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Abstract: A new calculation technique of accuracy characteristics of multichannel measurer was offered, ensuring 

essentially more exact results in comparison with the known ones. The expressions for the signal parameter maximum 

likelihood estimate bias and variance were found, in case of the multichannel reception of the quasidetermined or random 

signal and while the prior distribution of the informative parameter and the number of channels can be any. The influence of 

the value of the prior interval length and the number of channels on the accuracy of this estimate was investigated. The 

procedures were specified of the minimal channel number choice with the predetermined error of measurement. By statistical 

modeling methods the range of applicability of the theoretical formulae was established for the estimate characteristics, with 

the different numbers of channels and signal-to-noise ratios. 
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1. Introduction 

The optimal (according to a maximum likelihood method) 

signal parameter measurer receiving a realization of 

observable data in a kind of signal and hindrance sum 

generates the output effect which is proportional to the 

functional of likelihood ratio (FLR) or its logarithm [1, 2]. It 

is supposed that values of output effect are formed within the 

whole prior definition interval [ ]1 2,L L  of the estimated 

parameter
0l . As a result, lm

 the position of an absolute 

maximum of ( )lM , logarithm of FLR is an estimate that 

should be determined. However it is seldom possible to 

make the optimal measurer with continuous change of 

current parameter value. In most cases it is necessary to 

resort to the multichannel scheme with discrete like values 

of unknown parameter [2, 3]. 

In case of the multichannel scheme the measurer yields 

( )lM  samples in ν equidistant points li
, 1,  2,  ,  i ν= …  of 

the prior interval [ ]1 2,L L . As an estimate the value lk
 is 

accepted, corresponding to the channel with the greatest 

output signal. 

Statistical characteristics of an estimate lk
 of the signal 

parameter 
0l  are considered in [2, 3], when the measurer is 

used with the odd number of channels. It was assumed that 

the output signal-to-noise ratio (SNR) does not depend on 

value 
0l  (i.e. the parameter 

0l  is nonpower), and prior 

distribution of the estimated parameter 
0l  obeys to the 

uniform law. However, the theoretical formulae received 

there for bias (systematic error) and variance (mean square 

error) of multichannel estimate leave out of account all 

possible conditions and results of measurements, and thereof 

they may produce a major error. Besides, there is a big class 

of signals and unknown parameters for which assumptions 

mentioned above are not carried out. Also the number of 

channels in the measurer can be both odd and even. Thereby 

correction and generalization of the results [2, 3] are of 

interest, in case of the estimate of the arbitrary (power or 

nonpower) signal parameter 
0l  with the prior 

distribution ( )0lprw , generally distinct from the uniform, if 

the multichannel scheme with any number of channels is 

used. 

2. Characteristics of the Signal 

Parameter Estimate In Case of the 

Multichannel Reception 

Let us suppose that the optimal (maximum likelihood) 
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estimate lm
 (in the receiver with a continuous change of a 

current value of the measurable parameter
0l ) is described by 

the probability density ( )0l  lmw . We designate the number of 

the channel, nearest to
0l , as n, and the distance between two 

adjacent channels as
1l li i−∆ = − . Then with the fixed value of 

0l  it is possible to present the conditional bias 

( )0 0l l l lk kbν = −  and variance ( ) ( )2

0 0
l l l l

k k
Vν = −  of the 

estimate lk
 in the multichannel measurer as follows: 

( ) ( )
( )

0 0

1

l l       
n

k i

i n

b i P
ν

ν

−

=− −
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( )
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0 0

1
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k i

i n

V i P
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and  designates the averaging operation for all the 

possible realizations of the observable data. 

If the parameter 
0l  is described by the prior probability 

density ( )0lprw , then, similarly to Eq. (1), for the 

unconditional estimate bias ( )lkbν  and variance ( )lkVν , we 

have 
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Formulae (2) become essentially simpler, if the 

probability density ( )0l  lmw  of the maximum likelihood 

estimate (MLE) lm
 depends on a difference of arguments: 

( ) ( )0 0l  l l lm mw w= −   – i.e. the parameter 
0l  is nonpower 

[1, 2], and the prior distribution ( )0lprw  is described by the 

uniform distribution law: ( )0l 1prw ν= ∆ . Then for the 

probability 
iP  there can be written down 

( ) ( )( )
0

1
  1  iP F x i F x i dx

∆

 = + ∆ − + − ∆ ∆ ∫
        (3) 

Where ( ) ( )
1

 

 
l  l

x

m m
L

F x w d= ∫  is the distribution function of 

MLE lm
. 

Substituting Eq. (3) in the Eq. (2) results in 
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If the distribution of MLE lm
 is symmetric concurrently, 

i.e. ( ) ( )1F x F x= − −  , then the estimate lk
 in the 

multichannel measurer is unbiased – ( )l 0kbν = , and its 

variance is 

( ) ( ) ( )( )
1

2

1 0

l  2     1  k

i

V i F x i F x i dx
ν

ν

∆−

=

 = ∆ + ∆ − + − ∆ ∑ ∫  (4) 

Under conditions of high posterior accuracy of MLE lm
 , 

when the digitization errors are comparable with the 

potential ones, caused by the hindrance effect, it is possible 

to confine ourselves to the first summand in the sum (4). We 

designate the variance of MLE lm
as 2

0
σ . Then, considering 

that ( ) 1F x + ∆ ≈  under 
0σ∆ >>  (

02 3σ∆ ≥ ÷ ), and 

extending the top limit of integration to infinity, we find the 

known result [2, 3]: 

( ) ( )
0

l 2   1  kV F x dxν

∞

≅ ∆  −  ∫  

Let us now consider the applicability of the formulae (2) 

in the practical applications. 

3. Estimate of Rectangular Video Pulse 

Duration 

Let an additive mix 

( ) ( ) ( )0,x t s t n tτ= +                (5) 

Be received by the measurer input. 

( ) 0

0

0

  ,   0  ,
,

 0 ,   0,   ,

a t
s t

t t

τ
τ

τ
≤ ≤

=  < >
               (6) 

Here is the useful signal with amplitude and duration
0τ , 

while ( )n t  is Gaussian white noise with one-sided spectral 

density
0N . With the observable realization (5), it is 

necessary to estimate the parameter
0τ , which values are 

from the prior interval [ ]1 2,Τ Τ . 

In compliance with [1, 2], we write down the logarithm of 

FLR in terms of 

( ) ( )
2

0 00

2
   

a a
M x t dt

N N

τ ττ = −∫ , [ ]1 2,τ ∈ Τ Τ         (7) 

Then the estimate 
kτ  of the duration 

0τ  of the pulse (6) in 

the maximum likelihood measurer with ν channels, is now 

defined as 

( )argsupk iMτ τ= , 1,  2,...,  i ν= .           (8) 

Here ( )1 1 2i iτ = Τ + − ∆  is the pulse duration, to which i-th 

channel is tuned, and ( )2 1 ν∆ = Τ − Τ  is the above stated 
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distance between the two adjacent channels. 

According to [4], the probability density of 

MLE ( )argsupm Mτ τ= , [ ]1 2,τ ∈ Τ Τ  in the measurer with the 

continuous change of the current value of the estimated 

parameter can be represented as  

( )
2

1

2 2

0 0

0    
2 2

s m s m

m m

s s

z z
w f f d

τ τ τ τ
τ τ τ

τ τ

Τ

Τ

   − −
=       

   
∫  (9) 

( ) ( ) ( ) ( )2 1 exp 2   1 3 2  f x x x x = Φ − + − Φ
 

 

Where 2 2

0
2

s s
z a Nτ=  is the output SNR for middle pulse 

duration ( )1 2 2sτ = Τ + Τ , and 

( ) ( ) 
2exp 2  2

x

x t dt π
−∞

Φ = −∫  is the probability integral. 

Then characteristics of the estimate (8) for the specified 

prior probability density ( )0prw τ  of the parameter 
0τ  can 

be found from Eq. (2), with ( )0prw τ and ( )0mw τ τ  (9) 

substituting ( )0lprw  and ( )0l lmw , respectively. 

In Figs. 1, 2 the theoretical dependences are shown of the 

normalized variance ( ) 2

k sV Vν ν τ τ=ɶ , calculated by the 

formulae (2), (9), with 

( ) ( )0 2 11prw τ = Τ − Τ                (10) 

and the prior interval length value of either ( )2 1 1sτΤ − Τ =  

(Fig. 1), or ( )2 1 2sτΤ − Τ =  (Fig. 2). Here the curves 1 

correspond to 2ν = ; 2 – 3ν = ; 3 – 6ν = . 

 

Figure 1. Normalized variance of duration estimate of rectangular video 

pulse under (T2 – T1)/τs=1 

 

Figure 2. Normalized variance of duration estimate of rectangular video 

pulse under (T2 – T1)/τs=2. 

Experimental characteristics of the estimate (8) were 
found by means of statistical computer modeling. During the 

modeling process, the samples ( )iM τ  of the functional 

( )M τ  (7) were formed, from the prior interval [ ]1 2,Τ Τ  and 

with the specified values of SNR 
sz  and durations

0τ ,
iτ : 

( ) ( ) ( )2

0min , 2i s i i s iM z z Wττ τ τ τ τ=  −  +  ɶ
ɶ ɶ ɶ ɶ     (11) 

Here
i i sτ τ τ=ɶ ,

0 0 sτ τ τ=ɶ , and ( )iWτ τ
ɶ
ɶ  is the sample of the 

standard Wiener process with zero mathematical expectation 

and dispersion 
iτɶ . 

Samples of the Wiener process ( )iWτ τ
ɶ
ɶ  in Eq. (11) were 

obtained as [5] 

( )
( ) ( )

1 1

1 1

,                              1 ,

,   1 ,

i

i i i i i

W i

W W i

τ

τ τ

τ α τ

τ τ α τ τ− −

 = =


= + − >

ɶ

ɶ ɶ

ɶ ɶ

ɶ ɶ ɶ ɶ

    (12) 

Where 
iα  are independent Gaussian random numbers with 

zero mathematical expectations and unit dispersions? 

Formation of Gaussian numbers 
iα  with parameters (0, 1) 

was carried out in terms of the independent random 

numbers
nϑ , uniformly distributed within the interval [0, 1] 

by the Cornish-Fisher method [6]: 

3 3

20

i i
i i

N
α Α − Α= Α + , ( ) 1  

  1

12
0,5

N

i N i n
n

A
N

ϑ − +
=

 = −
 ∑ . (13) 

As follows from [6], the number of summands N in the sum 

(13) was chosen equal to 5. 

For each realization of ( )M τ , generated by Eqs. 

(11)-(13), both the estimate 
kτ  was determined according 

to Eq. (8) and its characteristics were calculated. It was 

supposed that duration 
0τ  of the useful signal (6) in each 

testing was a uniformly distributed random value with a 

probability density (10). In Figs. 1, 2 experimental 

dependences of the variance Vν
ɶ  for 2ν =  (squares), 3ν =  

(crosses) and 6ν =  (circles) are presented, obtaining from 

the statistical modeling. Each experimental Vν
ɶ  value was 

found as a result of the processing of at least 510  

realizations of ( )M τ . Consequently, confidence intervals 

boundaries deviate from experimental values no more than 

up to 5...10 % with the probability of 0.9. 

According to Figs. 1, 2, the theoretical dependences for 

the variance of the multichannel duration estimate (8) 

approximate the experimental data in a satisfactory manner, 

at least, for 0,1sz ≥ , 2ν ≥ . 

4. Estimate of Time and Power 

Parameters of Random Radio Pulse 

Let us suppose now that the useful signal received against 

white noise ( )n t  is random radio pulse, so that realization 

of the observable data has the appearance. 

( ) ( ) ( )0 0 0, , ,x t s t D n tλ τ= + , [ ]0,t T∈ ,   (14) 

Where 
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( ) ( ) 0
0 0 0

0

, , ,  
t

s t D t I
λλ τ ξ

τ
 −=  
 

, ( )
1 ,   1 2  ,

0 ,  1 2  ,

x
I x

x

 ≤= 
>

  (15) 

0λ  Is time delay, 
0τ  is duration of the pulse, and ( )tξ  is 

centered stationary Gaussian random process possessing 

spectral density 

( ) 0    
D

G I I
π θ ω θ ωω  − +   = +    Ω Ω Ω    

         (16) 

In Eq. (16) it is designated: θ – band center, Ω – bandwidth 

and 
0D  – dispersion of the process ( )tξ . 

With the observable realization (14) it is necessary to 

estimate unknown parameters [ ]0 1 2,λ ∈ Λ Λ , [ ]0 1 2,τ ∈ Τ Τ , 

[ )0 0,D ∈ ∞ . It is assumed that the condition 

1 2 0 0 0 0 2 22 2 2 2λ τ λ τΛ − Τ ≤ − < + ≤ Λ + Τ  is satisfied, so 

the pulse (15) is always situated within the observation 

interval [ ]0,T . 

We now consider a practically important case when the 

process ( )tξ  fluctuations are “fast”, i.e. 
0 2 1µ τ π= Ω >> . 

Then MLEs
mλ , 

mτ , 
mD  of time delay 

0λ , duration 
0τ  

and dispersion 
0D  are defined as [7] 

( )
[ ] [ ]

( )
1 2 1 2,  ,  ,

, arg  sup ,m m L
λ τ

λ τ λ τ
∈ Λ Λ ∈ Τ Τ

=  

( )max 0;  ,m m m m ND M Eλ τ τ=  −          (17) 

Here 

( ) ( ) ( ){ }, , ln , 1 N N NL E M E M Eλ τ τ λ τ τ λ τ τ= −   −    (18) 

( ) ( )2
2

2
,   M y t dt

λ τ

λ τ
λ τ

+

−
= ∫  ( ) ( ) ( )  y t x t h t t dt

∞

−∞
′ ′= −∫  

Is observable realization (14) response of the filter with 

transfer function ( )H ω , satisfying a 

condition ( ) ( ) ( )2

H I Iω θ ω θ ω=  − Ω +  + Ω    , and 

0 2NE N π= Ω  is a signal band mean noise power. 

It is easy to see that the measurer (17) can be practically 

realized only as a multichannel device, so that the 

estimates
kλ ,

kτ  
kD  of parameters

0λ ,
0τ  

0D  are defined as 

[ ]
( )

1 2,

arg  sup sup ,
i

k L
τ λ

τ λ τ
∈ Λ Λ

 
=  

 
,
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Where ( )1 1 2i iτ = Τ + − ∆ , ( )2 1 ν∆ = Τ − Τ , 1,i ν=  and ν is 

the number of the measurer channels. 

Let us consider characteristics of joint estimates (19). We 

designate 

( ) ( ) ( )2 1 2 1 2 12 sδ τ= Τ − Τ = Τ − Τ Τ + Τ       (20) 

for the signal duration (15) maximum possible absolute 

deviation from the average duration ( )2 1 2sτ = Τ + Τ . Then, 

in terms of the results received in [8] for the maximum 

variance of time delay estimate
kλ , we can state that 

( ) ( )
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are the maximum variance and probability of a reliable 

estimate 
kλ  respectively, and ( )22 2

0 01s sz q qµ= +  is SNR 

for a pulse (15), the duration of which is equal to average 

duration
sτ , 

2s sµ τ π= Ω , 
0 0 Nq D E= , ( ) ( ) ( )2exp 2  1H x x x=  − Φ   , 

( ) ( ) ( ) ( )( )0 00
1  1 1 2 1sx x z q q qν νζ δ δ=  − + −  + + −  , 

( ) ( )0 0 1 2  1  Sm q qν νδ δ=  + + −  ɶ ,   νδ δ ν= , 

( ) ( )2 2

0 0
2 1  1 1q qψ  = + + +

 
, ( )2 1 sm τ= Λ − Λɶ . 

As reliable estimate 
kλ [1, 2], the estimate is understood, 

found on the assumption that ( )0 0 2k kλ λ τ τ− ≤ + , when 

mean value (signal function) of the sufficient statistics 

( ),M λ τ  (18), with 
kλ λ= and

kτ τ= , is distinct from
k NEτ . 

According to [7], the maximum variance of estimate 
kD  

is defined as 

( ) ( ) ( ) ( ) ( )0 0
* *

0 0 01 1
max   ,   

s s

s s

k q qV D D V D D V D D
ν ντ τ δ τ τ δ

τ τ τ τ
= − = +
= =

  =  
  

, (23) 

where ( )0qV D D  is variance of the dispersion estimate qD , 

synthesized by the likelihood method, on the assumption 

that signal duration (15) is known inaccurately and is equal 

to *τ  ( *

0
τ τ≠ ) [7]: 

( ) ( ) ( ) ( )2 * * 2

0 0 0

0

 2   1   q N S NV D D E x q F x F x dx D

∞

 = − − + ∫ . (24) 

In Eq. (24) we state that 
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( )2 1 0m τ= Λ − Λ , and ( )*

0 0τδ τ τ τ= −  is a relative detuning 

on the pulse duration. 

For the probability density ( )0mw τ τ  of the duration 

estimate 
mτ  in the measurer with the continuous change of 

current values of the estimated parameters in terms of the 

results [9] and by analogy to [3], we have 

( ) ( )
2

1

0 2 0 0 , ,  m m m mw w dτ τ λ τ λ τ λ
Λ

Λ

= ∫ ,        (25) 

where 

( )
( ) ( )

( ) ( )
2 2

1 1

2 0 0

1 0 0 1 0 0

1 0 0 1 0 0

, ,

2  2
 ,

2 2  

w

w w

w w d d

λ τ λ τ

λ λ τ τ λ λ τ τ

λ λ τ τ λ λ τ τ λ τ
Λ Τ

Λ Τ

=

 − − −   − + −    =
 − − −   − + −    ∫ ∫

 

and 

( )
( )
( )

2 2

1 1 0

1
2 2

0 2 2 0

  2 ,1  ,   0 ;2

  2 ,  ,      0 ;

z w z x R x
w x

z w z x R x

τ

τ τ

 ≥= 
<

 

( ) 22

1 0 02

0

ln 1z q q
q

µ=  − +   , ( ) ( ) 22

2 0 0 02

0

1 ln 1z q q q
q

µ=  + + −   , 

( ) ( ) ( ) ( )0 0 0 0 0 01  1 ln 1 ln 1R q q q q q q= +  + + −   − +     , 

( ) ( ) ( ) ( )

( ){ }
2, 2 1 2  exp 1

 1 2 2   .

w x u x u u x u u

x u u

 = Φ − +  +  + ×   

 × − Φ +
 

 

Then, under the specified prior probability density 

( )0prw τ  of the parameter
0τ  , unconditional bias and 

variance of the estimate 
kτ  (19) can be found from Eq. (2), 

substituting ( )0prw τ  and ( )0mw τ τ  (25) for ( )0lprw , 

( )0l lmw , respectively. 

To find out the experimental estimate characteristics, the 

statistical computer modeling of functional ( ),M λ τ  (18) 

was carried out. For reduction of computational burden it 

was supposed that the band limitedness condition of a kind 

ϑ >> Ω  for the process ( )tξ  is satisfied. It allows to use 

representation of the filter response ( )y t  (18) through its 

low-frequency quadratures [5] and to form sufficient 

statistics ( ),M λ τ  (18) as the sum of the two independent 

random processes: 

( ) ( ) ( )1 2

1
,  , ,  

2
M M Mλ τ λ τ λ τ=  +   , ( ) ( )

2

2

2

,    
j j

M y t dt

λ τ

λ τ

λ τ
+

−

= ∫  (26) 

( ) ( ) ( )0   j jy t x t h t t dt

∞

−∞

′ ′ ′= −∫ , ( ) ( ) ( )j j jx t s t n t= + , 1,2j = . 

Here ( ) ( ) ( )0 0 j js t t I tξ λ τ=  −   , ( )j tξ  ( )jn t  are statistically 

independent centered Gaussian random processes with the 

spectral densities ( ) ( ) ( )0 02G Dω π ω= Ω Ω  and
0N , 

respectively, while the spectrum ( )0H ω  of the function 

( )0h t  satisfies a condition ( ) ( )2

0   H Iω ω= Ω . 

During modeling within the interval 1 2 , Λ Λ 
ɶ ɶ , 

1,2 1,2 sτΛ = Λɶ  , with discretization step t∆ɶ  in normalized 

time 
s

t t τ=ɶ , jnyɶ samples were formed of normalized 

random process realizations ( ) ( ) 0j j sy t y t Nτ=ɶɶ , 1,2j =  

(26). With Eqs. (27) In mind, we can achieve the step 

approximation of the normalized sufficient statistics 

( ) ( ) 0, ,i iM M Nλ τ λ τ=ɶɶ ɶ  (18), presented as: 

( ) ( )
max

min

2 2

1 2,
2

N

i n n

n N

t
M y yλ τ

=

∆= +∑
ɶ

ɶ ɶ ɶ ɶ             (27) 

Here ( ){ }min
int  2

i
N tλ τ= − ∆ɶ ɶɶ , ( ){ }max

int  2
i

N tλ τ= + ∆ɶ ɶɶ , 

s
λ λ τ=ɶ  represent normalized current value of time delay; 

i i sτ τ τ=ɶ  is normalized duration to which the i-th measurer 

channel is tuned; and {}int ⋅  is integer part. 

With 0,05
s

t µ∆ =ɶ , the mean square error of the step 

approximation (27) of a continuous realization (26) did not 

exceed 10 %. Samples of processes jny , 1,2j =  were 

formed in terms of the sequence of independent Gaussian 

random numbers by a moving summation method [5]: 

( )

( )max

min

min ,

max ,

1
          

m n pn p

jn im nm j m nm

m n p m m n p

y H H
t

α ξ
++

= − = −

= +
∆
∑ ∑ɶ

ɶ
, (28) 
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jm np j n m

n

q
H
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ξ β

π + +
=

=
∆ ∑
ɶ

 

Here ( ){ }min 0 0
int 2m tλ τ= − ∆ɶ ɶɶ , ( ){ }max 0 0

int 2m tλ τ= + ∆ɶ ɶɶ ,

0 0 s
λ λ τ=ɶ ,

0 0 sτ τ τ=ɶ , jmα , jmβ  are independent Gaussian 

random numbers with zero expectations and unit dispersions, 

( ) ( )sin 2nm sH t n m n mπµ π=  ∆ −   −    ɶ . 

In the sums (28) number of summands corresponds to the 

value 100p = . It provides a relative deviation of the 

generated sample dispersion from the modeled process 

dispersion to be no more than 5 %. Formation of 

independent Gaussian numbers with parameters (0, 1) was 

carried out following Eqs. (13). 

In confinement with the Eqs. (26)-(28), realization of the 

process ( ), iM λ τɶɶ ɶ  was produced, and normalized estimates 

k k s
λ λ τ=ɶ , 

k k sτ τ τ=ɶ , 
k k Nq D E=  were defined 

according to Eq. (19) and their variances were found. 

In Figs. 3-5 some results of statistical modeling are 

presented where corresponding theoretical dependences are 

shown also. Each experimental value was received as a 

result of processing of not less than 410  realizations 

( ), iM λ τɶɶ ɶ , with 150sµ = , 
0 1q = , 

1
0Λ =ɶ , 

2
17mΛ = =ɶ ɶ , 

( )0 2 1 2λ = Λ + Λɶ ɶ ɶ , ( )0prw τ  (10). Thus with probability of 0.9 

confidence intervals boundaries deviate from experimental 

values no more than for 10... 15 %. In Fig. 3 continuous lines 

represent dependences of the normalized variance 

( ) 2

0
12

k
V V mλ λ λ= ɶ ɶɶ ɶ  of estimate 

k
λɶ  from parameter δ (20). 

Curves 1 are calculated via formulae (21), (22), with 2ν = , 2 

– 3ν = , 3 – 5ν = . By squares, crosses and rhombuses the 

experimental values of estimate variance Vλ
ɶ  are designated 

for 2ν = , 3 and 5. In Fig. 4, 5 the similar dependences are 

presented of maximum variance ( )0q kV V q q=ɶ  of estimate 

kq and of unconditional variance ( )kV Vτ τ=ɶ ɶ  of estimate
kτɶ  

plotted by formulae (23), (24) and (2), (25), respectively. 

Designations in Fig. 4, 5 are the same as in Fig. 3. 

 

Figure 3. Normalized variance of time delay estimate of random radio 

pulse. 

 

Figure 4. Normalized variance of dispersion estimate of random radio 

pulse. 

 

Figure 5. Normalized variance of duration estimate of random radio pulse. 

As follows from Figs. 3-5 and the conducted modeling, 

the theoretical dependences (21)-(24) for the maximum 

variances of estimates 
kλ  and 

kD  can be used for practical 

calculations, if , at least, 150sµ ≥ , 1sz ≥ , 2ν ≥ ; and their 

matching with the values of real variance improves with the 

increasing ν and decreasing δ. So, with 0.6δ ≤ , 2ν ≥  

maximum variances of estimates 
kλ  and 

kD  no more than 

2 times higher than the true ones, and when 0.3δ ≤ , 3ν ≥ , 

they are no more than 1.1 times higher. The formulae (2), (25) 

for unconditional variance of signal duration estimate 
kτ  

adequately describes the corresponding experimental values 

for 1sz ≥  and 2ν ≥ , and they are substantially more 

accurate than the already known formulae, describing the 

multichannel reception signal parameters estimates 

characteristics [2, 3]. 

5. Conclusion 

In order to define the multichannel measurer 

characteristics, it is possible to use the expressions for the 

unconditional bias and variance of a decided estimate, found 

in the present work. The introduced expressions are correct 

for any type of signal and its estimated parameter, and they 

also have essentially greater precision in comparison with 
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the formulae for accuracy characteristics of multichannel 

reception, adduced in the known literature [2, 3]. The 

conducted computer experiments show that the received 

new formulae adequately describe experimental data in a 

wide range of output SNR values and with any number of 

measurer channels. 
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