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Abstract: In this paper, we mainly study the Lyapunov asymptotical stability of linear and interval linear fractional order 

neutral systems with time delay. By applying the characteristic equations of these two systems, some simple sufficient 

Lyapunov asymptotical stability conditions are deserved, which are quite different from other ones in literature. In addition, 

some numerical examples are provided to demonstrate the effectiveness of our results. 
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1. Introduction 

Fractional order systems have many obvious advantages 

since fractional order differential is more adequate to 

describe real word problems because it has more degrees of 

freedom. At the same time, a memory is also included in the 

model. Therefore, fractional order systems have gained 

important applications in various sciences such as signal 

processing, viscoelasticity, electroanalytical chemistry, 

electric conductance of biological systems, modeling of 

neurons, diffusion processes, damping laws, rheology 

physics, electrode electrolyte polarization, electromagnetic 

wave, etc. For more details, please see [1-4]. 

Time delay may have considerable impacts on the stability 

of the system because it often presents in real processes due 

to transportation of materials or energy. Thus, most fractional 

systems may contain delay terms, such as fractional order 

neutral systems or some other fractional order delay systems. 

If the system contains delays both in its states and in the 

derivatives of its states, then the system is called a neutral 

type delay system. Neutral type delay systems are very 

common in realities. 

Stability analysis is one of the most important issues in the 

theory of differential equations and their applications for both 

deterministic and stochastic cases. Stability analysis of 

fractional differential equations is more complex than that of 

classical differential equations, because fractional derivatives 

are nonlocal and have weakly singular kernels. The stability 

analysis of time delay systems can be generally classified as 

two types: the time delay dependent criteria and the time 

delay independent stability. As there is no the upper limit to 

time delay, time delay independent results can be regarded as 

conservative in practice. Because of the complex definition 

of fractional order integral, the analysis of fractional order 

equations is more difficult than that of integral equations. 

Nowadays, various stability analysis techniques have been 

used to derive stability criteria for the fractional system. The 

most well-known one is Matignon's stability theorem [5]. 

This theorem permits us to determine the stability of the 

linear fractional order system through the location in the 

complex plane of the dynamic matrix eigenvalues of the state 

space like system representation. Matignon's theorem is the 

starting point of several results in the field of linear fractional 

order system stability analysis. In addition, Lambert functions 

approach ([6, 7]), Lyapunov's second approach [8], Matrix 

measure approach ([9, 10]), Bellman-Gronwall's approach 

([11]) and LMI approach ([12]) are also used to investigate 

the stability of fractional order linear systems. All of these 

approaches have their own advantages and disadvantages. 

Recently, a finite-time stability analysis of fractional order 
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time delay systems is firstly presented and reported on paper 

[13]. But till now, only a few papers studied the stability of 

fractional neutral systems with delay. Lyapunov approach of 

nonlinear fractional order neutral system were extended in 

paper [14]. However, it is difficult to use Lyapunov method 

to study the stability of fractional order neutral systems with 

delay for the complicated of the fractional derivatives. All of 

those have motivated our research. 

In this paper, we are interested in the Lyapunov 

asymptotical stability of linear fractional order neutral 

systems with time delay. By using the characteristic 

equation of the system, some simple sufficient Lyapunov 

asymptotical stability conditions are deserved. In addition, 

we studied the Lyapunov asymptotical stability of interval 

linear fractional order neutral system with time delay. 

Finally, two examples are provided to demonstrate the 

effectiveness of our results. 

The rest of the paper is organized as follows. In Section 2, 

we give some notations and lemma, recall some concepts and 

preparation results. In Section 3, using the characteristic 

equations of the systems, we study the Lyapunov 

asymptotical stability of linear and interval linear fractional 

order neutral systems with time delay. Some sufficient 

conditions are deserved. In Section 4, two numerical 

examples are provided. 

2. Problem Formulation and 

Preliminaries 

In this section, we introduce some notations, definitions, 

and preliminary facts needed in this paper.  

The idea of fractional calculus has been known since the 

development of the regular calculus, with the first reference 

probably being associated with Leibniz and L’Hospital in 

1695 where half-order derivative was mentioned. The 

differ-integral operator, denoted by a tDα
, is a combined 

differentiation and integration operator commonly used in 

fractional calculus, which is defined by 
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Beyond all doubt, there are different definitions for 

fractional derivatives, see [15]. The most commonly used 

definitions are the Grunwald-Letnikov, Riemann-Liouville 

and Caputo definitions. Riemann-Liouville and Caputo 

definitions are often used in pure mathematicians, and the 

last one is often adopted by applied scientists, because 

Caputo definitions is more convenient in engineering 

applications. The Caputo definition is sometimes called 

smooth fractional derivative in literature because it is 

suitable to be treated by the Laplace transform technique, 

while the Riemann-Liouville definition is unsuitable. Here 

we only discuss Caputo derivative, so in the rest of the paper, 

Dα
 is used to denote the Caputo fractional derivative of 

order α . Define 
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where m  is an integer satisfying 1m mα− < ≤ . In 

engineering physics and economics, the fractional order α  

often lies in (0, 2), so in this paper we always suppose on the 

case that the fractional order is 0 2α< < . 

Firstly, let us consider the linear fractional order neutral 

system with time delay described by the following form: 

( ( ) ( )) ( ) ( )
d

Ex t Cx t Ax t Bx t
dt

α

α τ τ− − = + −     (1) 

with the initial condition 0( ) ( ) [ ,0]x t t t Cψ+ = ∈ −∆ . Here 

0 1α< <  is the fractional commensurate order, ( ) nx t ∈ℝ  

denotes the state vector. E , A and 
n nB ×∈ℝ  are the 

constant matrices, and matrix E  is singular, that means rank

1E n n= < , and 0τ >  is the pure time delay. 

If matrices A  and B  are uncertain, then the interval 

linear fractional order system with time delay above can 

be described by the state space equation of the following 

form 

( ( ) ( )) ( ) ( )
d

Ex t Cx t Ax t Bx t
dt

α

α τ τ− − = − −     (2) 

where 

1 2 1 2

1 2 1 2

[ , ] {[ ] :

[ , ] {[ ] : ,1

,

, }.

ij ij ij ij

ij ij ij ij

A A A a a a a

B B B b b b b i j n

∈ = ≤ ≤

∈ = ≤ ≤ ≤ ≤
 

This kind of matrices are called interval matrices. 

Throughout this article, let ( )Aρ be the spectral radium of 

the matrix A , |A| denote the modulus matrix of the matrix A , 

and let ( )e sℜ  be the real part of s . 

First, let us recall a known lemma about matrix theory. To 

prove the main results in the next section, we need this very 

important lemma. 

Lemma 2.1 ([15]). Let R, T, and 
n nV ×∈ℂ . If | |R V≤ , then 

( ) (| |) (| | | |) ( | |),R T R T R T V Tρ ρ ρ ρ+ ≤ + ≤ + ≤ +
( ) (| || |) ( | |),RT R T V Tρ ρ ρ≤ ≤

 

( ) (| |) ( ).R R Vρ ρ ρ≤ ≤
 

3. Main Results 

In this section, we consider the stability of linear fractional 

neutral system (1) and interval linear fractional neutral system 

(2). Here, we always assume that these two fractional neutral 

systems have unique continuous solutions 
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3.1. Stability of Linear Fractional Neutral Systems with 

Time Delay 

In this subsection, several sufficient conditions of stability 

of linear fractional order neutral systems with time delay are 

given. 

Theorem 3.1. If all the roots of the following characteristic 

equation 

( ) ( ( ) ( )) 0s sD s det s E Ce A Beα τ τ− −= − − + =
 

have negative real parts, then the zero solution of the system (1) 

is Lyapunov asymptotically stable. 

Proof. Similar to [16], by taking Laplace transform of the 

linear fractional order system (1), we can easily prove this 

theorem. 

Next, we assume the matrix pair ( , )E C  is regular with 

index one, then there exist nonsingular matrices , n nP Q ×∈ℝ  

such that 

1

1

10 0
, .

00 0

n

n n

I C
PEQ PCQ

I −

   
= =      
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        (3) 

In addition, let ( ) 1

( ) ( )
s

H s s E Ce A
α τ −−= − − , and MH  is 

the matrix formed by taking the maximum magnitude of each 

element of matrix ( )H s  for ( ) 0e sℜ > . Then we have the 

following theorem. 

Theorem 3.2. The system (1) is Lyapunov asymptotically 

stable, if the following inequalities are satisfied: 

( )(1). ( ) 0, 0, ( ) 0;sdet s E Ce A e sα τ τ−− − ≠ ∀ > ℜ ≥
 

(2). ( (| |) 1.MH Bρ <
 

Proof. If the condition (1) in Theorem 3.2 holds, for

( ) 0e sℜ ≥ , we have  

( )
1

( ) ( ( ) )

( ) ( ( ) ( )).

s s

s

D s det s E Ce A Be

det s E A det I s E A Be

α τ τ

α α τ

− −

− −

= − − −

= − − −ɶ ɶ
   (4) 

Here sE E Ce τ−= −ɶ . 

If the condition (2) in Theorem 3.2 holds, using the Lemma 

2.1, we can obtain, for any ( ) 0e sℜ ≥  

1(( ( ) ) ) (| ( ) || |)

( | |) 1.

s s s

M

s E Ce A Be F s Be

H B

α τ τ τρ ρ
ρ

− − − −

≤
− − ≤

<
  (5) 

According to (4) and (5), we can get 

1( ( ( ) ) ( )) 0, e(s) 0.s sdet I s E Ce A Beα τ τ− − −− − − ≠ ∀ℜ ≥
 

So ( ) 0D s ≠ for ( ) 0e sℜ ≥ and 0s ≠ . Thus, when that two 

conditions in Theorem 3.2 hold, we can obtain that all the 

roots of the following characteristic equation 

( ) ( ( ) ( )) 0s sD s det s E Ce A Beα τ τ− −= − − + =
 

have negative real parts, so the linear fractional order neutral 

system (1) is Lyapunov asymptotically stable. Thus the proof 

is completed.  

Theorem 3.3. The system (1) is Lyapunov asymptotically 

stable, if for any 0, e(s) 0τ > ∀ℜ ≥  the following inequalities 

are satisfied 

1
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where MG  is the matrix formed by taking the maximum 

magnitude of each element of the following matrix 
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Proof. If the condition (1) in Theorem 3.3 holds, then the 

following matrix 

1

1

1

1 0

0
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s
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exists for ( ) 0e sℜ ≥ . According to (3), we have 
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Here sP PEQ PCQe τ−= −ɶ . 

If the condition (2) in Theorem 3.3 holds, then using the 

Lemma 2.1, we can obtain  

1

1

1

1 0

0

( (| |)) 1.

s
n s

s
n n

M

I C e
s PAQ PBQe

e I

G PBQ

τ
α τ

τ
ρ

ρ

−
−

−
−

−

   −    −       

≤ <

  (7) 

Then, according to (6) and (7), we can get 
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0
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So we have ( ) 0D s ≠  for any ( ) 0e sℜ ≥ . Thus we complete 

the proof.  

3.2. Stability of Interval Linear Fractional Order Neutral 

System with Time Delay 

In this subsection, several sufficient conditions of stability 

of interval linear fractional order neutral systems are given. 

Now, we consider the interval linear fractional order neutral 

system (2). Start with, we need to give some definitions. 

Let 

1 21
( )

2
A A A= + , A A A∆ = − , 2MA A A= − , 

1 21
( )

2
B B B= + , B B B∆ = − , 2MB B B= − , 

then we can get | | MB B∆ ≤ . We have the following theorems 

about the interval linear fractional order neutral system (2). 

Theorem 3.4. The interval linear fractional order neutral 

system (2) is Lyapunov asymptotically stable, if the following 

inequalities are satisfied: 

( )(1). ( ) 0, 0, ( ) 0sdet s E Ce A e sα τ τ−− − ≠ > ℜ ≥ ; 

(2). ( ( | |) 1.M M MF A B Bρ + + <  

Proof. If the condition (1) in Theorem 3.4 holds, we have 

for ( ) 0e sℜ ≥ , 

1

( ) (( ) ( ( ) ))

( ) ( ( ) ( ( ) )).

s

s

D s det s E A A B B e

det s E A det I s E A A B B e

α τ

α α τ

−

− −

= − − ∆ + + ∆

= − − − ∆ + + ∆

ɶ

ɶ ɶ
  (8) 

If the condition (2) in Theorem 3.4 holds, using the Lemma 

2.1, we obtain, for any ( ) 0e sℜ ≥  

1(( ( ) ) ( ( ) ))

(| ( ) || ( ) |)

( ( | | )) 1.

s s

s

M M M

s E Ce A A B B e

F s A B B e

F A B B

α τ τ

τ

ρ
ρ
ρ

− − −

−

− − ∆ + + ∆

≤ ∆ + + ∆

≤ + + <

     (9) 

According to (8) and (9), we can get ( ) 0D s ≠  for 

( ) 0e sℜ ≥ , so when that two conditions in Theorem 3.4 hold, 

we can easily obtain that all the roots of the characteristic 

equation of system (2) have negative real parts, then the 

system (1) is Lyapunov asymptotically stable. Thus the proof 

is completed.  

Theorem 3.5. The system (2) is Lyapunov asymptotically 

stable, if for any 0, ( ) 0e sτ > ℜ ≥ , the following two 

inequalities are satisfied  

1 1 0
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where MG  is the matrix defined in Theorem 3.3. 

Proof. If the condition (1) in Theorem 3.5 holds, according 

to (3), we have 
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If the condition (2) in Theorem 3.5 holds, using the Lemma 

2.1, we obtain, for ( ) 0e sℜ ≥ , 

( )1
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1
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( )

0
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 (11) 

According to (10) and (11), we can get ( ) 0D s ≠  for

( ) 0e sℜ ≥ . So when that two conditions in Theorem 3.5 hold, 

we can obtain that all the roots of the characteristic equation of 

system (2) have negative real parts, then the interval system (2) 

is Lyapunov asymptotically stable. Thus the proof is 

completed.  

4. Numerical Examples 

In this section, some numerical examples are given to 

demonstrate the effectiveness of those theorems in section 3. 

Example 4.1 Consider the stability of the following linear 

fractional order neutral system with time delay 

( )( ) ( ) ( ) ( )
d

Ex t Cx t Ax t Bx t
dt

α

α τ τ− − = − −       (12) 

where 
1

2
α = , and 

2 0 1 0
, ,

0 0 0 1

1 0 0.5 0
, .

0 1 0 0.4

E C

A B

   
= =   −   

−   
= =   −     

Firstly, note that 

(2 ) 1 0
( , ) ( ) ,

0 1

s
s

s

s e
F s s E Ce A

s e

α τ
α τ

α τ
τ

−
−

−

 − +
= − − =  

 +   

So we have ( ( , ) 0det F s τ ≠  for 0τ∀ >  and ( ) 0e sℜ ≥ ,  
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1

1
0

1 (2 )
( ( , )) ,

1
0

1

s

s

s e
F s

s e

α τ

α τ

τ
−

−

−

 
 + − =
 
 

+   

So we can get
1 0

.
0 1

MF
 

=  
 

 Since the eigenvalues of 

matrix | |MF B  are 1 20.5, 0.4λ λ= = , then we can get 

( | |) 1MF Bρ <  easily. Therefore, from Theorem 3.2, we 

know that the fractional system (12) is Lyapunov stable. 

Example 4.2. Consider the stability of the following interval 

linear fractional order neutral system with time delay 

( )( ) ( ) ( ) ( )
d

Ex t Cx t Ax t Bx t
dt

α

α τ τ− − = − −     (13) 

where 
1

2
α = , and 

12 0 1 0 1.2 0
, , ,

0 0 0 1 0 1.3
E C A

−     
= = =     − −       

2 1 20.8 0 0.21 0 0.72 0
, , .

0 0.7 0 0.39 0 0.5
A B B

−     
= = =     −     

 

Firstly, we note that 

1 0 0.2 0
, ,

0 1 0 0.3
MA A

−   
= =   −     

0.465 0 0.155 0
, .

0 0.445 0 0.095
MB B

   
= =   
     

From Example 4.1, we know that 

1 0
,

0 1
MF

 
=  
   

So we can get 

0.82 0
( | | ) .

0 0.84
M M MF A B B

 
+ + =  

   

Since the eigenvalues of matrix ( | | )M M MF A B B+ +  are

1 20.82, 0.84λ λ= = , then ( (| | ) 1M MF B Bρ + < . Therefore, 

from Theorem 3.4, we know that the interval fractional order 

system (13) is Lyapunov stable. 

5. Conclusions 

In summary, this paper mainly presents some brief 

sufficient conditions for the stability of a class of linear 

fractional order neutral system with delay and linear interval 

fractional order neutral system with delay. The proposed 

method here is quite different from other ones in literature. 

Two simple examples also demonstrate that this method is 

feasible. 
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