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Abstract: In this paper we propose a generalized method of structural identification of biomedical signals with locally
concentrated properties using a digital non-linear filter. The experimental verification of the detecting function was per-
formed by using different ways to describe the model of the desired class of structural elements.
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1. Introduction

Creation of new informational technologies for assess-
ment of the heart state and cardiovascular system in the
design of intellectual computer cardiological decision sup-
port systems (ICCDSS) is an important scientific and tech-
nical problem. When designing ICCDSS the following
main stages of biomedical signals processing (BMS) with
locally concentrated properties (LCP) [1]:

1) Registration and digitizing the signal receiving an an-
alog signal and conversion to a digital signal;

2) Signal pre-processing digital filtering, signal separa-
tion to individual files in case of simultaneous reception of
multiple signals on the same channel;

3) signal structural identification (SI) selection (marking)
of informative fragments on the signal noise background,
called the structural elements (SE), which can be prongs,
cavities and other parts of the BMS with LCP;

4) Determination of structural elements amplitude-timing
characteristics definition of amplitude and timing parame-
ters and converting them into physical units based of the
marks gained after structural identification;

5) Calculation of diagnostic characteristics depending on
research type calculating of respective medical diagnostic
characteristics taking into account the time and amplitude
characteristics of structural elements for one or more sim-
ultaneously registered BMS with LCP;

6) Decision rules synthesis implementation of diagnostic
rules adopted in clinical practice taking into account diag-
nostic characteristics;

7) Diagnosis an automatic diagnosis of heart and cardio-
vascular system diseases.

Covered BMS with LCP are quasi-periodical signal hav-
ing a complex shape and carrying the information of the
object state on small piece of signal observation interval.
One of the critical BMS with the LSP processing stages,
which is hardly formalized, is the stage of structural identi-
fication. Increasing effectiveness of methods for structural
identification is an important task in the design of intellec-
tual computer cardiological decision support systems.

The development of efficient methods for structural
identification of BMS with LCP for ICCDSS one should
consider the useful signal model (USM), the analysis of
which is described in [2 5]. According to USM-1 model
biomedical signal can be described as a function of time
lattice. This is the simplest model, which does not take into
account specifics of BMS with LCP. USM-2 model a model
for BMS expansion by basis functions. In USM-2, for in-
stance, Fourier series or wavelets can be used. In model of
USM-3 biomedical signal is represented as a function de-
fined on piece-period sequence fragments. At each time
interval individual approximation function is given, which
describes the structural element. Model USM-4 this is a
structural-linguistic representation model for BMS period.
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Model USM-5 BMS with LCP contains a plurality of ob-
jects in a property dimension. In USM-5 model one takes
into account some features of USM-3 (for objects descrip-
tion it uses parameters of a piece-period approximating
functions) and USM-4 (BMS considered as a set of ob-
jects).

Based on the USM described above epy following trans-
formation methods with BMS with LCP were isolated:
contour analysis [5, 6], Fourier transformation and wavelet
transformation, modified Hough tranformation [7 9, 11];
structural signal conversion based on grammatical parsing
[1] transformation into phase dimension [3, 4], conversion
to approximating functions adaptive parameter dimension
[1].

Purpose of this paper synthesis of the generalized meth-
od of biomedical signals with locally concentrated proper-
ties structural identification based on different models of
useful signal and conversion methods for BMS with LCP.

2. Synthesis of a Nonlinear Filter for
BMS with LCP Structural
Identification

The problem of structural identification of BMS with
LCP can be considered as a local digital signal processing
with sliding window or aperture, which by definition is a
digital filtering [7 9]. In this case, the window size is cho-
sen much smaller than the signal length, and for each posi-
tion of the window one runs the same type of actions that
define so-called response or filter output. Since the actions
defining filter response do not change during the signal
scanning, and are defined with nonlinear functions, the SI
is performed using the stationary nonlinear filter (NF).

The goal of digital filtering of BMS with LCP is SE of a
specific type detection, as well as their location on the giv-
en signal. The problem of signal detection is well described
in radar [10]. Thus based on the signal parameters for the
detection problem the appropriate filters are designed, for
example, matched filters, the purpose of which is calcula-
tion of some indicators. Indicators analysis with threshold
rule makes it possible to decide whether the desired signal
is in the mixture of input signal and noise. These ideas were
the basis for the synthesis of NF to solve the problem of
structural identification of BMS with LCP.

Analysis of USM and conversion methods for BMS with
LCP allowed identifying a number of similar actions for
solving the SI problem, resulting in a scheme of structural
identification of BMS with LCP based on the NF (Fig. 1).

The system input has a digital signal x[¢] (¢=0;7, —1),

where 7, is the length of the incoming signal. Level 1

conversion F® is a method of signal transformation
x[t] based on the USM, in which we get a set

K =(xo[t1,p, f(:[1],p)) , where x,[t] (t=0;T,~1) a
reference signal (model for structural elements of a given

class); T, <<T, the length of the model; p parameters
conversion vector; f (x[t], [7) x[t] (t=0;7,—1) signal
conversion function within NF response synthesis window.
The linear dimensions of the NF window N, are defined
by the model linear dimensions x,[¢] of a specific class of
structural elements, i.e. N, =7T,.
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Figure 1. The scheme of structural identification of BMS with LCP based
on the NF.

The resulting transfer function f(x[¢],p) is used to
describe not only the signal « within the filter aperture,
but also to describe the structural elements model w” ofa
specific class, i.e. y7 = f;(x[t],p), k=0;Tp —1, where
y7, ¥, the coordinates of the model " and the signal
fragment within the window, respectively. Thus, the goal of
the 1st level conversion F® is to determine the nonlinear
filter parameters, such as the linear dimensions of the win-
dow and the weight function of the filter, as well as the
signal to be detected xy[¢].

Level 2 conversions F® (see Fig. 1) is getting of a
new function in the time dimension y[¢]C [O;l] , which indi-

cates the similarity degree between the structural elements

model w" of desired class and a signal fragment
within the aperture. We call y[¢] function detection func-
tion, and to use the following function:

=— (1)

L+a) () = y))?

J=

where a [(0;1] coefficient, which reflects the changes
sensitivity of structural elements of the same class by ap-
plying noise and parameter variations.

Based on the analysis of the detection function V[¢]
structural identification is performed with help of threshold
decision rule:

. x[e] OeO[ty 38, + T, if ylty;1> Pd;
=1, @
X all other cases

where Pd the threshold value; f,; the point of local

Jj

maximum of function [t] , so that y[t,;]1= [¢]
OrOM(t,) 5 M(to;) =M(t;)\{to;} punctured point
neighborhood;  M(#%;) point ¢; neighborhood;
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x° =const a constant that determines the level of the sig-
nal corresponding to the absence of SE of a given class on
the current signal fragment (for example, corresponding
isoline contour).

Since the adequacy of a particular USM for each SE is

different, in this case for design of a NF we propose to
combine local decision rules (LDR) to the collection of
decision rules (CDR). As a result, we propose a generalized
scheme of structural identification of BMS with LCP based
on NF (Fig. 2).
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Figure 2. A generalized scheme of structural identification BMS with LCP based on NF.

The scheme shows that the input digital signal x[¢] is
simultaneously sent to the input of Ist level F" (i=1n)
transformation. Each block output F" generates sets
K; :<x0[t], i, [i(x[1], ﬁi)>, where p; vector parameter of
i conversion; f,-%x[t],ﬁ,-)i signal x[¢t] (¢=0;T,-1) con-
version function within the aperture. In this case, the struc-
tural elements model of a given class xy[z] (t=0;7,—-1)
must be the same for all kinds of 2nd level transformations
F® (i=1n). As a result of each 2nd level i transfor-
mation F;'® | functions 7%[¢] are calculated using (1).
Based on the detection functions 73;[¢] with the help of
local decision rules (LDR) (2) local filter responses X;[¢]
are determined, i.e. structural identification is performed.
Thus, 7 local decision rule (LDRi) has the following form:

fi= {XE] Ur Oty 5t +1o), 1 ;[to;1> Pd; 3)

X all other cases
where Pd; the threshold value of LDRi;
maximum point of ;[¢] function, so that ¥[t;]2 y[¢]
DtDM(toi,»); M(to,-,-):M(to,-,-)\{toi,»} a punctured neigh-
borhood of f; M(t,;) neighborhood of f;

point.
Research of detection functions y;[¢] shows that using

to; a local

point;

various USM and transformation methods and of BMS with
LCP generally for the j structural element of the desired
form t,; #ty; with j# k. Therefore, the application of
generalized decision rule is performed in two stages. The
first stage a helper function is evaluated with majority rule

Z[t]:

1, OOt 5t + T
Z[I] - [ 0.j 0/ 0]
0 otherwise

where f,; =min(f; OL;), t; =max(ty; OL;) the mini-
mum and maximum values of the index of found structural
elements L; in the j signal fragment. The L; set is

formed by the rule #,; 0L, if [¥O[t;;%; +7o], so that

1y +1 if %.[¢]>x°
Iyl =yt A
ng 2n 0, otherwise

where n number of LDR.
Function building ( z[#]) can be described as follows.

Let’s CDR contain 3 LDR, i.e. n=3 . Then, in case of the
J structural element detection functions z;[t] superposi-

tion is shown in Flg 3. Lj ={t01j,t()2j,t()3j}, t(’)j=t02j
and 15; =ty .

In the second step of getting z[z] function nonlinear
filter response is calculated according to the following rule:

7] x[¢] Ot D[t_oj';t_oj' +T], if Z[t_Oj] =1
X = -
x° if Zt),;]1=0;

fo; = ZWJO;'/ )
o,

where 7,; average position of the j structural element of a
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given type; L, the index set of LDR for the j structural

element; w; the weights, taking into account the contribu-
tion of each LDR to CDR.
In the simplest case

where |L ,-| the cardinality of the L; set.

Thus, the filter response is determined by the kind of
transformation F; and of CDR. In its turn, type of
y:[t] function after F,* conversion directly depends on

W= 1 the structural elements model description xo[f] of the de-
l |Lj| ’ sired class.
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Figure 3. Functions zl] fragments for j- structural element, function zil] superposition and getting 2[1] function.

3. Experimental Verification of the
Detection Function Calculation with
Different Ways to Set the Model

As noted above, the result of F" transformation is the
K, :<x0[l‘], Di, fi(x[t], 13,-)) set. Thus the transformation
function f;(x[¢], p;) is not only used to describe the )

signal within the filter aperture, but also to describe the "
model of structural elements given class, i.e.

yl;n =f;'j(x0[t]al—7i)7 yij :fl"j(x[t]7ﬁi)ﬂ where yl;na yltj the

position " and ) respectively. Let’s see the ways
model description based on USM-2 and USM-5.

The model signal based on the USM-2 with the ¢,[¢]
basis functions can be specified as follows:

-1
xo[]=D adult], t =0T -1,
k=0

Where a =(ay,...,d;,...ar,-;) basis coordinate vector. If
we use the Fourier transformation, the basis functions are the
harmonic functions. If we use wavelet transformation that
would be wavelets of different shapes. As a result, the model
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described with a vector, and the function describing the
model transition from the time dimension to defining with
a coefficient vector is the required f;(x[¢], p;) function in
the K, set. Then the " model description based on
USM-2 is the following: yf =a, for j=LN; and
kOS,, where N; = |Sk| the number of coordinates used to
describe the model; S, [1{0,1,...,7;, —1} the set of coeffi-
cient indexes a, ,required to describe the model. In this case
the p; characteristics vector contains 7, and S, .Ifall the
coefficients a;, ( k£=0;75—1) are used to describe the
model, then S; ={0,1,...,7, =1} and N; =T,.

Let’s consider the result examples for building detection

89

function 7;[t] after F;'® conversion at different a values
using Haar wavelets to obtain the a, coefficients (Fig. 4).

Fig. 4 clearly shows that the ;[¢] function has local
maximums at the fragments corresponding to the start points
of the structural elements of the specified type (in this case
the ECG P-wave). On the fragment corresponding to the
beginning of the model (in Fig. 4 it is highlighted with points)
function y,[¢]=1. Also with decreasing the a parameter the
local maximums become more prominent, however there are
other local maximums in areas that do not correspond to the
structural elements of a given type.
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Figure 4. Graphs of the source signal A1) (V4 ECG channel) and detection function '

The model signal x,[¢] based on USM-5 can be de-
scribed using a variety of support functions (SF) suggested
in [1]. For SF one can use divided differences, the coeffi-

cients of the approximating polynomials and other functions.

It should be noted that unlike USM-2 inverse does not exist.
In this case xy[¢] is divided into sections with reference
points, and each model fragment can be described with
corresponding SF (Fig. 5).
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Figure 5. Example of reference points setup for model setting.

In this case f;(x[¢], p;) asetof SF,and p; has positions
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of reference points in the filter aperture. Let’s consider re-
sults examples for building the function 7;[¢] after F®
conversion using different SF.

Using 1st level divided difference as SF the model de-
scription is the following:

i =(xoltin ] = xolta D/(ten =) s Jjok =12,

where ¢, indexes of reference points.

After F'® transformation witha =0,5, 3;[¢] function
is obtained shown in Fig. 6(a). Fig. 6(a) shows that "false"
peaks may appear which have the form of impulse noise.
This is due to the fact that the w” and @ coordinates
calculation using the SF, not all the points that fall under the
filter aperture are involved in the calculation (only the ref-
erence points are used). Therefore, to remove the impulse
noise from the resulting function );[¢] one can use median
filter with an aperture of 3 points (Fig. 6(b)).

If we use 1st and 2nd level divided differences as SF, the
model description is the following:

yii = (xolten ] = xolte D/(ten = 1), jik =12,
i3 = -y,

where #, indexes of reference points. As a result of F*
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transformation with o =0,5 we get 7y4[f] function
(Fig. 7(a)) and filtered function y,[¢] after median filtering
with an aperture of 3 points (Fig. 7(b)).

Fig. 7(a) shows that adding a 2nd level divided difference
into the nonlinear filter aperture did not get rid of the im-
pulse noise, so it is advised to use the median filtering for
V4[] function.

The main advantage of using 1st and 2nd level divided
differences as support functions is the small computing
complexity. We then get good enough functions ;[¢]
which can be used to perform SI with local decision rules
3).

As SF we can use a derivative of the 1st level approxi-
mating function, i.e. among the reference points we can
describe the model with the following functions:

X

1= ag; +ayt +€,[t], O]t 8]

where j number of the fragment among the reference points;
t, the indexes of reference points; a,,;, a;; the coeffi-
cients of the approximating function; €;[t] approximation
error.

Then the description of the model is: y}' =a;;, j=12.
The F® with o =0,5 transformation results is the func-
tion ys[t] (Fig. 8).
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Since for some kind of structural elements the adoption of
the linear dependency among the points is a rather rough
approximation, it is better to use a 2nd level approximating
function derivative as the SF, i.e. among the reference points
one can use the following functions to define the model

x;[t1=ao; +at+ax %€ [t], tO[tista],

where j fragment number among the reference points; ¢, the
indexes of reference points; a,;, ai;, a,; coefficients of
the approximating function; €;[t] approximation error.

Then the model description is:
yi =Xt 1= a; +2ayt,, j=12

wheret; = (t, +1,41)/2. The F® transformation result
with a =0,5 we get the detection function y4[¢] (Fig. 9)

Results analysis of the experimental verification for de-
tection function calculation using various USMs showed
their acceptable performance level. However, even for the
same type of structural elements in different fragments of the
signal one can not explicitly pick one of the USMs.

4. Conclusion

In this paper we propose a generalized method of struc-
tural identification of biomedical signals with locally con-
centrated properties based on digital non-linear filter. Ways
to describe the structural elements model of a specific class
using various USMs are discussed. Experimental verifica-
tion for detection function calculation y;[¢] is performed.
Further research is focused on experimental verification of
the synthesized decision rules set effectiveness using real
signals.
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