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Abstract: In this paper we propose a generalized method of structural identification of biomedical signals with locally 
concentrated properties using a digital non-linear filter. The experimental verification of the detecting function was per-
formed by using different ways to describe the model of the desired class of structural elements. 
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1. Introduction 

Creation of new informational technologies for assess-
ment of the heart state and cardiovascular system in the 
design of intellectual computer cardiological decision sup-
port systems (ICCDSS) is an important scientific and tech-
nical problem. When designing ICCDSS the following 
main stages of biomedical signals processing (BMS) with 
locally concentrated properties (LCP) [1]: 

1) Registration and digitizing the signal receiving an an-
alog signal and conversion to a digital signal; 

2) Signal pre-processing digital filtering, signal separa-
tion to individual files in case of simultaneous reception of 
multiple signals on the same channel; 

3) signal structural identification (SI) selection (marking) 
of informative fragments on the signal noise background, 
called the structural elements (SE), which can be prongs, 
cavities and other parts of the BMS with LCP; 

4) Determination of structural elements amplitude-timing 
characteristics definition of amplitude and timing parame-
ters and converting them into physical units based of the 
marks gained after structural identification; 

5) Calculation of diagnostic characteristics depending on 
research type calculating of respective medical diagnostic 
characteristics taking into account the time and amplitude 
characteristics of structural elements for one or more sim-
ultaneously registered BMS with LCP; 

6) Decision rules synthesis implementation of diagnostic 
rules adopted in clinical practice taking into account diag-
nostic characteristics; 

7) Diagnosis an automatic diagnosis of heart and cardio-
vascular system diseases. 

Covered BMS with LСP are quasi-periodical signal hav-
ing a complex shape and carrying the information of the 
object state on small piece of signal observation interval. 
One of the critical BMS with the LSP processing stages, 
which is hardly formalized, is the stage of structural identi-
fication. Increasing effectiveness of methods for structural 
identification is an important task in the design of intellec-
tual computer cardiological decision support systems. 

The development of efficient methods for structural 
identification of BMS with LCP for ICCDSS one should 
consider the useful signal model (USM), the analysis of 
which is described in [2 5]. According to USM-1 model 
biomedical signal can be described as a function of time 
lattice. This is the simplest model, which does not take into 
account specifics of BMS with LCP. USM-2 model a model 
for BMS expansion by basis functions. In USM-2, for in-
stance, Fourier series or wavelets can be used. In model of 
USM-3 biomedical signal is represented as a function de-
fined on piece-period sequence fragments. At each time 
interval individual approximation function is given, which 
describes the structural element. Model USM-4 this is a 
structural-linguistic representation model for BMS period. 
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Model USM-5 BMS with LCP contains a plurality of ob-
jects in a property dimension. In USM-5 model one takes 
into account some features of USM-3 (for objects descrip-
tion it uses parameters of a piece-period approximating 
functions) and USM-4 (BMS considered as a set of ob-
jects). 

Based on the USM described above еру following trans-
formation methods with BMS with LCP were isolated: 
contour analysis [5, 6], Fourier transformation and wavelet 
transformation, modified Hough tranformation [7 9, 11]; 
structural signal conversion based on grammatical parsing 
[1] transformation into phase dimension [3, 4], conversion 
to approximating functions adaptive parameter dimension 
[1]. 

Purpose of this paper synthesis of the generalized meth-
od of biomedical signals with locally concentrated proper-
ties structural identification based on different models of 
useful signal and conversion methods for BMS with LCP. 

2. Synthesis of a Nonlinear Filter for 

BMS with LCP Structural  

Identification 

The problem of structural identification of BMS with 
LCP can be considered as a local digital signal processing 
with sliding window or aperture, which by definition is a 
digital filtering [7 9]. In this case, the window size is cho-
sen much smaller than the signal length, and for each posi-
tion of the window one runs the same type of actions that 
define so-called response or filter output. Since the actions 
defining filter response do not change during the signal 
scanning, and are defined with nonlinear functions, the SI 
is performed using the stationary nonlinear filter (NF). 

The goal of digital filtering of BMS with LCP is SE of a 
specific type detection, as well as their location on the giv-
en signal. The problem of signal detection is well described 
in radar [10]. Thus based on the signal parameters for the 
detection problem the appropriate filters are designed, for 
example, matched filters, the purpose of which is calcula-
tion of some indicators. Indicators analysis with threshold 
rule makes it possible to decide whether the desired signal 
is in the mixture of input signal and noise. These ideas were 
the basis for the synthesis of NF to solve the problem of 
structural identification of BMS with LCP. 

Analysis of USM and conversion methods for BMS with 
LCP allowed identifying a number of similar actions for 
solving the SI problem, resulting in a scheme of structural 
identification of BMS with LCP based on the NF (Fig. 1). 

The system input has a digital signal ][tx  ( 1;0 −= sTt ), 

where sT  is the length of the incoming signal. Level 1 

conversion )1(F  is a method of signal transformation 
][tx  based on the USM, in which we get a set 

)],[(,],[0 ptxfptxK
��

= , where ][0 tx  ( 1;0 0 −= Tt ) a 

reference signal (model for structural elements of a given 

class); sTT <<0  the length of the model; p
�

 parameters 

conversion vector; ( )ptxf
�

],[  ][tx  ( 1;0 −= sTt ) signal 

conversion function within NF response synthesis window. 
The linear dimensions of the NF window aN  are defined 

by the model linear dimensions ][0 tx  of a specific class of 

structural elements, i.e. 0TN a = . 

 

Figure 1. The scheme of structural identification of BMS with LCP based 

on the NF. 

The resulting transfer function )],[( ptxf
�

 is used to 
describe not only the signal tω  within the filter aperture, 
but also to describe the structural elements model mω  of a 
specific class, i.e. )],[( 0 ptxfy j

m
j

�
= , 1;0 0 −= Tk , where 

m
jy , t

jy  the coordinates of the model mω  and the signal 
fragment within the window, respectively. Thus, the goal of 
the 1st level conversion )1(F  is to determine the nonlinear 
filter parameters, such as the linear dimensions of the win-
dow and the weight function of the filter, as well as the 
signal to be detected ][0 tx . 

Level 2 conversions )2(F  (see Fig. 1) is getting of a 
new function in the time dimension [ ]1;0][~ ∈ty , which indi-

cates the similarity degree between the structural elements 

model mω  of desired class and a signal fragment tω  
within the aperture. We call ][~ ty  function detection func-

tion, and to use the following function: 

∑
=

−α+
=

aN

j

t
j

m
j yy

ty

1

2)(1

1
][~           (1) 

where ]1;0(∈α  coefficient, which reflects the changes 
sensitivity of structural elements of the same class by ap-
plying noise and parameter variations. 

Based on the analysis of the detection function ][~ ty  
structural identification is performed with help of threshold 
decision rule: 

0 0 0 0

0

[ ]  [ ; ], if   [ ] ;
[ ]

all other cases

j j jx t t t t T y t Pd
x t

x

∀ ∈ + >= 


ɶ

ɶ    (2) 

where Pd  the threshold value; jt0  the point of local 

maximum of function ][~ ty , so that ][~][ 0 tyty j ≥  

)( 0 jtt Mɺ∈∀ ; }{\)()( 000 jjj ttt MM =ɺ  punctured point 

neighborhood; )( 0 jtM  point jt0  neighborhood; 
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constx =0  a constant that determines the level of the sig-
nal corresponding to the absence of SE of a given class on 
the current signal fragment (for example, corresponding 
isoline contour). 

Since the adequacy of a particular USM for each SE is 

different, in this case for design of a NF we propose to 
combine local decision rules (LDR) to the collection of 
decision rules (CDR). As a result, we propose a generalized 
scheme of structural identification of BMS with LCP based 
on NF (Fig. 2). 

 

Figure 2. A generalized scheme of structural identification BMS with LCP based on NF. 

The scheme shows that the input digital signal ][tx  is 
simultaneously sent to the input of 1st level )1(

iF  ( ni ;1= ) 
transformation. Each block output )1(

iF  generates sets
)],[(,],[0 iiii ptxfptxK
��

= , where ip
�

 vector parameter of 
i conversion; ( )ii ptxf

�
],[ i signal ][tx  ( 1;0 −= sTt ) con-

version function within the aperture. In this case, the struc-
tural elements model of a given class ][0 tx  ( 1;0 0 −= Tt ) 
must be the same for all kinds of 2nd level transformations 

)2(
iF  ( ni ;1= ). As a result of each 2nd level i transfor-

mation )2(
iF , functions ][~ tyi  are calculated using (1). 

Based on the detection functions ][~ tyi  with the help of 
local decision rules (LDR) (2) local filter responses ][~ txi  
are determined, i.e. structural identification is performed. 
Thus, i local decision rule (LDRi) has the following form: 

0 0 0 0

0

[ ]  [ ; ], if   [ ]
[ ]

all other cases

ij ij i ij i

i

x t t t t T y t Pd
x t

x

∀ ∈ + >= 


ɶ

ɶ    (3) 

where iPd  the threshold value of LDRi; ijt0  a local 

maximum point of ][~ tyi  function, so that ][~][~
0 tyty iiji ≥  

)( 0ijtt Mɺ∈∀ ; }{\)()( 000 ijijij ttt MM =ɺ  a punctured neigh-

borhood of ijt0  point; )( 0ijtM  neighborhood of ijt0  

point. 
Research of detection functions ][~ tyi  shows that using 

various USM and transformation methods and of BMS with 
LCP generally for the j structural element of the desired 
form kjij tt 00 ≠  with kj ≠ . Therefore, the application of 

generalized decision rule is performed in two stages. The 
first stage a helper function is evaluated with majority rule 

][tz : 

0 0 01, [ ; ]
[ ]

0 otherwise

j jt t t T
z t
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where )min( 00 jijj tt L∈=′ , )max( 00 jijj tt L∈=′′ the mini-

mum and maximum values of the index of found structural 
elements jL  in the j signal fragment. The jL  set is 

formed by the rule jijt L∈0 , if ];[ 000 Tttt ijij +∈∃ , so that  
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where n number of LDR. 
Function building ( ][tz ) can be described as follows. 

Let’s CDR contain 3 LDR, i.e. 3=n  . Then, in case of the 
j structural element detection functions ][tzi  superposi-

tion is shown in Fig. 3. },,{ 030201 jjjj ttt=L , jj tt 020 =′  

and jj tt 030 =′′ . 

In the second step of getting ][tz  function nonlinear 
filter response is calculated according to the following rule: 




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=
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][~

0
0

0000

j

jjj

tx

tTttttx
tx  

∑
∈
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L
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where jt0  average position of the j structural element of a 
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given type; jL  the index set of LDR for the j structural 

element; iw  the weights, taking into account the contribu-
tion of each LDR to CDR.  

In the simplest case  

j

iw
L

1= ,  

where jL  the cardinality of the jL  set. 

Thus, the filter response is determined by the kind of 
transformation )2(

iF  and of CDR. In its turn, type of 
][~ tyi  function after )2(

iF  conversion directly depends on 
the structural elements model description ][0 tx  of the de-
sired class. 

 

Figure 3. Functions 
][tzi  fragments for j- structural element, function 

][tzi  superposition and getting 
][tz

 function. 

3. Experimental Verification of the  

Detection Function Calculation with 

Different Ways to Set the Model 

As noted above, the result of )1(
iF  transformation is the 

)],[(,],[0 iiii ptxfptxK
��

=  set. Thus the transformation 

function )],[( ii ptxf
�

is not only used to describe the t
iω  

signal within the filter aperture, but also to describe the m
iω  

model of structural elements given class, i.e. 
)],[( 0 iij

m
ij ptxfy

�
= , )],[( iij

t
ij ptxfy

�
= , where m

ijy , t
ijy  the 

position m
iω  and t

iω  respectively. Let’s see the ways 
model description based on USM-2 and USM-5. 

The model signal based on the USM-2 with the ][tkϕ  
basis functions can be specified as follows:  

∑
−

=

ϕ=
1

0

0

0

][][
T

k

kk tatx , 1;0 0 −= Tt ,  

Where ),,,( 10 0 −= Tk aaaa ……
�

 basis coordinate vector. If 
we use the Fourier transformation, the basis functions are the 
harmonic functions. If we use wavelet transformation that 
would be wavelets of different shapes. As a result, the model 
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described with a
�

 vector, and the function describing the 
model transition from the time dimension to defining with 
a
�

 coefficient vector is the required )],[( ii ptxf
�

 function in 
the iK  set. Then the m

iω  model description based on 
USM-2 is the following: k

m
ij ay =  for iNj ,1=  and 

kk S∈ , where kiN S=  the number of coordinates used to 
describe the model; }1,,1,0{ 0 −⊆ Tk …S  the set of coeffi-
cient indexes ka ,required to describe the model. In this case 
the ip
�

 characteristics vector contains 0T  and kS . If all the 
coefficients ka  ( 1;0 0 −= Tk ) are used to describe the 
model, then }1,,1,0{ 0 −= Tk …S  and 0TN i = . 

Let’s consider the result examples for building detection 

function ][~ tyi  after )2(
iF  conversion at different α values 

using Haar wavelets to obtain the ka  coefficients (Fig. 4). 
Fig. 4 clearly shows that the ][~ tyi  function has local 

maximums at the fragments corresponding to the start points 
of the structural elements of the specified type (in this case 
the ECG P-wave). On the fragment corresponding to the 
beginning of the model (in Fig. 4 it is highlighted with points) 
function 1][~ =tyi . Also with decreasing the α parameter the 
local maximums become more prominent, however there are 
other local maximums in areas that do not correspond to the 
structural elements of a given type. 

 

 
Figure 4. Graphs of the source signal 

][tx
 (V4 ECG channel) and detection function 

][~ tyi : (a) 15,0=α ; (b) 05,0=α . 

The model signal ][0 tx  based on USM-5 can be de-
scribed using a variety of support functions (SF) suggested 
in [1]. For SF one can use divided differences, the coeffi-
cients of the approximating polynomials and other functions. 
It should be noted that unlike USM-2 inverse does not exist. 
In this case ][0 tx  is divided into sections with reference 
points, and each model fragment can be described with 
corresponding SF (Fig. 5). 

 

 
Figure 5. Example of reference points setup for 

][0 tx
 model setting. 

In this case )],[( ii ptxf
�

 a set of SF, and ip
�

 has positions 
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of reference points in the filter aperture. Let’s consider re-
sults examples for building the function ][~ tyi  after )2(

iF  
conversion using different SF. 

Using 1st level divided difference as SF the model de-
scription is the following:  

)/(])[][( 1010 kkkk
m
ij tttxtxy −−= ++ , 2,1, =kj ,  

where kt  indexes of reference points.  
After )2(

iF  transformation with 5,0=α , ][~
3 ty  function 

is obtained shown in Fig. 6(a). Fig. 6(a) shows that "false" 
peaks may appear which have the form of impulse noise. 
This is due to the fact that the mω  and tω  coordinates 
calculation using the SF, not all the points that fall under the 
filter aperture are involved in the calculation (only the ref-
erence points are used). Therefore, to remove the impulse 
noise from the resulting function ][~

3 ty  one can use median 
filter with an aperture of 3 points (Fig. 6(b)). 

If we use 1st and 2nd level divided differences as SF, the 
model description is the following:  

)/(])[][( 1010
m

kkkkij tttxtxy −−= ++ , 2,1, =kj ,  

0
m
1

m
2

m
3 /)( Tyyy iii −= ,  

where kt  indexes of reference points. As a result of )2(
iF  

transformation with 5,0=α  we get ][~
4 ty  function 

(Fig. 7(a)) and filtered function ][~
4 ty  after median filtering 

with an aperture of 3 points (Fig. 7(b)).  
Fig. 7(a) shows that adding a 2nd level divided difference 

into the nonlinear filter aperture did not get rid of the im-
pulse noise, so it is advised to use the median filtering for 

][~
4 ty  function. 
The main advantage of using 1st and 2nd level divided 

differences as support functions is the small computing 
complexity. We then get good enough functions ][~ tyi  
which can be used to perform SI with local decision rules 
(3). 

As SF we can use a derivative of the 1st level approxi-
mating function, i.e. among the reference points we can 
describe the model with the following functions:  

][][ 10 ttaatx jjjj ε++= , ];[ 1+∈ kk ttt  

where j number of the fragment among the reference points; 

kt  the indexes of reference points; ja0 , ja1  the coeffi-
cients of the approximating function; ][tjε  approximation 
error.  

Then the description of the model is: j
m
ij ay 1= , 2,1=j . 

The )2(
iF  with 5,0=α  transformation results is the func-

tion ][~
5 ty  (Fig. 8). 

 

Figure 6. Graphics of the original signal 
][tx

 (ECG  channel V4) and detection function 
][~

3 ty
: (a) original function 

][~
3 ty

; (b) filtered function 

][~
3 ty

. 
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Figure 7. Graphics of the original signal ][tx  (ECG V4 channel) and detection function ][~
4 ty : (a) the original function ][~

4 ty ; b) filtered function ][~
4 ty . 

 
Figure 8. Graphics of the original signal 

][tx
 (ECG V4 channel) and detection function 

][~
5 ty

. 

 
Figure 9. Graphics of the original signal 

][tx
 (ECG V4 channel) and detection function 

][~
6 ty

. 
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Since for some kind of structural elements the adoption of 
the linear dependency among the points is a rather rough 
approximation, it is better to use a 2nd level approximating 
function derivative as the SF, i.e. among the reference points 
one can use the following functions to define the model 

][][ 2
210 ttataatx jjjjj ε++= , ];[ 1+∈ kk ttt ,  

where j fragment number among the reference points; kt  the 

indexes of reference points; ja0 , ja1 , ja2  coefficients of 

the approximating function; ][tjε  approximation error.  

Then the model description is: 

jjjjj
m
ij taatxy 21 2][ +=′= , 2,1=j   

where 2/)( 1++= kkj ttt . The )2(
iF  transformation result 

with 5,0=α  we get the detection function ][~
6 ty  (Fig. 9) 

Results analysis of the experimental verification for de-
tection function calculation using various USMs showed 
their acceptable performance level. However, even for the 
same type of structural elements in different fragments of the 
signal one can not explicitly pick one of the USMs. 

4. Conclusion 

In this paper we propose a generalized method of struc-
tural identification of biomedical signals with locally con-
centrated properties based on digital non-linear filter. Ways 
to describe the structural elements model of a specific class 
using various USMs are discussed. Experimental verifica-
tion for detection function calculation ][~ tyi  is performed. 
Further research is focused on experimental verification of 
the synthesized decision rules set effectiveness using real 
signals. 

 

References 

[1] Г.Є. Філатова, “Структурна ідентифікація сигналів у 
кардіологічних системах: дис. канд. техн. наук: 05.11.17”,  
Харків, 2002, 177 с. 

[2] Г.Є. Філатова, “Нелинейная фильтрация биомедицинских 

сигналов с локально сосредоточенными признаками в 
задаче структурной идентификации”, Вісник НТУ «ХПІ». 
Тематичний випуск: Інформатика і моделювання, Харків: 
НТУ «ХПІ», 2011, № 17, С. 168-174. 

[3] A. Povoroznyuk and A. Filatova, “Generalized method of 
nonlinear filtering of biomedical signals with locally con-
centrated signs”, Material to X international conferences 
dedicated to the 60th anniversary of the radio department at 
the Lviv polytechnic national university “Modern problems 
of radio engineering, telecommunications and computer 
science proceedings”, Lviv-Slavske, 2012, p. 203. 

[4] Л.С. Файнзільберг, “Методи та інструментальні засоби 
оцінювання стану об'єктів за сигналами з локально 
зосередженими ознаками: автореф. дис. на здобуття наук. 
ступеня доктора техн. наук: спец. 05.13.06”, К., 2004, 
35 с. 

[5] Л.С. Файнзильберг, “ФАЗАГРАФ® эффективная 
информационная технология обработки ЭКГ в задаче 
скрининга ишемической болезни сердца”, Клиническая 
информатика и телемедицина, 2010, Т. 6, Вып. 7, С. 22-30.  

[6] В.Г. Абакумов, О.І. Рибін, Й.Сватош, “Біомедичні 
сигнали. Генезис, обробка, моніторинг”, навчальний 
посібник, К.: Нора-прінт, 2001, 516 с.  

[7] “Вычислительные системы и автоматическая 
диагностика заболеваний сердца”, под ред. Ц. Касереса, 
Л. Дрейфуса, М.: Мир, 1974, 504 с.  

[8] Э. Айфичер, Б. Джервис, “Цифровая обработка сигналов: 
Практический поход”, М.: Издательский дом «Вильямс», 
2004, 992 с.  

[9] А.Б. Сергиенко, “Цифровая обработка сигналов: Учебное 
пособие”, СПб.: Питер, 2006, 752 с.  

[10] А.Оппенгейм, Р. Шафер, “Цифровая обработка сигналов”, 
М.: «Техносфера», 2007, 856 с.  

[11] Б.Г. Татарский, П.И. Дудник, А.Р.Ильчук, 
“Многофункциональные радиолокационные системы. 
Учебное пособие для вузов”, М.: Дрофа, 2007, 283 с. 

[12] Ю.В. Миргород, А.И. Поворознюк, “Оптимизация 
метода идентификации биосигналов на основе 
преобразования Хока”, Вісник НТУ «ХПІ», Збірник 
наукових праць, Тематичний випуск: Інформатика і 
моделювання, Харків: НТУ «ХПІ», 2009, № 13, с. 
128-132. 

 


