIMA 2007.

[9] Tsung-Han Tsai, Member, IEEE, Te-Lung Fang, and Yu-Nan
Pan, “A Novel Design of CAVLC Decoder with Low Power
and High Throughput Considerations”, IEEE transactions on
circuits and systems for video technology, volume 21, no. 3,
pp 311-319, March 2011.

[10] Shau-Yin Tseng, Tien-Wei Hsieh, “A Pattern-Search Method
for H.264/AVC CAVLC decoding”, Multimedia and Expo,
2006 IEEE International Conference on, pp 1073 – 1076,
Jully 2006.

[11] Iain E.G. Richardson, “H.264 and MPEG-4 Video
Compression – video coding for next generation
multimedia”. John Wiley & Sons, pp.187-207. 2003.

[12] Taheni Damak, Imen Werda, Sébastien Bilavarn, Nouri
Masmoudi, “Fast prototyping H.264 deblocking filter using
ESL tools”, 8th International Multi-Conference on Systems,
Signals & Devices. Tunisia. SSD 2011.

[13] Texas Instuments, 2001.TMS320 C¬64x Technital overview.
spru395b, Janvier 2001.

[14] I. Werda, H. Chaouch, A. Samet, M.A. Ben Ayed and N.
Masmoudi, “Optimal DSP-Based Motion Estimation Tools
Implementation For H.264/AVC Baseline Encoder”.
International Journal of Computer Science and Network
Security, IJCSNS, VOL.7 No.5, May 2007.

[15] T.Damak, I.Werda, A.Samet, N.Masmoudi, “DSP CAVLC
implementation and Optimization for H.264/AVC baseline
encoder”, IEEE International Conference on Electronics,
Circuits and Systems. Malte. ICESC, 2008.

[16] Werda. I, Dammak. T, Grandpierre. T, Ben Ayed MA,
Masmoudi N, “ Real-time H.264/AVC baseline decoder
implementation on TMS320C6416”, Springer-Verlag 2010,
J Real-Time Image Processing, Volume 7, Issue 4, pp 215-
232.

[17] Damak T., Werda I., Ben Ayad M-A, Masmoudi N, “An
Efficient Zero Length Prefix Algorithm for H.264 CAVLC
Decoder on TMS320C64”, International Conference on
Design & Technology of Integrated Systems in Nanoscale
Era (DTIS). Tunisia, 2010.

[18] Yanmei Qu, Yun He and Shunliang Mei, “A Novel Cost-
Effective and Programmable VLSI Architecture of CAVLC
Decoder for H.264/AVC”. Journal of Signal Processing
Systems, Springer Science + Business Media, LLC. Volume
50, pp 41- 51 , 2008.

[19] Klaus Schoffmann, Markus Fauster, Oliver Lampl, and
Laszlo Bosz ormenyi , “ An Evaluation of Parallelization
Concepts for Baseline-Profile Compliant H.264/AVC
Decoders”. LNCS 4641, pp. 782–791, 2007. Springer-Verlag
Berlin Heidelberg. 2007.

[20] Sangyoon Park, Kyeongyuk Min, Jongwha Chong, “The
New Memory-Efficient Hardware Architecture of CAVLD
in H.264/AVC for Mobile System”, Communications and
Information Technology, 2009. 9th International Symposium
on, pp 204-207. ISCIT 2009.

