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Abstract: With the advent of memristors, analog artificial neural networks are closer than ever. Neural computing is growing 

as a topic of research. In the context of analog artificial neural networks, the purpose of this research is to verify that a perceptron 

could gain a discrete memory from implementing a hysteresis loop in the activation function. The discrete memory is represented 

by the difference path of the hysteresis activation function that took from logic 1 to logic 0. To write to the memory, the input to 

the hysteresis loop would have to exceed threshold. To read the stored value, the input would have to be between the thresholds of 

the hysteresis function. In order to verify the perceptron’s memory, a network with manually chosen weights is selected which 

acts as a shift register. The components of this network are assembled in a circuit simulation program. Functionally, the network 

receives two inputs: a data signal and an enable signal. The output of the network is a time-shifted version of previous input 

signals. A system whose output is a time-shifted version of the previous inputs is considered to have memory. 

Keywords: Artificial Neural Network, Recurrent Neural Network, Memristors, Hysteresis Loop Activation Function,  

Analog Computing, Neural Computing, Long Short-Term Memory 

 

1. Introduction 

Artificial neural networks (ANNs) have been a known data 

structure in computing since the late 1940’s [1]. Until the 

advent of stronger processing in the late 1990’s, computers 

were not able to train at usable rates and/or solve problems 

more effectively than expert systems could solve [2]. Along 

with properly labeled data for a specific application, the 

current bottleneck in neural networks is the speed at which 

they are able to train. One contributing factor to this is that 

operations have distributed to a general purpose computing 

devices such as GPU’s or CPU’s. Even though these 

processing units are optimized in and of themselves, there is 

an overhead associated with being able to distribute labor to 

these devices and ensuring that the output of these devices 

align discretely with an internal clock signal. In application, 

specific hardware generality is lost for the gain of speed. 

To measure the effectiveness of a change to the 

improvement of an algorithm, time complexity is the metric 

that used in CCT [3]. Reducing a problem’s time complexity 

by performing operations in parallel is a technique that used in 

the bitonic sort [4]. Bitonic sort has algorithmic time 

complexity of O (log
2
n) when measured with parallel time 

complexity [4]. This is a faster time than what considered the 

fastest sort because all of the operations are being executed in 

parallel [4]. The fastest average case sort for an unordered list 

in linear time complexity is considered to be quicksort with a 

time complexity of O (n log (n)). Reducing the algorithmic 

complexity of forward and back propagation by distributing 

the labor would allow to unprecedented sizes for scaling 

networks. Scaling would be able to occur in time to train the 

network. It would be less dependent on the size of the network 

and more dependent on the ability to collect labeled data due 

to the difference in algorithmic complexity. This is because 

each operation would distribute in such a way that the 

drudgery can do in parallel. In addition, each component 

executing the operation would execute substantially faster. 

The idea would be to take these operations are currently being 

performed virtually and accelerate them by distributing the 

labor with application specific perceptron hardware. This 

would revolutionize the neural network by allowing a network 

to be scaled larger than ever before. 

The limits on an ANN are in large part of the lack of 

circuitry in existence, which functions as weights in the 
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network that can change [22]. With the change of weights, 

there is still a question on how precisely to set the analog 

weights. If the weights can be precisely set, it becomes a 

question of how to choose the values to set the weights too. 

Currently, there is a device called memristor that has explored 

for its potential to provide weights in an analog neural network 

that can change. Leon Chua [5] first theorized the memristor 

to exist based on symmetry of physics in the 1971 paper. It is 

not until 2009 that researchers at HP labs are able to document 

the discovery of a memristor in the nature journal [6], [10]. A 

memristor has the property that its resistance is dependent 

upon the total amount of current that has passed through the 

device [7], [8] and [10]. The voltage transfer characteristic of 

the device has the property of Lissajous hysteresis [9]. These 

properties has combined in an analog neural network to 

function as changeable weights using a memristor bridge [12]. 

It has also shown that analog neural networks can back 

propagate these weights using a random weight change 

algorithm [13]. A memristor could be fabricated at the 

nanometer scale with operating speeds of 2ns by several 

reported techniques [11], [14], [15], [16] and [17]. These 

properties allow memristors to apply in such applications as a 

memristor crossbar array or MRAM [18] though networks of 

memristors that have issues with convergence [19]. 

Recurrent Neural networks (RNNs) have been around since 

the early 1990’s [24]. The idea being that there is some sort of 

feedback that could give a network memory to learn to solve 

problems that require past information such as speech 

recognition [25]. In 1997 with a variation on the RNN, Long 

Short-Term Memory (LSTM) proposed in [20]. LSTM 

networks became the industry standard for training networks 

with memory. As recently as 2016 attempts to simplify the 

ruleset of LSTM’s into Gated Recurrent Units [21]. The 

general idea is that there is a memory cell, which overwritten, 

based on a combination of input signals. In this case, a shift 

register implemented in analog in the form of a Schmitt 

Trigger for the activation function. The Schmitt trigger shifts 

the register that is chosen because of the simplicity to 

implement in hardware. 

It is in a sense that using a circuit with a hysteresis loop has 

a memory. This paper explores the implications that using an 

activation function with hysteresis in a perceptron. Therefore, 

in this research paper, the implementation of shift register with 

Multisim presented in Section 2 followed by a conclusion in 

Section 3. 

2. Implementation of the Proposed Shift 

Register 

The components to assemble the shift register have chosen 

for their simplicity to implement in Multisim. All data have 

collected in Multisim. 

2.1. Perceptron 

A perceptron is the most basic element of an ANN. A 

perceptron takes a weighted sum of inputs and runs then 

through an activation function to feed forward to another 

perceptron layer. A functional diagram of the perceptron that 

used in this research is shown in Figure 1. In Figure 1, a 

perceptron with a Schmitt Trigger as the Activation function is 

shown. The Schmitt Trigger and by extension, the perceptron 

has memory because of its hysteresis. The circuit components 

to assemble the perceptron in Figure 1 are a difference op-amp 

to sum the weighted inputs, resistors to weight the inputs, and 

a Schmitt Trigger op-amp for the activation function. In this 

case, the layers of the network only have a single perceptron 

and pass two inputs, a square data signal, and a sinusoidal 

enable signal. The op-amps are chosen as the basis for the 

difference function and the activation function because they 

are simple to implement having less than five (5) components 

each. Technique based on complementary metal oxide 

semiconductor (CMOS) has used to implement a summation 

of input signals and a Schmitt trigger [23]. However, the 

CMOS implementation require a more complex arrangement 

of parts so in this case power efficiency was forgone in the 

wake of circuit simplicity. 

 

Figure 1. Perceptron with Schmitt Trigger. 

2.2. Schmitt Trigger 

A Schmitt Trigger is a device used in circuits whose 

characteristic transfer function has the property of hysteresis 

(see Figure 2). The Schmitt Trigger is used to provide a buffer 

to noisy input because of difference in energy to turn it on and 

off [23]. Hysteresis is a transfer function that has memory 

because it depends on the previous inputs which has a path 
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from one (1) to zero (0). Specifically, if the previous input has 

exceeded a certain voltage threshold, a value could be 

considered to overwrite the data in the trigger. As a result, a 

Schmitt trigger can function as a memory cell. A graph of the 

input-output characteristic of a Schmitt Trigger is shown in 

Figure 3. In Multisim, components are selected that produced 

a transfer function with the following properties: Vo+ is 4.1 V, 

Vo- is -4.1V, V1 is -2.7V, V2 is 2.7V. This graph shows the 

voltage input-output characteristics of a Schmitt trigger. 

Notice that the output of the Schmitt Trigger does not change 

until the input is about ±2.7 V. Functionally, the memory cell 

can be set when the input voltage exceeds either threshold. 

The memory can be read by inputting a voltage less than 

threshold voltage. In this case, zero (0) voltage is within both 

thresholds and can read the contents of the memory cell. 

 

Figure 2. Voltage Transfer characteristic of a Schmitt trigger. 

 

Figure 3. Input-Output characteristics of Schmitt Trigger. 

2.3. Schmitt Trigger as a Memory Cell 

In this case, a memory cell is chosen to have the properties 

that data can be input to the cell while there is an active an 

enable signal. Then once data is written to the cell it should be 

able to read. The enable signal is a sine wave and the data 

signal is a square wave. 

2.3.1. Data Input 

A Schmitt Trigger can have data to be written to it. By 

taking advantage of the property, the input data has to exceed a 

threshold to set the hysteresis function to follow either the 

high voltage path (logical 1) or the low voltage path (logical 

0). When it is on either of these paths there could be 

considered to be a form of discrete memory. To accomplish 

this an input data signal is implemented in such a way that by 

its self it never causes the Schmitt Trigger to exceed its voltage 

threshold. This voltage does not exceed the Schmitt trigger 

threshold that is chosen to be equal to the amplitude of a 

second, periodic, enable signal. This ensures maintaining a 

control of overwriting of the data in the memory cell while the 

enable signal is not active. This also has a secondary effect of 

delaying the input until the next corresponding peak of the 

enable signal. An example of this behavior can be found in 

Figure 4. The summed input to a perceptron is displayed 

alongside the output of the Schmitt Trigger. In region I, the 

input to the Trigger includes both the sinusoidal enable signal 

and the square data signal so data is able to be written to the 

trigger and the output changes. In region II, the enable signal 

is not included alongside the data signal and thus no data is 

written to the Schmitt Trigger. In region III, the enable signal 

is turned on again and data can be written to the trigger again. 

 

Figure 4. Exclusive writing depending on the enable signal. 

2.3.2. Data Reading 

While the enable signal does not couple with the data signal 

to exceed the threshold voltage to write new data to the trigger, 

the data present in the trigger can be read. The value that will 

be read corresponds to the previous value stored in the trigger. 

2.4. Shift Register Network 

A shift register with a single input can remember the 

contents of that input by first storing the value that is input into 

some sort of memory cell. Then, before a new value is to put 

in, the shift register takes the first stored value and passes it to 

a second memory cell. This movement of data from one cell to 

another is called a shift. A shift register can be useful when 

attempting to send large amounts of data over a single line 

because multiple values can pass over a single data stream by 

delaying each bit of information that is desired to be sent. A 

block diagram of the network is in Figure 5, where P is stand 

for perceptron. To make the perceptrons into a shift register 

the memory cells are connected in series. The propagation of 

the input can be delayed from one layer to the next by delaying 

the peak of the enable signal feeding into the second layer by 

180 degrees. In this case, since the signal is sinusoidal, it could 

be choose to subtract the signal instead of adding it to delay it 
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by 180 degrees. This is the primary mechanism by which this 

shift register network is operated. Each register shifts with 

time delay equal to one-half the period of the enable signal. 

This period can be reduced by shifting the enable signal by 

less than 180 degrees using a different mechanism to delay it. 

This phenomenon can be observed in Figure 6. In Figure 7, the 

enable signal is turned on intermittently. It is noted that the 

registers do not propagate information until the enable signal 

is active. It also noted that the behavior continues independent 

of the amount of time the enable is cut off. 

 

Figure 5. Shift Register network diagram. 

 

Figure 6. Three Layer Shift Register Network’s behavior by shifting the 

enable signal. 

 

Figure 7. Delaying the three-layer shift register network’s behavior by cutting 

off the enable signal. 

2.5. Making the Network Turing Complete 

Since the network has memory, it is possible to use cellular 

automata [27] and implementing rule 110 [26] to make the 

network can be made to be Turing complete. 

To do this first, an infinite amount of inputs would be 

required instead of a single input. Then these inputs would 

feed at a 1:1 ratio into the first layer of hysteresis perceptrons. 

There would then not be an immediate layer of hysteresis 

perceptrons, instead there would be two layers that would 

implement rule 110. To implement rule 110 in perceptron, it 

would first be understood that any perceptron can be manually 

substituted for a logic gate [28]. Then a simplified logic 

function for rule 110 would be determined using Karnaugh 

maps. Then, using the knowledge of translating logic gates 

into perceptrons with the knowledge of a set of logic gates that 

correspond to rule 110, the first hysteresis layer would be 

connected to the second hysteresis layer. 

This process could be redone multiple times to create a 

Turing complete hysteresis perceptron network. This is done 

with a memristor spiking network by Pickett and Williams in 

2013 [29] though it should be noted that they used rule 134 

instead of rule 110. Effectively a Turing complete version of 

the network would verify that the system had memory equally 

as effectively as creating a shift register, although in more 

steps and using far more components. 

The implications of the network being Turing complete 

have less to do with the raw power of the system and more to 

do with not denying the ability of the network to do certain 

tasks. 

2.6. Implementing a Hysteresis Function to Software 

To implement the hysteresis function in software one 

approach might be to create a piecewise function. This 

piecewise function would choose an output depending on 

previous inputs. This would in effect create a hysteresis 

function. A drawback would be the increase in memory 

requirement of each perceptron because there would have to 

be a binary bit to take note of which path from 1 to 0 the 

activation function is taking. Although there would only need 

to be an increase in memory by 1 bit. A common activation 

function used in ANN’s is the sigmoid function. One possible 

implementation of piecewise hysteresis function would be to 

linearly shift the sigmoid function to create a hysteresis loop. 

A version of this is graphed in Figure 8. 
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3. Conclusion 

A system with memory is able to reproduce previous input 

signals to the system with a time delay. In this case, the system 

is a series of perceptrons whose activation function is a 

hysteresis loop. This series of perceptrons can be considered a 

shift register. An input data signal is able to propagate through 

this network. The speed is controlled by an enable signal at 

which it is propagated. Since the output of the network is a 

time-shifted version of the input, the hysteresis activation 

function perceptrons successfully created a system that has 

memory. While it is possible to use this technology to create a 

shift register, perceptrons are not a practical implementation 

of a shift register because they do not provide the most power 

efficient, smallest, or highest frequency implementation of a 

memory cell. The advantage of using perceptrons as memory 

cells is that with the aid of machine learning methods, a 

system can be created whose output is dependent upon an 

arbitrarily large rule set that may be difficult for non-machines 

to parse. In addition, if this hysteresis activation function 

network could be implemented in analog, it is conceivable that 

there could be an exponential increase in speed of training of 

the network, as opposed to traditional software 

implementations. This would be possible to provide several 

gaps in the feasibility of implementing a neural network in 

analog that can be filled. A large portion of these gaps could 

conceivably be filled by emerging memristor technologies to 

bring us past the microchip age into the neural chip age. 
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