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Abstract: Most industrial processes have time-varying parameters, the Induction Motor IM is a typical example, in fact the 

rotor resistance (Rr) can vary and reach 100% of its nominal value during operation because of the heating of the rotor, the 

effect of the variation of the stator resistance (Rs) is very influential at low speed for our case because it can go up to 50% of 

its initial value, it is proposed in this work to developed a method that involves the observation of the speed and the 

simultaneous estimation of the principal parameters varying in time, and in particular the estimation of the stator resistance Rs 

and rotor Rr of the induction motor using sliding-mode observer when only the stator currents and voltages are accessible by 

measurement. After the theoretical study we will validate the method proposed by the simulation results where we will show 

the fairly fast convergence of this method as well as its robustness. 
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1. Introduction 

The field-oriented control technique has been widely used 

for high-performance induction motor (IM) drive With this 

technique, the decoupling of torque and flux control 

commands of the induction motors is guaranteed and the 

induction motor can be controlled linearly as a separated 

excited dc motor. Indirect field-oriented control (IFOC) is 

one of the most effective vector controls of IM due to the 

simplicity of design and implementation [1]. But, the 

knowledge of the rotor speed is necessary, this necessity 

requires additional speed sensor which adds to the cost and 

the complexity of the drive system. Over the past few years, 

ongoing research has concentrated on the elimination of the 

speed sensor at the machine shaft without deteriorating the 

dynamic performance of the drive control system. The 

advantages of speed sensorless induction motor drives are 

reduced hardware complexity and lower cost, reduces size of 

the drive machine, elimination of the sensor cable, better 

noise immunity, increased reliability and less maintenance 

requirements, [2]. 

In order to achieve good performance of sensorless vector 

control, different speed estimation schemes have been 

proposed, and a variety of speed estimators exist nowdays 

[3]. Such as direct calculation method, model reference 

adaptive system (MRAS), Extended Kalman Filters (EKF), 

Extended Luenberger observer (ELO), ect. 

Out of various approaches, Luenberger observer based 

speed sensorless estimation has been recently used, due to its 

good performance and case of implementation. The 

Luenberger observer (LO) belongs to the group of closed 

loop observers. It is a deterministic type of observer because 

it is based on a deterministic model of the system, [4]. 

Therefore, parameter errors can degrade the speed control 

performance. However, the rotor and the stator resistance 

variation has a great influence on the speed estimation [2], 

[5]. So, online adaptation of the stator resistance can improve 

the performance of sensorless IFOC drive at the low speed 

region. So, a simultaneous estimation of rotor speed with 

stator and stator resistance is presented based on a luenberger 

observer. 

This paper is organized as follows. In Section 2, dynamic 

model of induction motor is reported; principle of field-

oriented controller is given in Section 3. The proposed 

solution is presented in Section 4. In Section 5, results of 
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simulation tests are reported. Finally, Section 6 draws 

conclusions. 

2. Dynamic Model of Induction Motor 

By referring to a rotating reference frame, denoted by the 

superscript (d, q), the dynamic model of a three–phase 

induction motor can be expressed as follows, [2]: 
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ωs and ωr are the electrical synchronous stator and rotor 

speed; σ is the linkage coefficient, and Tr is the rotor time 

constants. 

3. Principle of Field Oriented Controller 

(Foc) 

There are tow categories of vector control strategy. We are 

interested in this study to the so-called IFOC. As shows in Eq 

(1) that the expression of the electromagnetic torque in the 

dynamic regime presents a coupling between stator current 

and rotor flux, [2]. 

The main objective of the vector control of induction 

motors is, as in DC machines, to independently control the 

torque and the flux; this is done by using a d-q rotating 

reference frame synchronously with the rotor flux space 

vector. The d-axis is then aligned with the rotor flux space 

vector (Blaschke, 1972). Under this condition we get: 

ϕ rd = ϕ r and ϕ rq = 0 

The torque equation becomes analogous to the DC 

machine and can be described as follows: 
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It is right to adjust the flux while acting on the stator 

current component isd and to adjust the torque while acting on 

the isq component. 

Using the Eq (1) we get: 
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The stator voltage commands are:
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The voltages vsd and vsq should act on the current isd and isq 

separately and consequently the flux and the torque. The two-

phase stators current are controlled by two PI controllers 

taking as input the reference values sd sqi , i  • •  and the 

measured values. Thus, the common thought is to realize the 

decoupling by adding the compensation terms ( %sde  and %sqe ). 

The block decoupling is described by the following 

equations: 
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It is necessary to determine the amplitude and the position 

of rotor flux. In the case of an indirect field oriented control, 

the module is obtained by a block of field weakening given 

by the following non linear relation: 
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The slip frequency can be calculated from the values of the 
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stator current quadrate and the rotor flux oriented reference 

frame as follow: 
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The rotor flux position is given by: 
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For Speed Regulation, the use of a classical PI controller 

makes appear in the closed loop transfer function a zero, 

which can influence the transient of the speed. Therefore, it is 

more convenient to use the so-called IP controller which has 

some advantages as a tiny overshoot in its step tracking 

response, good regulation characteristics compared to the 

proportional plus integral (PI) controller and a zero steady-

state error, [2]. 
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Figure 1. Bloc diagram of IP speed controller. 

The gains of IP controller, Kp and Ki, are determined using 

a design method to obtain a trajectory of speed with the 

desired parameters (ξ  and nω ). The gains parameters values 

of the IP speed controller are easily obtained as: 
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4. Luenberger Observer 

The Luenberger observer (LO) belongs to the group of 

closed loop observers. It is a deterministic type of observer 

because it is based on a deterministic model of the system. 

This observer can reconstruct the state of a system 

observable from the measurement of inputs and outputs. It is 

used when all or part of the state vector can not be measured, 

[2], [7]. 

It allows the estimation of unknown parameters or 

variables of a system. 

The equation of the Luenberger observer can be expressed 

as: 

( )
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In this work, a sensorless Indirect Rotor-Flux-oriented 

Control (IFOC) of induction motor drives is studied. The 

strategy to estimate the rotor speed, stator resistance and the 

flux components is based on Luenberger state-observer (LO) 

including an adaptive mechanism based on the lyaponov 

theory, as displayed in Figure 3. 

 

Figure 2. Luenberger Observer. 

4.1. Rotor Model of Induction Motor in the Coordinate 

( , )α β  

The model of the induction motor can be described by 

following state equations in the stationary reference ( , )α β , 

[2], [8]: 

. .

.

X A X BU

Y C X

∧ = +

 =

                               (14) 
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The state equations can be written as follows: 
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4.2. Determination of the Gain Matrix 

The determination of the matrix K using the conventional 

procedure of pole placement. We proceed by imposing the 

poles of the observer and therefore it’s dynamic. 
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Determining the coefficients of K by comparing the 

characteristic equation of the observer with the one we wish 

to impose. In developing the different matrices A, C and K 

we obtain the following equation: 
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The dynamics of the observer is defined by the following 

equation: 
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Whose roots are proportional to the poles of the MAS; the 

proportionality constant k is at least equal to unity (0< k > 1) 

The identification of expressions (16) and (17) gives: 
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For the coefficients of the gain matrix of the observer is 

placed: 
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and in accordance with the antisymmetry of the matrix A we 

set the gain as follows: 
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The poles of the observer are chosen to accelerate 

convergence to the dynamics of the open loop system. In In 

general, the poles are 5-6 times faster, but they must remain 

slow compared to measurement noise, so that we choose the 

constant k usually small. 

4.3. State Representation of the Luenberger Observer 

As the state is generally not available, the goal of an 

observer is to place an order by state feedback and estimate 

this state by a variable which we denote X
∧

: 

Where: 

ˆ ˆ ˆ ˆ ˆ[ ]Ts s r rX I Iα β α βϕ ϕ=                   (22) 

So the state space of the observer becomes as follows: 

ˆ ˆˆ( ). . .( )&̂
r r s sA X BU K I IX ω ω= + + −               (23) 

With 

ˆ ˆ ˆ( ) [ ]s s s s s sI I I I I Iα β− = − −  

4.4. Adaptive Luenberger Observer for Speed Estimation 

Suppose now that speed is an unknown constant 

parameter. It's about finding an adaptation law that allows us 

to estimate it. The observer can be written, [2]: 
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The mechanism of adaptation speed will be reduced by 

Lyapunov theory. The estimation error of the stator current 

and rotor flux, which is simply the difference between the 

observer and the engine model, is given by: 
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A sufficient condition for uniform asymptotic stability is 

that equation (34) is negative, which amounts to cancel the 

last two terms in this equation (since the other terms of the 

second member of (27) are always negative), in which case 

we can deduce the adaptation law to estimate the rotor speed 

by equating the second and third term of Eq. 

It is estimated the speed by a PI controller described by the 

relationship: 
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With Kp and Ki are positive constants. 

4.5. Adaptive Luenberger Observer for Speed and Stator 

Resistance Estimation 

Vector control is sensitive to the motor parameter 

variation. Especially, stator and rotor resistance vary widely 

with the motor temperature, [5], [6]. 

If the rotor speed and stator resistance are considered as 

variable parameters, assuming no other parameter variations, 

so the state space of the observer becomes as follows: 
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A Lyapunov function candidate is defined as follows: 
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The adaptive scheme for stator resistance estimation is 

found by, [5], [6]: 

(( ). ( ). )

(( ). ( ). )

s s s s sp s s

i
s s s ss s

R K i i i i i i

K
i i i i i i dt

s

α α β βα β

α α β βα β

∧ ∧ ∧ ∧ ∧

∧ ∧ ∧ ∧

= − + − +

− + −∫
 (32) 

( . . ) ( . . )i
e e e es s s s sp i i i i

s s s s

K
R K i i i i dt

s
α β α β

α β α β

∧ ∧ ∧ ∧ ∧
= + + +∫  (33) 

With: 

ess i
s

i i αα α

∧
− = ; ess i

s
i i ββ β

∧
− =  

Kp and Ki are positive constants. The role of adaptive 

mechanisms is to minimize the following errors. 

4.6. Estimation of Rotor Resistance 

To improve the performance and simplify the vector 

control and reduce its cost, we will base this part on a 

hypothesis to deduce the value of the rotor resistance 

estimate from the estimation of the stator resistance. Still, it 

is assumed that the motor windings are almost at the same 

temperature, and neglecting the skin effect, the resistances 

will vary proportionally. 

The rotor resistance estimate can be determined by the 

following relation, [9], [10]: 

.
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Figure 3. Luenberger Observer for simultaneous estimation of speed, Rr  and Rs. 

 

Figure 4. Simulation results of the speed estimation with stator resistance increased sharply by 50% from Rs and rotor resistance increased sharply by 50% 

from Rr. 
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Figure 5. Speed sensorless control with stator and rotor resistance estimation at low speed. 

5. Results of Simulations and Discussion 

Adjustment performance with the proposed observation 

algorithm is evaluated by numerical simulation for several 

operating conditions of the machine with indirect vector 

control (IFOC). 

The simulation results (Figures 4), show the simultaneous 

estimation of the speed and two resistors (stator and rotor) 

It is clear that: 

The estimated resistances converge to the nominal 

resistances quickly and with great accuracy, or the estimation 

error is acceptable after a very short transient regime. 

The injection of these values into the flux observer keeps 

the performances of the flux observer and the vector control, 

in fact all the basic magnitudes of the machine (speed, rotor 

flux, stator currents, and the torque) converge to their 

nominal values. 

So can say that all the parameters are identical (resistances 

of the motor and the observer). 

Figure 5 illustrates simulation results of Speed Sensorless 

Vector Control based on speeed estimation and two resistors 

simultaneously, for a low speed reference (5 rad / sec) and 

application of a 10 Nm resistive torque at times t = 1s. 

From these results, find that: 

At the beginning of the simulation the stator resistance is 

equal to its nominal value. At time t = 1.5 sec the value of Rs 

increases to a value of 7.275 Ohm, which corresponds to an 

increase of + 50% of its nominal value as well as the rotor 

resistance (+ 50% Rr). 

So, can note that: 

- The estimation of the two resistances carried out 

precisely, 

- The estimation of the speed is done correctly 

- The decoupling is still maintained, which proves the 

efficiency of the rotor resistance estimation 

This proves that our system responds successfully to this 

type of test and the estimator remains stable. 

6. Conclusion 

This paper has outlined a new scheme for a sensorless 

speed control scheme for induction motors. Theoretical 

analysis and simulation results demonstrate that the proposed 

speed control scheme has a good speed response and so 

confirm the feasibility of the proposed algorithm. Practical 

implementation of the proposed method is a subject of future 

follow up research work. 

Appendix 

Induction Motor Parameters 

50 Hz, 1.5 Kw, 1420 rpm, 380 V, 3.7A, Rr=3.805Ω, 

Rs=4.85Ω, Ls 274=mH, Ls 274=mH 0.031=J kg.m
2
, 

F=0.00114kg.m
2
/s 
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