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Abstract: Context Adaptive Variable Length Decoding (CAVLD) module takes the lion chair of the H.264/AVC video 

decoder time due to its complexity. In order to ameliorate decoding speed, a new CAVLD algorithm and an efficient 

internal memory design were implemented on Digital Signal Processor (DSP). The proposed CAVLD algorithm, Zero 

Length Prefix (ZLP), was designed to optimize the first syntax element: the CoeffToken. ZLP implementation reduces 

CAVLD execution time to 21% instead of 41% from decoding time with a throughput of 1.28 MegaMB/s. In addition, the 

decoder speed was increased from 36 frames per second (fps) to 44 fps for a CIF compressed bitstream. 
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1. Introduction 

H.264/AVC[1] is an advanced digital video codec 

standard that can deliver high resolution video even at low 

bit rates. To provide high throughput and high 

compression ratio context-based, an adaptive variable 

length decoding (CAVLD) is adopted as an entropy 

decoding method in H.264/AVC video compression 

standard for baseline profile. Variable length coding (VLC) 

is a widely technique used in many image and video 

compression applications. The main idea of VLC is to 

reduce data redundancy and to minimize the average 

codeword length by exploiting data statistics. Shorter 

codewords are assigned to frequently occurred data while 

longer codewords are assigned to less occurred symbols.  

In the CAVLD decoder, look-up tables are used to 

decode syntax element. Typically decoding process, based 

on look-up table, requires multiple memory accesses until 

the desired codeword is found. It is well known that 

memory access induces a higher power consumption in 

hardware platform, and reduces the speed in software 

platform[2]. In addition, CAVLD process uses variable-

length technique. Consequently there is no boundary 

information for detecting the end or the beginning of the 

codeword[3]. This characteristic substantially complicates 

the decoder design and decreases its performance. Thus 

efficient CAVLD algorithm and implementation 

optimizations are necessary to improve decoder speed. 

In this paper, an efficient CAVLD decoding algorithm 

based on TMS320C6416 DSP is suggested. The remaining 

of this paper is organized as follows: In section 2, state of 

art is presented. Section 3 describes briefly the decoder 

processing and especially the CAVLD module. Section 4 

details DSP platform and implementation. The proposed 

ZLP CoeffToken decoding algorithm steps are explained 

in section 5. The memory design of CoeffToken 

parameters is proposed in section 6, followed by 

performance results and a comparative study with related 

works in section 7. Finally, conclusion and perspectives 

are given in section 8. 

2. Previous Works 

Most CAVLD implementations were implemented on 

hardware architectures because of its complexity and the 

repetitive cheeking of look up tables. Reference[4] is a 

typical example of a hardware implementation. An 

optimized architecture for CAVLD on 0.13 µm CMOS 

technology including CoeffToken decoder, Level decoder, 
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Total_zeros decoder and Run_before decoder was detailed. 

In[5] also, a description of hardware architecture of the 

five syntax elements of CAVLD on 0.18 µm CMOS 

technology was proposed. The design detailed in[5] 

exploits five different techniques in order to reduce both 

hardware cost and power consumption. 

In literature, many other works focused on the 

algorithmic approaches that optimized methods to decode 

one or several syntax elements, such as[6],[7],[8] and[9]. 

In[6], new look up tables are introduced to decode 

TotalCoeff and TrailingOnes in one codeword of 19 bits 

instead of 16 bits. The Cofftoken step determines also the 

following skip steps, if they exist, to reduce the number of 

decoding steps. In addition the design of[6] reduced the 

number of cycles for computing the codeword length of 

the current decoding block. This parameter is used to 

determine the next input bitstream (valid bits). 

Both[7] and[8] optimize only Level syntax. Reference[7] 

suggested a very large-scale integrated implementation 

under 90-nm CMOS technology. Since decoding the Level 

syntax element depends on the previous one, pipeline 

structure cannot be exploited. Moreover, the inter-

codeword dependency and the succession of the arithmetic 

operations to decode a Level lead to an unavoidably long 

critical path. Proposed solution in[7] broke the inter-Level 

dependency and the inter-codeword dependency by a delay 

balanced two-Level architecture. Reference[8] presented a 

pipelined architecture of CAVLD on FPGA. Level module 

was optimized by multi syntax decoding method that 

decodes two Levels in parallel. The pipelining possibilities 

were also explored between syntax elements modules. In 

addition, the syntax element processing could begin at the 

same time with reading and fixing the length of the next 

syntax element. 

Reference[9] proposes two methods to improve the 

throughput of CAVLC decoder. The first one was called 

Multiple Level Decoding (MLD). It could decode two 

Levels in one cycle on most situations. The second one 

was nonzero skipping for Run_before decoding (NZS). It 

is able to detect coefficients whose Run_befores are null. 

These Run_befores were decoded in the same clock cycle. 

The architecture was also proposed on very large scale 

integration circuits. 

Other optimisation approach is based on statistic and 

analysed method. Proposed algorithm in[10] analyzes the 

correlation between bit patterns and 4x4 (or 2x2) blocks 

and has an idea of a pattern-search method before CAVLC 

decoding. If a pattern is matched in the proposed look-up 

table, the standard CAVLD procedure is skipped and the 

block is directly reconstructed. However, if there is no any 

pattern matched in the table, CAVLD processing is used to 

reconstruct the block. This method was applied on a 

software implementation on ARM-based embedded 

system. 

When analyzing these previous works, it is clear that all 

implementations were on hardware platform, expected 

of[10] that was on standard processor. In fact, ASIC 

solutions are not flexible. It can be changed to improve or 

to update architecture. However, software implementation 

on specific processor, such as DSP, can be often updated. 

In addition DSP architecture is able to attend real time 

execution. 

Furthermore, all the proposed algorithms optimized 

syntax element processing and not the reading’s technique 

data from bitstream. The bottleneck of CAVLD is the 

multiple access memory to found corresponding codword 

from bitstream. The optimization of this step is primordial 

to speed up CAVLD processing. 

3. H.264 Decoding Process 

The H.264/AVC decoder receives a compressed 

bitstream as input for the entropy decoding module that 

includes CAVLD and Exp-Golomb. The prime focus in 

this work is CAVLD, witch is highlighted in Figure 1. 

Outputs data of CAVLD are then reordered and will be 

inverse quantized and inverse transformed. Resulting 

block is added to the previously predicted one in order to 

reconstruct frame blocks after a de-blocking filter process. 

Two kinds of prediction can be used in H.264: intra 

prediction and inter prediction. 

 

Figure 1. H.264/AVC decoder block diagram.

3.1. Entropy Decoding Process The H.264 entropy decoding uses two ways to 
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reconstruct compressed value in bitstream. According to the 

type of parameter, CAVLD or Exp-Golomb is used. The 

Exp-Golomb decoding is a special VLC Huffman code 

based on a regular construction. It is used to decode 

macroblock header information such as prediction mode, 

motion vector difference and macroblock type. 

For residual coefficients, CAVLD is the appropriate used 

technique. It decodes bitstream symbols to provide a zig-

zag ordered 4x4 blocks of transformed coefficients. 

CAVLD is also a special VLC Huffman method but it is 

based on look-up tables. 

According to the previously decoded data, the CAVLD 

module can adaptively choose one of several VLC tables, 

and then decodes the current input codeword efficiently by 

using the five syntax elements for each 4x4 block[11] as 

follows: 

1. First syntax element is CoeffToken wich encloses 

two parameters: The number of none zeros 

coefficients of a 4x4 block (TotalCoeff) and the 

number of coefficients that the absolute values are 

equal to one (TrailingOnes). The VLC look-up table 

for CoeffToken is fixed by the mean of a parameter 

N. Since neighbouring blocks in a frame have 

similar number of none zero coefficients, for each 

decoded 4x4 block, N is computed from the number 

of none zero coefficients of the up and left 

corresponding blocks. If up and left blocks of the 

current block are available, N presents the average 

of Nup and Nleft as given in equation (1): 
Ν = ( Nup+Νleft)/2                     (1) 

Nup and Nleft of a block are respectively the TotalCoeff 

of the upper decoded block and the TotalCoeff of the left 

decoded block. If only up or left neighbouring block is 

available, N takes its value (Nup or Nleft).If no block is 

available N takes zero. 

1. Then a one bit parameter (Sign) is decoded to 

inform about TrailingOnes signs. It is null if the 

TrailingOnes sign is positive. Otherwise, it is equal 

to one. 

2. To reduce bit rate, only none zero coefficients are 

decoded in CAVLD. The value of each non zero 

coefficient, except of TrailingOnes, is decoded in 

inverse zig-zag scan order as a Level. Then position 

of each Level is indicated by the mean of two 

following syntax elements: Total_zeros and 

Run_before. 

3. Total_zeros syntax element presents the total 

number of zeros preceding non-zero coefficients. 

The VLC tables selected to decode the Total_zeros 

are decided according to the total number of the 

none-zero coefficients in the current block. 

4. Run_before syntax element is the number of zeros 

preceding each non-zero coefficient. It is decoded 

in reverse order. The VLC table for each 

Run_before is chosen depending on the previous 

number of zeros which was not decoded yet. 

3.2. Inverse Prediction 

Using header information decoded from the bitstream for 

each macroblock, the decoder creates a predicted block that 

is identical to the original resulted by the encoder 

prediction. According to the predictor parameter, Intra or 

Inter mode prediction may be selected. Inter coding uses 

motion vectors to exploit temporal statistical dependencies 

between different pictures. Intra coding uses various 

prediction modes to exploit spatial statistical dependencies 

in the same picture. Motion vectors and intra prediction 

modes may be specified for a variety of block sizes in the 

picture. 

The predicted block is added to the residual block 

generated by inverse transform and inverse quantization to 

reconstruct a version of the original block. 

3.3. Inverse Transform and Quantization 

The result block of CAVLD is inverse quantized through 

a quantization parameter (Qp) deducted from bitstream. 

H.264 defines 52 quantization parameters in order to 

manage the trade of between video quality and bitrate. Then, 

an inverse Integer Cosines Tranfrom (ICT) is applied to 

remove spatial correlation inside a block of samples. 

The purpose of the transform stage is to convert residual 

data into frequency domain. The inverse transform 

reconstructs the block into temporal domain. The ICT is an 

evolution of the Discrete Cosines Transform (DCT). Like 

ICT, inverse ICT is also a 2D integer matrix multiplication. 

It is applied on each 4x4 block output of the inverse 

quantization. A non-integer matrix multiplication part of 

transform is interned in the inverse quantization step to 

keep an integer transform. 

H.264/AVC defines also a supplementary Hadamard 

transform for DC coefficients in 16x16 intra mode 

prediction case. 

3.4. De-blocking Filter 

The de-blocking filter is applied to each decoded 

macroblock to reduce blocking distortion. It is applied after 

the inverse transform and the inverse quantization. It is the 

last step to reconstruct and display the macroblock. In order 

to improve the appearance of decoded video frames, the de-

blocking filter smoothes edges of blocks that transform and 

quantization process can cause. 

Filter is applied to vertical and horizontal edges of 4x4 

blocks in a macroblock. First filtered boundaries are the 4 

vertical one of luminance component in the following order: 

a, b, c, d, as shown in Figure 2. Then 4 horizontal 

boundaries of the luminance component proceed as per the 

following order: e, f, g, h of Figure 2. Boundaries of 

chrominance component are also filtered, starting by edge 

“i” to edge “l”. 
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Figure 2. The order of Edge filtering in a macroblock. 

According to the Boundaries Strength parameter (BS), 

Standard or Strong filter is applied on adjacent samples of a 

boundary. BS depends on the current Qp, the decoding 

modes of neighbouring blocks and the gradient of image 

samples across the boundary. Each filtering operation 

affects up to three samples on each side of the boundary. 

Figure 3 shows four samples on each side of vertical and 

horizontal boundaries of adjacent blocks p (p0, p1, p2, p3) 

and q (q0, q1, q2, q3). For more details, a previous 

presented work[12] describes the de-blocking filter 

development and implementation. 

 

Figure 3. Horizontal and vertical boundaries of adjacent samples. 

4. DSP Implementation 

The TMS320C64x[13] is a fixed point DSP. It features 

very long instruction word (VLIW) architecture. As shown 

in Figure 4, C6416 Central Processing Unit is characterized 

by two sets of functional units. Each set contains four units 

which can execute parallel instructions. This architecture is 

adapted to multi-function applications. The C6416 is a 

1GHz cache-based architecture. The Level-one cache (L1) 

is 16 Kbytes in size; it is only accessible by the CPU. 

 

Figure 4. Architecture of TMS320C6416 core. 

The Level-two cache (L2) is 1Mbytes in size, and it may 

be configured as all memory mapped SRAM, all cache, or a 

combination of the two. 

Intrinsic instructions are allowed to program the DSP, 

such as _abs, _dotp4, and _pack. Intrinsic instructions 

combine the assembly programming language efficiency 

and the simplicity of high abstraction programming 

language level. 

Preceding the proposed implementation, earlier works 

were elaborated to implement an optimized H.264 baseline 

encoder[14] on TMS320C6416 platform. Then, many 

structural, algorithmic and architectural optimization 

approaches presented in[15], were applied to attend real 

time execution. Additional serious efforts were investigated 

to develop the corresponding H.264 baseline decoder on the 

same DSP platform[16]. First CAVLD implementation gave 

the profile result of Figure 5. CAVLD block took 41% of 

the total running time of the decoder[17]. It was the 

decoder bottleneck. To improve the CAVLD complexity, 

algorithmic and structural optimizations were elaborated. 

Details of the two optimizations are given in the following 

sections. 

 

Figure 5. First Foreman decoder profile. 
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5. Proposed CAVLD Algorithm 

CoeffToken look up tables are composed of 262 

codewords[18]. This syntax element involves TotalCoeff 

and TrailingOnes parameters. Many combinations of those 

two parameters are possible: TotalCoeff can vary from 0 to 

16 and TrailingOnes can take as value: 0, 1, 2 or 3. When 

VLC table is fixed by N, the subsequent step is needed to 

check the actual code in the selected table and to 

determinate its corresponding value. As defined in H264 

coding standard, CAVLD applies variable length decoding 

method to code syntax elements. VLC technique gives an 

advantage to reduce the bitstream length and to decrease 

the bit rate, but at the same time, it represents a handicap to 

the CAVLD time decoding. In fact, to find the value of the 

actual codeword, all look up tables have to be checked for 

different code length. Starting by the shorter possible, if 

this codeword doesn’t correspond to any code in the table, 

next possible length is applied to the codeword. This 

standard method, shown in Figure 6, is not suitable for a 

real time application since a computational time is needed 

to decode a long codeword (the longest codeword for 

CoeffToken is a 16 bits code). 

 

Figure 6. Standard algorithm to decode CoeffToken. 

To reduce CAVLD time execution, a new ZLP technique 

which is detailed in Figure 7 was applied. 

 

Figure 7. ZLP proposed algorithm to decode CoeffToken. 

When examining CoeffToken VLC table, it is clear that 

the number of zero at the beginning of each code makes the 

difference between frequent and less frequent coefficients. 

ZLP algorithm takes advantage from this propriety. It 

makes use of a pre–analysis step to determinate the number 

of zeros at the beginning of each code. 

According to zero prefix number, the possible 

corresponding code can be limited. New look up tables 

(Zero_tab) are deduced from the VLC table. Instead of 

VLC_0, VLC_1 and VLC_2 tables that H.264 standard 

defines to determine CoeffToken, Zero_tab_0, Zero_tab_1 

and Zero_tab_2 are the respectively used tables. Those 

tables are given by table 1, table 2 and table 3. 
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Table 1. Zero_tab_0. 

Zero 

length 
Code word length TotalCoeff TrailingOnes 

3 5,4 1,2 0,1 

4 5,4 3,5 2,3 

5 7,6,5,4 2,3,4,6 0,1,2,3 

6 7,6,5,4 3,4,5,7 0,1,2,3 

7 7,6,5,4 4,5,6,8 0,1,2,3 

8 7,6,5,4 5,6,7,9 0,1,2,3 

9 15,11,8,14,10,13,9,12 6,7,8,7,8,8,9,10 0,0,0,1,1,2,2,3 

10 15,11,14,10,13,9,12,8 9,10,9,10,10,11,11,12 0,0,1,1,2,2,3,3 

11 15,11,14,10,13,9,12,8 11,12,11,12,12,13,13,14 0,0,1,1,2,2,3,3 

12 15,11,14,10,13,9,12,8 13,14,14,15,14,15,15,16 0,0,1,1,2,2,3,3 

13 7,4,6,5 15,16,16,16 0,0,1,2 

 

 

 

Table 2. Zero_tab_1. 

Zero 

length 
Code word length Total Coeff Trailing Ones 

2 7,6,3,2,1,0 2,5,1,3,3,6 1,3,0,1,2,3 

3 7,6,5,4 2,4,4,7 0,1,2,3 

4 7,6,5,4 3,5,5,8 0,1,2,3 

5 7,4,6,5 4,5,6,6 0,0,1,2 

6 7,6,5,4 6,7,7,9 0,1,2,3 

7 15,11,14,10,13,9,12,8 7,8,8,9,8,9,10,11 0,0,1,1,2,2,3,3 

8 15,11,8,14,10,13,9,12 9,10,11,10,11,10,11,12 0,0,0,1,1,2,2,3 

9 15,11,14,10,13,9,12,8 12,13,12,13,12,13,13,14 0,0,1,1,2,2,3,3 

10 7,6,1,3,0,2 14,14,15,14,15,15 0,2,0,1,1,2 

11 7,6,5,4 16,16,16,16 0,1,2,3 

 

 



12 Taheni Damak et al.: Context adaptive variable length decoding optimization and implementation on tms320c64 dsp for h.264/avc 
 

 

 

Table 3. Zero_tab_2. 

Zero 

length 
Code word length TotalCoeff TrailingOnes 

0 15,14,13,12,11,10,9,8 0,1,2,3,4,5,6,7 0,1,2,3,3,3,3,3 

1 15,12,10,8,14,11,9,13 2,3,4,5,3,4,5,8 1,1,1,1,2,2,2,3 

2 15,11,8,14,10,13,9,12 1,2,3,6,7,6,7,9 0,0,0,1,1,2,2,3 

3 15,11,9,8,14,13,10,12 4,5,6,7,8,8,9,10 0,0,0,0,1,2,2,3 

4 15,11,14,10,13,9,12,8 8,9,9,10,10,11,11,12 0,0,1,1,2,2,3,3 

5 15,11,8,14,10,13,9,12 10,11,12,11,12,12,13,13 0,0,0,1,1,2,2,3 

6 5,1,4,0,3,2 13,14,14,15,14,14 0,0,1,1,2,3 

7 5,4,7,6 15,16,15,15 0,1,2,3 

    

The new maximum code length is 4 instead of 16 in the 

original tables. Zero_tab is partitioned into 11 sub-tables 

organized as follows: codes that have similar prefix number 

of zeros are grouped in the same sub-table Sub_Zero_tab. 

Most codes in the Sub table have the same length. 

Consequently, when the zero prefix is fixed, the remaining 

bits (suffix) became a fix length code and resolve the 

CAVLD decoding problem of variable length code. Hence, 

only one codeword length is cheked in tables. 

Furthermore, in each Sub_Zero_tab, only 8 CoeffToken 

values are possible. Consequently, a CoffToken decoding 

process needs a maximum of 8 memory accesses. For 

standard algorithm, since 17 NumCoeff and 4 TrailingOnes 

solutions are possible in a VLC table, 68 memory accesses 

can take place to decode one CoeffToken. For example, to 

decode CoeffToken (NumCoeff = 8, TrailingOnes = 3) in 

VLC1 the following code has to be cheeked: “0000000101”. 

To find a result using the standard method, 59 memory 

accesses are necessery (8+3x17). The same result can be 

found in only 3 memory accesses to Zero_tab. The ZLP 

algorithm fixes the codeword length from the beginning to 

avoid multiple bitstream tests. It reduces also the memory 

access by replacing the VLC tables by an adaptive Zero 

tables. 

6. Proposed Memory Design 

In addition to the intensive complexity of the CAVLD 

algorithm, the use of look up tables intensified the 

appropriate time execution. In fact, memory access not only 

causes additional computations for generating memory 

addresses but also limits the DSP speed. The primitive 

solution was to avoid loading tables for each decoding 

parameter in order to reduce memory access. Therefore, the 

internal memory (L2) was configured as 256 Kbytes cache 

and 754 Kbytes ISRAM. Look up tables were then 

designed as persistent memories which alleviated the data 

transfer rate. 

The memory design optimization was also applied to the 

first decoded VLC symbol in CAVLD, the CoeffToken. To 

decode this syntax element, one of the three look up tables 

is previously fixed: the adaptive VLC table (or Zero_tab ) is 

selected by using N parameter computed from the 

CoeffToken value for the previously decoded neighbouring 

blocks. As mentioned in equation 1, Nup and Nleft of a 

block are respectively TotalCoeff of the earlier decoded 

block and TotalCoeff of the block in the same position at 

previously decoded row of block in frame. Consequently, 

TotalCoeff of each block must be stored to be used later as 

neighbours for other blocks. With a CIF (352x288) 

sequence, (22 x 18 x16) TotalCoeff values should be stored 

for each frame, since the frame contents (22x18x16) blocks. 

Hence, an overpass of DSP internal memory can be 

produced. To optimize memory size needed to calculate N, 

two different cases of block neighbouring are emphasized 

as follows and as illustrated in Figure 8 and figure 9: 

 

Figure 8. First case : neighbouring block are in the same macroblock. 
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Figure 9. Second case : neighbouring block are from a different 

macroblocks. 

� If neighbouring blocks (Up and Left) are in the 

same macroblock, the case of blocks 5, 6, 7, 9, 10, 

11, 13, 14 and 15 as shown in figure 8.There is no 

need to use supplementary buffer since TotalCoeff 

of all blocks are already stored for the quantization. 

� If neighbouring blocks (Up and Left) are from 

different macroblocks, the case of figure 9, such 

blocks 0, 1, 2 and 3 in figure 8. Corresponding up 

block is localised in the upper macroblock. Also for 

blocks 0, 4, 8 and 12, left block is taken from the 

previously decoded one, the left one. Therefore, two 

buffers are reserved for luminance coefficients in 

this case to save up and left neighbours. The first 

one, Numcoef_tab_up, is a (22x4) bytes buffer size. 

After each macroblock decoding, TotalCoeff of 

blocks 12, 13, 14 and 15 are stored in the 

corresponding places in Numcoef_tab_up buffer in 

order to be used as up neighbours for the 

macroblock at the same position in the following 

line of macroblock. The second table is called 

Numcoef_tab_left. It saves TotalCoef of the blocks 

3, 7, 11 and 15 of each macroblock in order to be 

used as left neighbours for the next macroblock. For 

Chrominance components, two tables are reserved. 

Each table sizes 44 values. For Left neighbours, a 

buffer of two values for each chrominance is 

allocated. 

7. Results 

H.264 LETI baseline decoder was first implemented with 

standard CAVLD method and then with ZLP algorithm, on 

a TMS320C6416 DSP. Table 4 compares CAVLD 

execution time between the two implementations, 

benchmarked with popularly known CIF sequences such as 

Foreman, Mobile, Paris and Akiyo which are respectively 

encoded at 384, 512, 128, 1024 Kbps streams. ZLP effects 

appear clearly on the CAVLD execution time. In fact, more 

than 20% of CAVLD execution time is reduced for the 

worst case of Forman bitstream. For Mobile bitstream, the 

gain could attain 60%. 

Table 4. ZLP effect on CAVLD execution time. 

bitstream 

Sequences 

Standard 

CAVLD(%) 

CAVLD using 

ZLP(%) 

CAVLD 

gain(%) 

Foreman 41 21 20 

Paris 37.83 27.43 42.3  

Akiyo 25 19.44  30  

Mobile 68.56 46.2  60  

Throughput of CAVLD in term of mega macroblock per 

second for Forman bitstream was 0.55 MegaMB/s with the 

classic CAVLD algorithm. It became 1.28 MegaMB/s with 

ZLP algorithm. 

Consequently, ZLP algorithm affected the overall 

decoder time execution. Table 5 lists the decoding 

throughputs in terms of frame per second for different test 

sequences, on TMS320C6416 DSP. For all test bitstreams, 

decoder speed presents an apparent amelioration with the 

ZLP algorithm. 

Table 5. Decoder performances. 

bitstream 

Sequences 

Pre CAVLD 

optimization 

Post CAVLD 

optimization 
Speed gain(%) 

Foreman 36 fps 44 fps 18 % 

Paris 37 fps 47,5 fps 22 % 

Akiyo 45 fps 50 fps 10 % 

Mobile 20 fps 34.7 fps 42 % 

In addition to the speed results amelioration, the decoder 

blocks partition becomes equilibrated due to the ZLP 

algorithm. In fact, the comparison of profiles illustrated in 

Figure 5 and in Figure 10 for Foreman test sequence at 384 

Kbps, demonstrates that the transform and quantization 

modules consume most of the decoder time execution 

instead of CAVLD module. Based on[19] decoder profile, 

proposed decoder with ZLP method gives more balanced 

profile results. 

 

Figure 10. Foreman Decoder profile with ZLP algorithm. 
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Table 6 summarizes previous works related to CAVLD 

optimization and implementation where different 

architectures are revealing. 

Design presented in[20] is a full software 

implementation. Therefore performance could be compared 

to the proposed implementation on DSP TMS320C6416. 

Architecture developed in[20] was applied on a CPU-

Pentium4 frequented at 3.6 Ghz and then on a CPU-Dual 

Zeon with 3.06 Ghz. The first implementation gave a 

throughput of 0.61 MegaMB/s which wass less than the 

second one (3.44 MegaMB/s). This result is obvious since 

it was implemented on a dual processor platform. 

Table 6. Comparison with State of art. 

 technology Cycles/MB Frequency megaMB/second 

[4] 0.13 µm 141 250 Mhz 1.77 

[5] 0.18 µm 294 175 Mhz 0.59 

[6] 0.18 µm 126 30.8 Mhz 0.24 

[7] 90 nm 127.13 125 Mhz 0.98 

[8] Altera StratixIII FPGA 412.5 74.25Mhz 0.18 

[9] 0.18µm 141 160 Mhz 1.13 

[20] 

CPU-Pentium4 5.9x10^3 3.6 Ghz 0.61 

CPU-Dual Zeon 889 3.06 Ghz 3.44 

Proposed DSP TMS320C6416 781 1 Ghz 1.28 

     

The proposed implementation in a simple core platform 

led to a throughput of 1Ghz. Therefore the number of 

macroblocks per second is less than those in the 

implementations proposed in[20] using dual core platform. 

However the number of cycles per macroblock of the 

proposed work is better than those in both implementations 

of[20]. This parameter illustrates the impact of the 

algorithm optimization. In fact, if the proposed CAVLD 

algorithm was implemented on a higher frequency platform, 

its throughput would clearly increase. 

As mentioned in previous works section, most of 

CAVLD implementations are based on hardware 

architectures, as references[4],[5],[6],[7],[8]and[9]. 

Performance comparison is not possible since the huge 

architectural difference. However, throughput results could 

be taken on consideration to compare the final CAVLD 

results. Only the algorithm in reference[4] is speeder than 

the proposed implementation in term of macroblock per 

second. 

This can be explained by the fact that architecture in[4] 

optimized each syntax elements. However, the proposed 

design optimizes only CoeffToken syntax element. 

Reference[6] optimized CoeffToken syntax element. 

Compared to the proposed architecture, it cannot decode 

more macroblock per second. 

For reference[7],[8] and[9], they don’t assure better 

throughput compared than the proposed architecture. 

8. Conclusion 

In this paper, a ZLP algorithm and an optimized memory 

design is suggested to ameliorate CAVLD performance and 

LETI decoder speed. This new method of decoding 

CoeffToken parameter reduced CAVLD complexity and 

limited the memory access that present the bottleneck of 

decoder. Since CAVLD is a variable length coding 

technique, multiple accesses to look up tables are necessary 

until founding corresponding codeword. ZLP method 

suggested a pre-analyses step to fix code length. The 

advantages of DSP architecture were also exploited to 

design efficiently the internal buffers in order to reduce 

memory accesses. Finally throughput of CAVLD was 1.28 

MegaMB. Thus, decoder speed was improved to be 44 fps 

and to attend real time. As perspectives, other decoder 

blocks can be optimized using optimal algorithm to attain 

real time decoder with SD sequences. 
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