

Science Journal of Circuits, Systems and Signal Processing
2018; 7(2): 68-73

http://www.sciencepublishinggroup.com/j/cssp

doi: 10.11648/j.cssp.20180702.14

ISSN: 2326-9065 (Print); ISSN: 2326-9073 (Online)

Use of a Hysteresis Loop Activation Function to Enable an
Analog Perceptron to Gain Memory

William Brickner, Muhammad Sana Ullah

Department of Electrical and Computer Engineering, Florida Polytechnic University, Lakeland, USA

Email address:

To cite this article:
William Brickner, Muhammad Sana Ullah. Use of a Hysteresis Loop Activation Function to Enable an Analog Perceptron to Gain Memory.

Science Journal of Circuits, Systems and Signal Processing. Vol. 7, No. 2, 2018, pp. 68-73. doi: 10.11648/j.cssp.20180702.14

Received: May 17, 2018; Accepted: June 14, 2018; Published: July 10, 2018

Abstract: With the advent of memristors, analog artificial neural networks are closer than ever. Neural computing is growing

as a topic of research. In the context of analog artificial neural networks, the purpose of this research is to verify that a perceptron

could gain a discrete memory from implementing a hysteresis loop in the activation function. The discrete memory is represented

by the difference path of the hysteresis activation function that took from logic 1 to logic 0. To write to the memory, the input to

the hysteresis loop would have to exceed threshold. To read the stored value, the input would have to be between the thresholds of

the hysteresis function. In order to verify the perceptron’s memory, a network with manually chosen weights is selected which

acts as a shift register. The components of this network are assembled in a circuit simulation program. Functionally, the network

receives two inputs: a data signal and an enable signal. The output of the network is a time-shifted version of previous input

signals. A system whose output is a time-shifted version of the previous inputs is considered to have memory.

Keywords: Artificial Neural Network, Recurrent Neural Network, Memristors, Hysteresis Loop Activation Function,

Analog Computing, Neural Computing, Long Short-Term Memory

1. Introduction

Artificial neural networks (ANNs) have been a known data

structure in computing since the late 1940’s [1]. Until the

advent of stronger processing in the late 1990’s, computers

were not able to train at usable rates and/or solve problems

more effectively than expert systems could solve [2]. Along

with properly labeled data for a specific application, the

current bottleneck in neural networks is the speed at which

they are able to train. One contributing factor to this is that

operations have distributed to a general purpose computing

devices such as GPU’s or CPU’s. Even though these

processing units are optimized in and of themselves, there is

an overhead associated with being able to distribute labor to

these devices and ensuring that the output of these devices

align discretely with an internal clock signal. In application,

specific hardware generality is lost for the gain of speed.

To measure the effectiveness of a change to the

improvement of an algorithm, time complexity is the metric

that used in CCT [3]. Reducing a problem’s time complexity

by performing operations in parallel is a technique that used in

the bitonic sort [4]. Bitonic sort has algorithmic time

complexity of O (log
2
n) when measured with parallel time

complexity [4]. This is a faster time than what considered the

fastest sort because all of the operations are being executed in

parallel [4]. The fastest average case sort for an unordered list

in linear time complexity is considered to be quicksort with a

time complexity of O (n log (n)). Reducing the algorithmic

complexity of forward and back propagation by distributing

the labor would allow to unprecedented sizes for scaling

networks. Scaling would be able to occur in time to train the

network. It would be less dependent on the size of the network

and more dependent on the ability to collect labeled data due

to the difference in algorithmic complexity. This is because

each operation would distribute in such a way that the

drudgery can do in parallel. In addition, each component

executing the operation would execute substantially faster.

The idea would be to take these operations are currently being

performed virtually and accelerate them by distributing the

labor with application specific perceptron hardware. This

would revolutionize the neural network by allowing a network

to be scaled larger than ever before.

The limits on an ANN are in large part of the lack of

circuitry in existence, which functions as weights in the

 Science Journal of Circuits, Systems and Signal Processing 2018; 7(2): 68-73 69

network that can change [22]. With the change of weights,

there is still a question on how precisely to set the analog

weights. If the weights can be precisely set, it becomes a

question of how to choose the values to set the weights too.

Currently, there is a device called memristor that has explored

for its potential to provide weights in an analog neural network

that can change. Leon Chua [5] first theorized the memristor

to exist based on symmetry of physics in the 1971 paper. It is

not until 2009 that researchers at HP labs are able to document

the discovery of a memristor in the nature journal [6], [10]. A

memristor has the property that its resistance is dependent

upon the total amount of current that has passed through the

device [7], [8] and [10]. The voltage transfer characteristic of

the device has the property of Lissajous hysteresis [9]. These

properties has combined in an analog neural network to

function as changeable weights using a memristor bridge [12].

It has also shown that analog neural networks can back

propagate these weights using a random weight change

algorithm [13]. A memristor could be fabricated at the

nanometer scale with operating speeds of 2ns by several

reported techniques [11], [14], [15], [16] and [17]. These

properties allow memristors to apply in such applications as a

memristor crossbar array or MRAM [18] though networks of

memristors that have issues with convergence [19].

Recurrent Neural networks (RNNs) have been around since

the early 1990’s [24]. The idea being that there is some sort of

feedback that could give a network memory to learn to solve

problems that require past information such as speech

recognition [25]. In 1997 with a variation on the RNN, Long

Short-Term Memory (LSTM) proposed in [20]. LSTM

networks became the industry standard for training networks

with memory. As recently as 2016 attempts to simplify the

ruleset of LSTM’s into Gated Recurrent Units [21]. The

general idea is that there is a memory cell, which overwritten,

based on a combination of input signals. In this case, a shift

register implemented in analog in the form of a Schmitt

Trigger for the activation function. The Schmitt trigger shifts

the register that is chosen because of the simplicity to

implement in hardware.

It is in a sense that using a circuit with a hysteresis loop has

a memory. This paper explores the implications that using an

activation function with hysteresis in a perceptron. Therefore,

in this research paper, the implementation of shift register with

Multisim presented in Section 2 followed by a conclusion in

Section 3.

2. Implementation of the Proposed Shift

Register

The components to assemble the shift register have chosen

for their simplicity to implement in Multisim. All data have

collected in Multisim.

2.1. Perceptron

A perceptron is the most basic element of an ANN. A

perceptron takes a weighted sum of inputs and runs then

through an activation function to feed forward to another

perceptron layer. A functional diagram of the perceptron that

used in this research is shown in Figure 1. In Figure 1, a

perceptron with a Schmitt Trigger as the Activation function is

shown. The Schmitt Trigger and by extension, the perceptron

has memory because of its hysteresis. The circuit components

to assemble the perceptron in Figure 1 are a difference op-amp

to sum the weighted inputs, resistors to weight the inputs, and

a Schmitt Trigger op-amp for the activation function. In this

case, the layers of the network only have a single perceptron

and pass two inputs, a square data signal, and a sinusoidal

enable signal. The op-amps are chosen as the basis for the

difference function and the activation function because they

are simple to implement having less than five (5) components

each. Technique based on complementary metal oxide

semiconductor (CMOS) has used to implement a summation

of input signals and a Schmitt trigger [23]. However, the

CMOS implementation require a more complex arrangement

of parts so in this case power efficiency was forgone in the

wake of circuit simplicity.

Figure 1. Perceptron with Schmitt Trigger.

2.2. Schmitt Trigger

A Schmitt Trigger is a device used in circuits whose

characteristic transfer function has the property of hysteresis

(see Figure 2). The Schmitt Trigger is used to provide a buffer

to noisy input because of difference in energy to turn it on and

off [23]. Hysteresis is a transfer function that has memory

because it depends on the previous inputs which has a path

70 William Brickner and Muhammad Sana Ullah: Use of a Hysteresis Loop Activation Function to

Enable an Analog Perceptron to Gain Memory

from one (1) to zero (0). Specifically, if the previous input has

exceeded a certain voltage threshold, a value could be

considered to overwrite the data in the trigger. As a result, a

Schmitt trigger can function as a memory cell. A graph of the

input-output characteristic of a Schmitt Trigger is shown in

Figure 3. In Multisim, components are selected that produced

a transfer function with the following properties: Vo+ is 4.1 V,

Vo- is -4.1V, V1 is -2.7V, V2 is 2.7V. This graph shows the

voltage input-output characteristics of a Schmitt trigger.

Notice that the output of the Schmitt Trigger does not change

until the input is about ±2.7 V. Functionally, the memory cell

can be set when the input voltage exceeds either threshold.

The memory can be read by inputting a voltage less than

threshold voltage. In this case, zero (0) voltage is within both

thresholds and can read the contents of the memory cell.

Figure 2. Voltage Transfer characteristic of a Schmitt trigger.

Figure 3. Input-Output characteristics of Schmitt Trigger.

2.3. Schmitt Trigger as a Memory Cell

In this case, a memory cell is chosen to have the properties

that data can be input to the cell while there is an active an

enable signal. Then once data is written to the cell it should be

able to read. The enable signal is a sine wave and the data

signal is a square wave.

2.3.1. Data Input

A Schmitt Trigger can have data to be written to it. By

taking advantage of the property, the input data has to exceed a

threshold to set the hysteresis function to follow either the

high voltage path (logical 1) or the low voltage path (logical

0). When it is on either of these paths there could be

considered to be a form of discrete memory. To accomplish

this an input data signal is implemented in such a way that by

its self it never causes the Schmitt Trigger to exceed its voltage

threshold. This voltage does not exceed the Schmitt trigger

threshold that is chosen to be equal to the amplitude of a

second, periodic, enable signal. This ensures maintaining a

control of overwriting of the data in the memory cell while the

enable signal is not active. This also has a secondary effect of

delaying the input until the next corresponding peak of the

enable signal. An example of this behavior can be found in

Figure 4. The summed input to a perceptron is displayed

alongside the output of the Schmitt Trigger. In region I, the

input to the Trigger includes both the sinusoidal enable signal

and the square data signal so data is able to be written to the

trigger and the output changes. In region II, the enable signal

is not included alongside the data signal and thus no data is

written to the Schmitt Trigger. In region III, the enable signal

is turned on again and data can be written to the trigger again.

Figure 4. Exclusive writing depending on the enable signal.

2.3.2. Data Reading

While the enable signal does not couple with the data signal

to exceed the threshold voltage to write new data to the trigger,

the data present in the trigger can be read. The value that will

be read corresponds to the previous value stored in the trigger.

2.4. Shift Register Network

A shift register with a single input can remember the

contents of that input by first storing the value that is input into

some sort of memory cell. Then, before a new value is to put

in, the shift register takes the first stored value and passes it to

a second memory cell. This movement of data from one cell to

another is called a shift. A shift register can be useful when

attempting to send large amounts of data over a single line

because multiple values can pass over a single data stream by

delaying each bit of information that is desired to be sent. A

block diagram of the network is in Figure 5, where P is stand

for perceptron. To make the perceptrons into a shift register

the memory cells are connected in series. The propagation of

the input can be delayed from one layer to the next by delaying

the peak of the enable signal feeding into the second layer by

180 degrees. In this case, since the signal is sinusoidal, it could

be choose to subtract the signal instead of adding it to delay it

 Science Journal of Circuits, Systems and Signal Processing 2018; 7(2): 68-73 71

by 180 degrees. This is the primary mechanism by which this

shift register network is operated. Each register shifts with

time delay equal to one-half the period of the enable signal.

This period can be reduced by shifting the enable signal by

less than 180 degrees using a different mechanism to delay it.

This phenomenon can be observed in Figure 6. In Figure 7, the

enable signal is turned on intermittently. It is noted that the

registers do not propagate information until the enable signal

is active. It also noted that the behavior continues independent

of the amount of time the enable is cut off.

Figure 5. Shift Register network diagram.

Figure 6. Three Layer Shift Register Network’s behavior by shifting the

enable signal.

Figure 7. Delaying the three-layer shift register network’s behavior by cutting

off the enable signal.

2.5. Making the Network Turing Complete

Since the network has memory, it is possible to use cellular

automata [27] and implementing rule 110 [26] to make the

network can be made to be Turing complete.

To do this first, an infinite amount of inputs would be

required instead of a single input. Then these inputs would

feed at a 1:1 ratio into the first layer of hysteresis perceptrons.

There would then not be an immediate layer of hysteresis

perceptrons, instead there would be two layers that would

implement rule 110. To implement rule 110 in perceptron, it

would first be understood that any perceptron can be manually

substituted for a logic gate [28]. Then a simplified logic

function for rule 110 would be determined using Karnaugh

maps. Then, using the knowledge of translating logic gates

into perceptrons with the knowledge of a set of logic gates that

correspond to rule 110, the first hysteresis layer would be

connected to the second hysteresis layer.

This process could be redone multiple times to create a

Turing complete hysteresis perceptron network. This is done

with a memristor spiking network by Pickett and Williams in

2013 [29] though it should be noted that they used rule 134

instead of rule 110. Effectively a Turing complete version of

the network would verify that the system had memory equally

as effectively as creating a shift register, although in more

steps and using far more components.

The implications of the network being Turing complete

have less to do with the raw power of the system and more to

do with not denying the ability of the network to do certain

tasks.

2.6. Implementing a Hysteresis Function to Software

To implement the hysteresis function in software one

approach might be to create a piecewise function. This

piecewise function would choose an output depending on

previous inputs. This would in effect create a hysteresis

function. A drawback would be the increase in memory

requirement of each perceptron because there would have to

be a binary bit to take note of which path from 1 to 0 the

activation function is taking. Although there would only need

to be an increase in memory by 1 bit. A common activation

function used in ANN’s is the sigmoid function. One possible

implementation of piecewise hysteresis function would be to

linearly shift the sigmoid function to create a hysteresis loop.

A version of this is graphed in Figure 8.

72 William Brickner and Muhammad Sana Ullah: Use of a Hysteresis Loop Activation Function to

Enable an Analog Perceptron to Gain Memory

3. Conclusion

A system with memory is able to reproduce previous input

signals to the system with a time delay. In this case, the system

is a series of perceptrons whose activation function is a

hysteresis loop. This series of perceptrons can be considered a

shift register. An input data signal is able to propagate through

this network. The speed is controlled by an enable signal at

which it is propagated. Since the output of the network is a

time-shifted version of the input, the hysteresis activation

function perceptrons successfully created a system that has

memory. While it is possible to use this technology to create a

shift register, perceptrons are not a practical implementation

of a shift register because they do not provide the most power

efficient, smallest, or highest frequency implementation of a

memory cell. The advantage of using perceptrons as memory

cells is that with the aid of machine learning methods, a

system can be created whose output is dependent upon an

arbitrarily large rule set that may be difficult for non-machines

to parse. In addition, if this hysteresis activation function

network could be implemented in analog, it is conceivable that

there could be an exponential increase in speed of training of

the network, as opposed to traditional software

implementations. This would be possible to provide several

gaps in the feasibility of implementing a neural network in

analog that can be filled. A large portion of these gaps could

conceivably be filled by emerging memristor technologies to

bring us past the microchip age into the neural chip age.

Acknowledgements

First, the author would like to acknowledge his peer, Josiah

Hunsinger, for the great advice and even greater times we had

discussed together regarding this paper.

The author would then like to thank the professors at

Florida Polytechnic University. Mainly Dr. Richard Matyi, but

also Dr. Cristopher Coughlin, Dr. David Foster, Dr. Harish

Chintakunta, and Dr. Christina Drake for their advices to

improve this paper.

References

[1] D. O. Hebb, The organization of Behavior: A
Neuropsychological Theory. First Edition, New York, 2012.

[2] K. Anjaneyulu, “Deep Blue beats Kasparov in a rematch,”
Resonance, vol. 2, no. 7, pp. 89-90, 1997.

[3] W. Dean, "Computational Complexity Theory (Stanford
Encyclopedia of Philosophy)", Plato.stanford.edu, 2017.

[4] D. Nassimi and S. Sahni, "Bitonic Sort on a Mesh-Connected
Parallel Computer", IEEE Transactions on Computers, vol.
C-27, no. 1, pp. 2-7, 1979.

[5] L. Chua, "Memristor-The missing circuit element," IEEE
Transactions on Circuit Theory, vol. 18, no. 5, pp. 507-519,
1971.

[6] D. Strukov, G. Snider, D. Stewart, and R. Williams, “The

missing memristor found,” Nature, vol. 453, pp. 80-83, 2008.

[7] H. Kim, M. Sah, C. Yang, S. Cho and L. Chua, “Memristor
Emulator for Memristor Circuit Applications,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol.
59, no. 10, pp. 2422-2431, 2012.

[8] Q. Li, A. Serb, T. Prodromakis, and H. Xu, “A Memristor
SPICE Model Accounting for Synaptic Activity Dependence,”
PLOS ONE, vol. 10, no. 3, pp. 1-12, 2015.

[9] M. Kumar, “Memristor - Why Do We Have to Know About It?”
IETE Technical Review, vol. 26, no. 1, pp. 1-6, 2009.

[10] R. Williams, "How We Found The Missing Memristor", IEEE
Spectrum, vol. 45, no. 12, pp. 28-35, 2008.

[11] C. Yakopcic, R. Hasan and T. Taha, “Hybrid crossbar
architecture for a memristor based cache,” Microelectronics
Journal, vol. 46, no. 11, pp. 1020-1032, 2015.

[12] M. Sah, C. Yang, H. Kim and L. Chua, “A Voltage Mode
Memristor Bridge Synaptic Circuit with Memristor
Emulators,” Sensors, vol. 12, no. 12, pp. 3587-3604, 2012.

[13] S. Adhikari, H. Kim, R. Budhathoki, C. Yang and L. Chua, “A
Circuit-Based Learning Architecture for Multilayer Neural
Networks With Memristor Bridge Synapses,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol.
62, no. 1, pp. 215-223, 2015.

[14] J. Capulong, B. Briggs, S. Bishop, M. Hovish, R. Matyi and N.
Cady, “Effect of Crystallinity on Endurance and Switching and
Behavior on HfOx-based Resistive Memory Devices,” IEEE
International Integrated Reliability Workshop Final Report (IRW),
South Lake Tahoe, CA, USA, pp. 22-25, 14-18 October 2012.

[15] Z. Chew and L. Li, “A discrete memristor made of ZnO
nanowires synthesized on printed circuit board,” Materials
Letters, vol. 91, pp. 298-300, 2013.

[16] N. Duraisamy, N. Muhammad, H. Kim, J. Jo and K. Choi,
“Fabrication of TiO2 thin film memristor device using
electrohydrodynamic inkjet printing,” Thin Solid Films, vol.
520, no. 15, pp. 5070-5074, 2012.

[17] N. Mou and M. Tabib-Azar, “Photoreduction of Ag+ in
Ag/Ag2S/Au memristor,” Applied Surface Science, vol. 340,
pp. 138-142, 2015.

[18] M. Hu, H. Li, Y. Chen, Q. Wu, G. Rose and R. Linderman,
“Memristor Crossbar-Based Neuromorphic Computing
System: A Case Study,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 25, no. 10, pp.
1864-1878, 2014.

[19] W. Wang, L. Li, H. Peng, J. Xiao and Y. Yang,
“Synchronization control of memristor-based recurrent neural
networks with perturbations,” Neural Networks, vol. 53, pp.
8-14, 2014.

[20] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,”
Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[21] G. Zhou, J. Wu, C. Zhang and Z. Zhou, “Minimal gated unit for
recurrent neural networks,” International Journal of
Automation and Computing, vol. 13, no. 3, pp. 226-234, 2016.

[22] J. Hopfield, “The effectiveness of analogue ‘neural network’
hardware,” Network: Computation in Neural Systems, vol. 1,
no. 1, pp. 27-40, 1990.

 Science Journal of Circuits, Systems and Signal Processing 2018; 7(2): 68-73 73

[23] O. Law and C. Salama, “GaAs Schmitt trigger memory cell
design,” IEEE Journal of Solid-State Circuits, vol. 31, no. 8,
pp. 1190-1192, 1996.

[24] D. Dong and J. Hopfield, “Dynamic properties of neural
networks with adapting synapses,” Network: Computation in
Neural Systems, vol. 3, no. 3, pp. 267-283, 1992.

[25] F. Beaufays, “The neural networks behind Google Voice
transcription,” Google Research Blog, 11 August 2015.

[26] W. Li and M. Nordahl, “Transient behavior of cellular
automaton rule 110,” Physics Letters A, vol. 166, no. 5-6, pp.
335-339, 1992.

[27] F. Berto and J. Tagliabue, “Cellular Automata-The Stanford
Encyclopedia of Philosophy”, Plato.stanford.edu, 2017.

[28] K. Swingler, “Lecture 2: Single Layer Perceptrons,” University
of Stirling, Scotland, UK, 2017.

Biography

William Brickner studied and recently

graduate for the degree of Bachelor of Science

in Computer Engineering at Florida

Polytechnic University, Lakeland, FL. He is

specialized on digital logic design. Now for his

Master Degree, he attended the Colorado

School of Mines where he is studying in the

field of Electrical Engineering with Control

Systems and Signal Processing. Besides, he is working as an

associate engineer of hardware and signal processing at SpaceX in

Irvine, CA. His research interest includes on analog neural network,

digital systems design, control systems and signal processing. His

dream is to make a fully functional analog neural network.

Muhammad Sana Ullah received the

B.S. degree in Electrical and Electronic

Engineering from Chittagong University

of Engineering and Technology (CUET),

Bangladesh in 2008 and M.S. degree in

Electrical and Computer Engineering from

Purdue University, Hammond, IN, USA in

2013. He has finished his Ph.D. degree in Electrical and

Computer Engineering from the University of Missouri-Kansas

City (UMKC), Kansas City, MO, USA in 2016 and joined as an

Assistant Professor of Computer Engineering in the College of

Engineering at Florida Polytechnic University, Lakeland,

Florida. His research interests includes a relatively new

methodology and nanotechnology for the next generation of

computing and other micro- and nano-electronic applications.

