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Abstract: Type II and III low-density parity-check codes (QC-LDPC) codes have been shown to have better minimum 

distance compared to Type I QC-LDPC codes. This article presents a highly flexible method for constructing high-girth type II 

and III QC-LDPC codes. The proposed algorithm establishes constraints to be observed in creating a bipartite graph of a given 

girth. The algorithm is by far more flexible in constructing a wide range (rates and lengths) of type II and III QC-LDPC codes 

compared to existing methods. Although the proposed algorithm uses a search approach to construct codes, it generally 

successfully constructs a code even at low code lengths. Constructed codes show better bit error rate performances compared 

to type I codes as expected. 
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1. Introduction 

The design, construction and implementation of 

low-density parity-check (LDPC) codes involve a range of 

contradicting factors such as error correcting performance and 

ease of implementation. Quasi-Cyclic Low-Density 

Parity-Check (QC-LDPC) codes are structured codes that 

have been shown to be easily implementable in both encoder 

and decoder because of their block and cyclic properties [1][2] 

They have also been shown to perform close to Shannon's 

capacity limit[3]. Performance of LDPC codes could be 

improved by constructing codes with larger girths [4][5]. 

Performance could also be improved further by optimizing the 

base matrix of the code. It has been shown that codes with 

circulant-weights high than one result in higher minimum 

distances than when only weight-1 circulants are used [6[7]]. 

Codes with better minimum distances tend to show better bit 

error rate performances especially at high signal to noise 

rations. Circulant-1 codes are referred to as type-I codes. Type 

I QC-LDPC codes have single connections between row 

(check nodes) and column (variable nodes) in a protograph 

(base matrix).Type II QC-LDPC codes have base or seed 

matrices with circulants weights of 0 to 2 whereas Type III 

codes have circulant weights of 0 to 3. 

In this paper we are considering codes with 

circulant-weights 0 to 3. That is, type II and III QC-LDPC 

codes.  

Multi-edge protographs are those that have multiple 

connections between nodes. Figure 1 shows a base or seed 

matrix with a corresponding protograph. Each matrix entry 

specifies the number of connections between two nodes (rows 

and columns) in the graph. There are a few construction 

methods for type II QC-LDPC codes. In [8] a deterministic 

method is presented for girth-six type II QC-LDPC codes. In 

[6][7] ways to construct base matrices with maximum 

minimum distances for type II and type III codes are presented. 

The derived matrices have upper bounds on the maximum 

girth. However, the presented methods do not derive 

constraints to construct codes that will maintain the girth 

upper bounds.  

 

Figure 1. Protograph base matrix and corresponding graph. 
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2. Proposed Algorithm 

In [9] a search algorithm is proposed that constructs 

type I flexible QC-LDPC codes. The algorithm connects 

rows (variable nodes) and columns (check nodes) one at a 

time provided the targeted girth and rate are not violated. 

The algorithm’s main steps are as listed below [9] 

Search algorithm four main steps:  

1) Divide rows and columns of the constructed code into 

j (column weight) and k (row-weight) or more equal 

size groups respectively. The division of rows and 

columns into groups creates sub-matrices of the code.  

2) The row-groups (RG) and column-groups (CG) are 

then paired such that each row-group appears k times 

and each column-group j times. The number of each 

row-group or column-group appearances determines 

the rate of the code. If the number of group 

appearances (connections) varies an irregular code is 

obtained. The pairing of RG and CG is according to 

predesigned protograph. 

3) For each row-column group (RCG) pair select a row, 

i, in the row-group, and search for a column, x, in the 

column-group that is at a desired distance (shortest 

path between nodes) from row i. Desired distance is 

g-1 where g is targeted girth. Connect rows in the 

row-group to columns in the column-group according 

to the connection of row i and column x. That is, if 

row i is connected to column x, then row i+a is 

connected to column x+a. The connections are 

modulo of the size of row and column groups, p. 

These connections create a cyclic shift in the 

sub-matrices (shifted identity sub-matrices) of the 

constructed code. Check if there are smaller cycles 

formed after connections. If there are, choose another 

column x. 

4) Use the obtained Tanner graph to form a parity check 

matrix. 

In the four steps of the proposed algorithm outlined above, 

smaller cycles are avoided by connecting the reference row i 

to a column x that satisfies a desired distance. This condition 

does not guarantee girth of six if there are multiple 

connections between nodes even if the distance from i to x is 

satisfied. 

Figure 2 shows how 4-cycles could be formed when the 

targeted girth is at least six. In both graphs of Figure 2 the 

distance from row i to column x is initially infinity ( before 

proposed dotted lines are drawn). However, if the difference 

(smallest number of nodes between two nodes in the same 

group) from i to a (i� a) is the same as that of from x to b 

(x�b) then a is mapped to b forming a cycle of 4 with i and x. 

A 4-cycle is also formed in the second graph of the figure if 

i�a is the same as x�b. The differences are modulo the size 

of row and column groups (p) and rows i and a are in the same 

group and columns x and b are also in the same group. A group 

in this case means the same sub-matrix or a single node in a 

protograph. To avoid 4-cycles in the shown graphs of Figure 2, 

the proposed algorithm searches for column x that does not 

map a onto b forming 4-cycles or less than desired cycles. The 

algorithm searches for x that is at a desired distance from i 

then checks if by connecting the two nodes smaller cycles are 

not going to be formed. If smaller cycles are going to be 

formed, x is discarded and another x is searched. 

In the next subsections we list and describe the sub-graph 

connections that could result in less than desired cycles for 

girth-six, eight and ten codes when the searched column x 

satisfies the desired distance from reference row i. To obtain 

desired girths the listed sub-graphs are avoided. 

 

Figure 2. 4-cycle formations (avoiding 4-cycles). 

2.1. Type III QC-LDPC Codes 

Type III QC-LPDC codes have at least one triple 

connection between two row and column groups. That is, 

there is at least one triple connection between two nodes of a 

protograph. Such configurations have been shown to have a 

maximum girth of six [6]. To obtain girth-six codes cycles of 

four have to be avoided in the construction of a code. The girth 

condition in the proposed algorithm does not guarantee girth 

of six. That is, smaller cycles could be obtained even if the 

distance between row i and column x is at least six. Smaller 

cycles could be formed as illustrated in Figure 2. Although, 

row i and column x do not form a six-cycle initially, when they 

are connected, they may map row a onto column b which leads 

to a four-cycle between rows i, a and columns x, b. To avoid 

4-cycles sub graphs shown in Figure 2 are avoided by 

searching for x that does not map a onto b when connected to i. 

Smaller cycles are avoided as described above. 

As explained above connecting i and x maps a onto b if the 

difference from i to a is the same as that from x to b. To avoid 

this mapping the differences must not be equal. When the 

algorithm is implemented it checks these differences to 

determine if smaller cycles will be formed or not. The 

numbers below the sub graphs show the length of the path 

with existing edges. The first number is the number of edges 

from i and the second number is the number of edges from x or 

the length of the second branch from i. The cycle will be 

completed by one or two proposed edges indicated as dotted 

lines. 

2.2. Girth-8 Type II QC-LDPC Codes 

Type II QC-LDPC codes have circulant-weights of 0 to 2 

with at least one circulant-weight of 2. Depending on the 

combination of weights they could have a maximum girth of 

eight or ten. Type II QC-LPDC codes base matrices with a 

weight configuration of [2 2] have a maximum girth of eight 

[6][7]. [2 2] means two double connections in a protograph.To 

obtain girth-eight four and six-cycles have to be avoided in the 

construction of the Tanner graph. Four cycles are avoided as 
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shown in the above sub-section.  

Figure 3 shows all the combinations of connections that 

could result in the formation of six-cycles in a [2 2] 

configuration in the base matrix. In each case the distance 

from row i to column x is assumed to be at least 7 (g-1) such 

that i and x form at least eight-cycles, where g is desired girth. 

However, if the difference from row i to row b is the same as 

from column x to b then six-cycles are formed. Therefore, to 

avoid six-cycles, configurations shown in the figure should be 

avoided. 

 

Figure 3. Avoiding six-cycles in Tanner graphs. 

It is important to note that all these cases of sub-graphs in 

Figure 3 are a result of double connections between two nodes 

(row and column groups). If there are no double connections 

then girth-eight is guaranteed by find x that is at least a 

distance of 7 from i [9]. 

 

Figure 4. Avoiding eight-cycles in Tanner graphs. 

2.3. Girth-Ten Type II QC-LDPC Codes 

For type II codes to have a girth of ten they must have a base 

matrix configuration of [1 1;1 2] [6,7]. We avoid formation of 

less than ten cycles by looking at all the connection 

configurations that may result in smaller cycles as in the above 

cases. Four and six-cycles are avoided as in the above 

subsections. Figure 4 shows how eight-cycles could be 

avoided in order to obtain girth-ten codes. As in the case of 

girth-eight, less than ten cycles are avoided by not mapping 

row a onto column b when row i and column x are connected. 

This is achieved by searching for x that avoids all these cases. 

If all these sub graphs are avoided girth-ten codes are obtained.  

Similar to avoiding 6-cycles, the shown distances under the 

sub graphs add up to 6 (g-2 or 8-2) and 7 (g-1 or 8-1). 

2.4. Algorithm Analysis 

Row-column connections could be made either from the 

row or column side in the proposed algorithm. We formally 

describe the algorithm below with connections made from the 

row side. 

QC-LDPC Code Search Algorithm [9] 

1) Divide code rows into j' equal groups of size p, 

(RG1...RGj') and columns into k' groups of size p, 

(CG1...CGk' ), where j' ≥ j and k' ≥ k. k is code 

row-weight and j is column-weight. rx is row x. Urx is a 

set of rows and columns within a desired distance from 

row rx. cx is column x. Ucx is a set of rows and columns 

within a desired distance from column cx. Distance is the 

shortest path between any two nodes (rows or columns).  

2) Make row-column group (RCG) pairings according to 

your specifications such that each row-group appears k 

times and each column-group j times for regular codes. 

The number of such group pairings is j'k or k'j for regular 

codes. The row-column groups are (RCG1 ...RCGkj'). 

Connections are made based on a predesigned 

protograph. 

3) For t = 1 to kj' { 

      Select ri from RG in RCGt, where 1 ≤ i ≥ p.  

      Sequentially or randomly search for cx from CG 

      in RCGt, where cx notin Uri and avoid smaller 

      than desired cycles by using the difference 

      condition to choose for suitable x. Else the 

      algorithm  

      fails. 

         for z = 0 to p-1 { 

             ri+z is connected to cx+z. }} 

4) Use the obtained Tanner graph to form a parity-check 

matrix. 

The proposed algorithm goes through all the possible sub 

graphs that could result in smaller cycles. The possible sub 

graphs configurations are determined by looking at the 

number of edges needed to complete a cycle. Generally we 

need two edges to complete a cycle. The two edges are from i  

to x and from a to b. Therefore we look for all subgroups 

configurations with total length of (g-2) where g is the targeted 

girth. Some of the numbers below the sub graphs add up to 
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(g-2). One length is from i, the other from x. There are other 

cases where a single line is needed to complete a cycle and 

others where multiple lines would be required. These cases are 

also shown in the sub graphs. Using this observation, we could 

systematically calculate all the sub-graphs for a given girth as 

was demonstrated in our Matlab code in [10]. 

As shown in [9] the computational complexity of the 

algorithm is O(M) where M is the number of rows. 

Although each execution of the algorithm does not 

guarantee that we will get a code (that is, algorithm may fail in 

step 3), from our experiments the algorithm constructs a code 

most of the time even for small groups sizes (sub matrix size). 

The proposed algorithm is flexible in that the number of 

sub-matrices and their sizes is not fixed. Protographs could be 

designed for better performance, to suit a particular decoder 

architecture and decoder architecture techniques such as 

overlapping to speedup decoding computations. Irregular 

codes could be obtained by having an unequal number of row 

and column groups’ connections. The length of a code can 

easily be varied by changing the size of row and column 

groups and the rate by changing the values of j and k 

accordingly. 

3. Performance Simulations 

Bit error rate (BER) performances of constructed codes 

were simulated on an AWGN channel with BPSK modulation. 

Performance curves for girth-six and ten codes are shown in 

Figure 5. The figure compares BER performance of type I and 

type II and Type III (786, 3, 6) QC-LDPC codes. Type I codes 

were constructed using the method in [9] and type II and III 

codes using the proposed method. Type II and III codes 

slightly outperform type I codes at 3 SNR. Performance of 

type II and III codes is expected to be better at low SNR. 

However, performance simulations shown did not go further 

to the floor area. Further simulations need to be performed 

reaching the floor area to investigate the extent to which type 

II and III codes are better compared to type I codes.  
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Figure 5. BER performances of type I, II and III qc-ldpc codes 

4. Conclusions 

A search algorithm for constructing high-girth type II and 

type III Quasi-Cyclic LDPC codes has been presented. The 

algorithm is flexible in that, it could be used with any 

protograph configuration, a wide range of rates and lengths 

can easily be obtained for both regular and irregular codes. 

Experiments from the implemented Matlab programs obtained 

codes reasonably fast and do not require very large sub 

matrices to find codes. The algorithm offers more flexibility 

compared to previous developed QC-LDPC construction 

algorithms. Obtained codes show good BER performances. 

LDPC codes are being considered by a number of 

communication standards. The presented algorithm is well 

suited to construct a wide variety of codes in the proposed 

standards. 
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