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Abstract: System and machine reliability is an important consideration that must be made when attempting the optimization 

of manufacturing capability; it has to be factored into the system design, layout and construction. Consideration has to be given 

to how reliability factors which influence the required optimization of the system, and the necessary level of its redundancy to 

comply with manufacturing process and safety considerations. These considerations must be made when commissioning and 

operating the system, with specific attention to associated maintenance requirements. These considerations and effects that 

redundancy engineering can have upon them are reviewed in this work indicating the latest ideas on their implementation and 

improvement. System availability is a consideration which is of paramount importance in the design of industrial structures. As 

the system becomes more complicated the cost of improving reliability also increases. Redundancy is the main avenue of 

increasing system availability. One of the main objectives for carrying out this research is to establish a system which optimize 

manufacturing capabilities through systems reliability analysis and redundancy compliance with operations design and safety 

considerations in a steel rolling mill. Repairable failures have been considered in most power system’s reliability analysis and 

that a modeling concept for unavailability due to ageing must be developed. A Normal or Weibull distribution is suggested as 

the means to estimate the failure probability density function due to the ageing process and a combined model is proposed 

including calculations for repairable and ageing failures. An example using seven generating units is used to verify the 

correctness of the constructed model. The results indicate that ageing failures have significant impact on the unavailability of 

components particularly in the case of older systems. 

Keywords: Optimization, Reliability, System Analysis, Regression Model, Cobble Formation, Cycles, Fineness, Rolling, 

Variation 

 

1. Introduction 

The redundancy optimization problem is solved when the 

design goal is achieved and its effects reduced through the 

selection of discrete and continuous components available. 

According to [1], redundancy optimization is achieved by the 

examination and analysis of the minimal configuration and 

maintenance costs of series parallel multistate systems when 

under reliability constraints. The maintenance policy 

specifies the priorities between the system components and 

the use of shared maintenance team. The optimization 

approach developed [2] is analytical and uses the universal 

“z” transform and Markov chain techniques to develop a 

heuristic model. In developing a direct optimization method, 

there is a need to establish a system which supports the entire 

maintenance structure. A genetic algorithm (GA) based 

optimization model was proposed by [3] to improve the 

design efficiency whilst considering the design constraints. 
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This is carried out through object oriented programming to 

develop a knowledge based system for the design of a series 

parallel system. This program becomes an effective tool to 

decide the related characteristics of each component. The 

conclusion is reached that the proposed system requires 

further study to optimize the GA parameters, including data 

entry and statistical analysis from the design knowledge base 

According to [4], a manufacturing process in which 

unscheduled stoppages can critically affect plant availability, 

productivity and product quality. For many years steel 

companies have practiced condition-based monitoring in 

strategically vital areas such as the Hot Strip Mill. These 

monitoring methods include vibration analysis, oil and wear 

debris analysis and performance measurement using 

numerous techniques to measure parameters such as electric 

current and temperature. The present methods allow 

maintenance personnel to detect and often diagnose pending 

equipment failure but they are not able to predict remaining 

equipment life with any certainty. According to [5], a 

predictive model is proposed which utilizes a Weibull 

distribution to define the expression modeling the failure 

intervals. This equation is solved using a Monte Carlo 

approach with the time to failure (TTF) being predicted as a 

cumulative probability distribution. The paper defines the 

application of condition monitoring measurements as applied 

using two separate regimes, designated as the stable and 

failure zones. In the stable zone condition monitoring 

methods indicate that the operation is normal and a reliability 

monitoring method is used. In the failure zone the condition 

monitoring methods identify the existence of a problem and 

both reliability and condition monitoring information are 

combined to predict the remaining machine life. The paper 

investigated both simulated and case studies and concluded 

that the prediction model is highly dependent on both the 

quality and accuracy of the condition based measurements.  

The important parameter in reliability engineering can be 

examined using the effects of ageing in a power generating 

system. The failures can be classified as either repairable 

random failures or non-repairable ageing failures [6]. 

Reliability analysis in its various forms is a well-established 

tool used in many industrial applications. It impinges on 

many aspects of our lives from everyday issues such as 

domestic transport through to futuristic concepts such as 

space travel [7]. The discrepancies in the production process 

are primarily surrounding the conflicting use of failure rates 

and force of mortality. A motor can be system in its own 

right, but when taking into the context of a manufacturing 

process which could contain several hundred motors; it 

would be considered as a part. Most statistical systems 

analysis methods are based on one or more of the processes. 

There is wealth of data available regarding statistical 

modeling on the reliability of repairable systems. However 

these are predominantly biased towards statistical 

investigations into identifying whether there is a reliability 

analysis system available for a particular system, the relative 

merits of differing reliability analysis methods when applied 

to a particular system and manufacturing either a derivation 

of the current reliability analysis techniques or a combination 

of several techniques in order to create a new reliability 

analysis technique. These investigations have predominantly 

been performed as academic exercises and some have 

contributed towards the statistical understanding of systems 

operational behavior. The General Renewal Process model is 

an adaptation of the Power Law process which contains an 

ageing factor � [8]. 

����� = �	�
��
                           (1) 

The General Renewal Process addresses the situation 

where the system falls between the two extremes of repair 

status, as good as new or as bad as old by introducing a repair 

effectiveness factor, classed as q which is ranked between 0 

and 1 where 0 is homogeneous Poisson process and 1 is non-

homogeneous Poisson process [9]. The ageing factor �(virtual age) takes into account the repair effectiveness q by 

considering it as a factor of time t through the equation. 

�� =  ���
 + ��� = ���                          (2) 

∴ ���
 =  ��� − ���                          (3) 

A Monte Carlo simulation using the minimum likelihood 

estimator calculated variables is used to derive the 

instantaneous failure intensity and its corresponding time 

between failures. This program uses two methods of 

calculating the virtual age of the system where the last repair 

is returned to full operating status and where all previous 

repairs are returned to full operating status. The first case is 

considered for all analysis through the derivation of the 

partial derivatives from the natural log of the likelihood 

function and equating to a maximum [10]. 

ln��� = Λ = ����� + ��	� − ���� − �� + ���� − ���� − � ∑ ���� + ���
�� − �� �� + �	 − 1� ∑ ln��� + ���
��� 
�� 
     (4) 

The maximum likelihood estimation (MLE) of the three variables Beta (β) and Lambda (λ) and the virtual age � are obtained 

from the partial differential of the repair effectiveness factor q.  

ln��� = Λ = ����� + ��	� − ���� − �� + ���� − ���� − � ∑ ���� + ���
�� − �� �� + �	 − 1� ∑ ln��� + ���
��� 
�� 
   (5) 

∴ !"!� = �� − ��� − �� + ��������� − �� + ���� + ���������������� − � ∑ ���� + ��� − #��������� + ��� − ���� −�� 
�������������� + ∑ ��� + ��� − #����� 
                                                                (6) 

∴ $"$% = &% − �T − t& + qt&� + �qt&�* − ∑ ��x, + qt, − qx,�* − �qt,�*ln�qt,��&, 
                   (7) 
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∴ $"$% = −λβt&�T − t& + qt&�*�
 + −λβt&�qt&�*�
 − λ ∑ β�t, − x,��x, + qt, − qx,�*�
 − βt,�qt,�*�
] + �β −&, 
1� ∑ 01�213214501�521]&, 
                                                                                  (8) 

The Chi
2 

goodness of fit test is a statistical procedure that is 

used to identify if the assumed underlying data distribution is 

correct. These tests are predominantly based on either of two 

basics distribution parameters [11]. The cumulative distribution 

function which called distance tests and probability density 

function known as the area test are the two parameters. The 

Chi
2
test is an area test and is suitable for large data sets and 

follows a well defined path by assuming that the data is a 

specified normal distribution and obtain the distribution 

parameters as mean and variance. This process yields the 

composite distribution hypothesis which has more than one 

element that is jointly be true and regarded as the null hypothesis. 

The negation of the null hypothesis is called the alternative 

hypothesis. The assumed hypothesized distribution is tested 

using the data set and finally the null hypothesis is rejected 

whenever anyone or more of the elements in it is not supported 

by the data [12]. The formula that explores the difference in 

expected and observed values follows a Chi
2
distribution pattern. 

The procedure is summed up as division of the data range of X 

into k sub-intervals, counting the number of data points in each 

sub-interval and superimposing the PDF of the assumed 

theoretical distribution. After that, the comparison of the 

empirical histogram with the theoretical PDF is done before 

testing if the results agree probabilistically with the distribution 

assumption supported by the data. According to [13], if they do 

not agree the assumption is most likely incorrect. The formula 

for the Chi
2
statistic is 

67 = ∑ �89�:9�;
89<� 
 − 6=�
7                        (9) 

>� is the expected number of data points in cell i, ?�  is the 

observed number of data points in cell i, k: total number of 

cells or subintervals in range, n: sample size for 

implementing the Chi
2
test, k-1- number of estimated 

parameters Chi
2
degrees of freedom and 6@7 is the 

Chi
2
distribution table with degrees of freedom, y. 

A� = B9C                                   (10) 

	 = D�
∑ �� EF9G9HI                                 (11) 

Treating the Yi values as one group and sequencing from 

the smallest to the largest gives the ordered Z values Z1, 

Z2….Zm. This allows to calculation of the parametric Cramer 

von Mises statistic 

JD7 = 

7D + ∑ KLM� − 7M��7D N7DM 
                  (12) 

2. Research Methodology 

In this research work, the three major indices observed are the 

production time measured in seconds, the number of cobbles 

formed and the fine quality of the rolling mill measured in mesh. 

In general, the quality of the mesh depends on the obstructions 

caused by cobble formations and the time lapses encountered 

during the rolling process. It is expected that optimum times is 

used to enable effective process which in turn yields adequate 

and standard mesh. The start and end time of production was 

observed and converted to seconds which is the unit of 

measurement. A start and end time forms a cycle. The number 

of cobble formation associated with each cycle is recorded. The 

corresponding quality level was also recorded. Then, multiple 

regression approach was used to estimate the model and 

associated parameter estimates of the model. The level of 

variability and the associated sums of squares were not 

overlooked. They were analyzed to check the suitability of the 

model for the optimization process. The uniqueness of this work 

is that the general model of the two effects of the independent 

variables was estimated before considering the individual effects 

on the dependent variable to enable the efficient optimization of 

the objective function. The general model estimate of the model 

parameters gave the desired objective function since it is the 

basis by which the fine quality is achieved. It was subjected to 

the production cycles and number of cobbles formed. At this 

point, the optimal condition of fineness when the systems 

redundancy and manufacturing capabilities are fully utilized is 

established. 

It is worthy to note that another important measure of 

reliability is the mean life. This is an expression of components 

or systems’ operating lifespan. Reliability (R) is the probability 

that a component or system will perform as designed when 

needed. Like all probability figures, reliability may range in 

value from 0 to 1, inclusive. Given the tendency of 

manufactured devices to fail over time, reliability decreases with 

time. During the useful life of a component or system, reliability 

is related to failure rate by a simple exponential function, O = >�Dwhere, R = Reliability as a function of time [14]. Thus, 

reliability exhibits the same asymptotic approach to zero over 

time that we would expect from a first-order decay process such 

as a cooling object approaching ambient temperature or a 

capacitor discharging to zero volts. A practical example of this 

equation in use would be the reliability calculation for a model. 

Obviously, a system designed for high reliability should exhibit 

a large R value and a small PFD value Just how large R needs to 

be (how small PFD needs to be) is a function of how critical the 

component or system is to the fulfillment of our human needs. 

The degree to which a system must be reliable in order to fulfill 

our modern expectations is often surprisingly high. Suppose the 

reliability of system is 99 percent (0.99). This sounds rather 

good, However, when we actually calculate how many hours of 

breakdowns to be experience in a typical year given this degree 

of reliability, the results are seen to be rather poor (depending on 

certain standards of expectation). If the reliability value is 0.99, 

then the unreliability is 0.01. 

P365 TUVW1 V>UX Y P24ℎ?]XW1 TUV Y �0.01� = 87.6 ℎ?]XW 
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Suppose an industrial manufacturing facility requires 

steady electric power service all day and every day for its 

continuous operation. This facility has back-up diesel 

generators to supply power during utility outages, but they 

are budgeted only for 5 hours of back-up generator operation 

per year. The reliable the power service needs to be in order 

to fulfill this facility’s operational requirements may be 

calculated simply by determining the unreliability (PFD) of 

power based on 5 hours of blackout per year’s time [15]. 

bcd =  5 ℎ?]XWe?]XWf�UV>UX = 55760 = 0.00057 

O =  1 –  bdc =  1 –  0.00057 =  0.99943 
Thus, the utility electric power service to this 

manufacturing facility must be 99.943 percent reliable in 

order to fulfill the expectations of no more than 5 hours 

(average) back-up generator usage per year. A common 

order-of-magnitude expression of desired reliability is in the 

value. A reliability value of 99.9 percent would be expressed 

as three nine and a reliability value of 99.99 percent [16]. 

The Weibull cumulative distribution function can be 

transformed so that it appears in the familiar form of a linear 

regression modelA = i6 + j by using the equations 

d��� = 1 − >�klmno → 1 − d��� = >�klmno →  ln�1 − d���� = − kqrn�                                         (13) 

ln� 

�s�q�� = kqrn� →  �� kln� 

�s�q��n =  	�� kqrn  → �� kln� 

�s�q��n = 	��� − 	��t                      (14) 

Comparing this equation with the simple equation for a 

line, we see that the left side of the equation corresponds to 

Y, lnx corresponds to X, β corresponds to m, and -βlnα 

corresponds to b. Thus, when we perform the linear 

regression, the estimate for the Weibull parameter comes 

directly from the slope of the line [17]. The estimate for the 

parameter must be calculated as  

t = >�kuon                                       (15) 

3. Results and Discussions 

Thirty samples of data were gathered over a period of three 

months from August 2015 to October 2015. The mill was 

monitored until cobble formation occurred.  

Table 1. Cycles, Cobble formations and Fine Quality Levels. 

Date Start Time End Time 
Cycles (HRS) 

UTILIZED 
Cycles (secs) No of Cobbles Fineness (Mesh) 

8/1/2015 8:00:10 AM 3:07:02 PM 7h 06m 52s 832 3 2625 

8/2/2015 8:09:41 AM 4:49:43 PM 8h 40m 02s 2882 10 731.25 

8/5/2015 8:04:45 AM 1:04:32 PM 4h 59m 47s 3826 13 2231.25 

8/14/2015 8:00:23 AM 1:29:21 PM 5h 28m 58s 2038 7 806.25 

8/15/2015 8:06:35 AM 11:46:34 AM 3h 39m 59s 2579 9 750 

8/17/2015 8:17:34 AM 3:16:45 PM 6h 59m 01s 3901 13 562.5 

8/18/2015 8:12:27 AM 4:42:33 PM 8h 30m 06s 2286 8 2606.25 

8/19/2015 8:05:11 AM 11:28:01 AM 3h 22m 50s 1550 5 2043.75 

8/25/2015 8:09:31 AM 1:13:36 PM 5h 04m 05s 545 2 487.5 

8/26/2015 8:05:34 AM 3:08:19 PM 6h 02m 45s 525 2 768.75 

8/31/2015 8:07:21 AM 1:52:49 PM 5h 45m 28s 3028 10 693.75 

9/2/2015 8:13:49 AM 1:28:46 PM 5h 14m 57s 1197 4 2475 

9/3/2015 8:25:51 AM 4:38:27 PM 8h 12m 24s 1224 4 2295 

9/10/2015 8:12:52 AM 4:09:54 PM 7h 57m 02s 3841 12 618.75 

9/13/2015 8:00:39 AM 11:31:32 AM 3h 30m 53s 2033 7 787.5 

9/15/2015 8:26:16 AM 3:06:36 PM 6h 40m 20s 2780 9 1293.75 

9/16/2015 8:17:34 AM 4:46:26 PM 8h 38m 52s 2812 9 720 

9/18/2015 8:07:45 AM 2:09:39 PM 6h 01m 54s 474 2 1856.25 

9/23/2015 8:10:03 AM 4:07:00 PM 7h 56m 57s 3837 13 1800 

9/23/2015 8:18:44 AM 2:58:57 PM 6h 40m 13s 2773 9 1237.5 

10/3/2015 8:01:29 AM 1:20:07 PM 5h 18m 38s 1418 5 543.75 

10/10/2015 8:08:47 AM 3:57:46 PM 7h 48m 59s 3359 11 1162.5 

10/13/2015 8:03:30 AM 11:05:27 AM 3h 01m 57s 297 1 656.25 

10/17/2015 8:11:15 AM 1:20:16 PM 5h 09m 01s 841 3 2175 

10/22/2015 8:02:20 AM 1:22:18 PM 5h 19m 58s 1498 5 1725 

10/22/2015 8:03:14 AM 3:07:04 PM 7h 03m 50s 650 2 2118.75 

10/22/2015 8:15:42 AM 11:20:33 AM 3h 04m 51s 471 2 468.75 

10/28/2015 8:31:59 AM 5:02:20 PM 8h 30m 21s 2301 8 2081.25 

10/28/2015 8:08:12 AM 3:30:10 PM 7h 21m 58s 1738 6 562.5 

10/29/2015 8:06:59 PM 1:36:51 PM 5h 29m 52s 2092 7 543.75 
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The hypothesis about cycles, number of cobbles and fineness was tested using multiple regressions v = wxyx
x7
z

<
C

, the test 

hypothesis is ey ∶ |x
x7} = k00nagainst e
 ∶ |x
x7} ≠ k00n 
Table 2. Computation of Deviations on the Observed Data. 

��  ��  �  ���
  ���

  ����  ���  ���  

-1155.6 -3.7 1310.75 1335411 13.69 4275.72 -1514703 -4849.78 

894.4 3.3 -583 799951.4 10.89 2951.52 -521435 -1923.9 

1838.4 6.3 917 3379715 39.69 11581.92 1685813 5777.1 

50.4 0.3 -508 2540.16 0.09 15.12 -25603.2 -152.4 

591.4 2.3 -564.25 349754 5.29 1360.22 -333697 -1297.78 

1913.4 6.3 -751.75 3661100 39.69 12054.42 -1438398 -4736.03 

298.4 1.3 1292 89042.56 1.69 387.92 385532.8 1679.6 

-437.6 -1.7 729.5 191493.8 2.89 743.92 -319229 -1240.15 

-1442.6 -4.7 -826.75 2081095 22.09 6780.22 1192670 3885.725 

-1462.6 -4.7 -545.5 2139199 22.09 6874.22 797848.3 2563.85 

1040.4 3.3 -620.5 1082432 10.89 3433.32 -645568 -2047.65 

-790.6 -2.7 1160.75 625048.4 7.29 2134.62 -917689 -3134.03 

-763.6 -2.7 980.75 583085 7.29 2061.72 -748901 -2648.03 

1853.4 5.3 -695.5 3435092 28.09 9823.02 -1289040 -3686.15 

45.4 0.3 -526.75 2061.16 0.09 13.62 -23914.5 -158.025 

792.4 2.3 -20.5 627897.8 5.29 1822.52 -16244.2 -47.15 

824.4 2.3 -594.25 679635.4 5.29 1896.12 -489900 -1366.78 

-1513.6 -4.7 542 2290985 22.09 7113.92 -820371 -2547.4 

1849.4 6.3 485.75 3420280 39.69 11651.22 898346.1 3060.225 

785.4 2.3 -76.75 616853.2 5.29 1806.42 -60279.5 -176.525 

-569.6 -1.7 -770.5 324444.2 2.89 968.32 438876.8 1309.85 

1371.4 4.3 -151.75 1880738 18.49 5897.02 -208110 -652.525 

-1690.6 -5.7 -658 2858128 32.49 9636.42 1112415 3750.6 

-1146.6 -3.7 860.75 1314692 13.69 4242.42 -986936 -3184.78 

-489.6 -1.7 410.75 239708.2 2.89 832.32 -201103 -698.275 

-1337.6 -4.7 804.5 1789174 22.09 6286.72 -1076099 -3781.15 

-1516.6 -4.7 -845.5 2300076 22.09 7128.02 1282285 3973.85 

313.4 1.3 767 98219.56 1.69 407.42 240377.8 997.1 

-249.6 -0.7 -751.75 62300.16 0.49 174.72 187636.8 526.225 

104.4 0.3 -770.5 10899.36 0.09 31.32 -80440.2 -231.15 

0 0 0 38271051 406.3 124386.4 -3495859 -11035.5 

 

Estimation of the regression models 

v30 × 1 =
��
��
��1310.75−583917−508⋮−770.5 ��

��
�� , Х�30 × 1 =

��
��
��1111⋮1

−1155.6894.41838.450.4⋮104.4

−3.73.36.30.3⋮0.3 ��
��
��
 

Х�C�30 × 1� × Х��30 × 1� =  � � ��
 ��7��
 ��
7 ��
�7��7 ��
�7 ��77
�

=  w30 0 00 38271051 124386.40 124386.4 406.3 z 

| Х�C�30 × 1� × Х��30 × 1�}�


=
��
��
��

130 0 0
0 203153877575817 −621932038775758170 −62193203877575817 19135525503877575817��

��
��
 

Х�C�30 × 1� v�30 × 1� =  w �y��
y��7yz =  w 39427.5−3495859−11035.5 z 

v = | Х�C�30 × 1� × Х��30 × 1�}�
 × | Х�C�30 × 1� v�30 × 1� }
= 1466485840639 �3093091794239223.25−454410860511 −143121400274595 � 

= w 1314.25−0.61509−161.146z 

A � = 1314.25 − 0.61509�
 −  161.146�7 

A � 
 = 1495.807 − 0.091�
 

A � 7 = 1496.228 − 27.161�7 

The regression coefficient of the cycles which is −0.97412 means that a unit decrease in the time of cobble 

formation will produce on the average 0.97 unit decrease in 

the meshes. The lower the particles, the smoother and good 
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the products subsist. That is ∆�
 = 1  unit, ∆Y =  −0.97on 

the unit of the particles in support of the production processes 

and reduction in the number of cobble formations keeping 

number of cobbles constant if the production time is fixed. 

Also, ∆�7 = 1, then ∆Y =  −306.80unit decrease in Y. 

�A � , A �1, A �2� =  �Х� v , Х�
 v , Х�7 v � =

��
��
��
��
��
��
��
��
��
��
��
��
��
��
�2621.288232.3317−831.7511234.906579.85−877.883921.21731857.3622958.9652971.267142.52862235.6342219.027−679.8321237.981456.2169436.5343002.636−838.517460.52251938.553−222.2123272.6532615.7521889.3462894.3813004.482911.9911580.5791201.691��

��
��
��
��
��
��
��
��
��
��
��
��
��
�

,

��
��
��
��
��
��
��
��
��
��
��
��
��
��
�1420.0951233.5451147.6411310.3491261.1181140.8161287.7811354.7571446.2121448.0321220.2591386.881384.4231146.2761310.8041242.8271239.9151452.6731146.641243.4641366.7691190.1381468.781419.2761359.4891436.6571452.9461286.4161337.6491305.435��

��
��
��
��
��
��
��
��
��
��
��
��
��
�

,

��
��
��
��
��
��
��
��
��
��
��
��
��
��
�1414.7451224.6181143.1351306.1011251.7791143.1351278.941360.4231441.9061441.9061224.6181387.5841387.5841170.2961306.1011251.7791251.7791441.9061143.1351251.7791360.4231197.4571469.0671414.7451360.4231441.9061441.9061278.941333.2621306.101��

��
��
��
��
��
��
��
��
��
��
��
��
��
�

 

O�� =  A� C v − Х� v CA� = 68453550 − 55746187 = 12707363 

��� =  A� � v − �V�2 = 68453550 − 51817592 = 16635958 

O7 =  1 − O����� =  1 − 1270736316635958 = 1 − 0.763849 = 0.236151 

The value of O7 means that 23.61 percent of the variation in the Fineness (A) is explained by the model variation in cycles 

and number of cobble formation [18]. 

�7 =  O��� − �� + 1� =  1270736330 − �2 + 1� = 470643.1 

�7is the value of an estimate of �7 and itself has no practical interpretation as in the sample case. 

����x
� =  ��7  ×  �T�� =  √470643.1  ×    12189466485840639  =  0.110895 

����x7� =  ��7  ×  �T�� =  √470643.1  ×    1148131530466485840639  = 34.03474 

Critically viewing the observed and the predicted plot, 

the errors are randomly distributed which is a clear 

indication that the model was a true representation of the 

data.  
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Figure 1. Observed and Predicted data. 

The fineness measured in kilogram remains the dependent 

variable while the number of cobble formation and the cycles 

are the independent variables. The effects of the two 

independent variables were simultaneously considered on the 

mesh level of the grinding processes. After that, number of 

cobbles was negligibly held constant to determine the effect 

of the variation in the number of minutes consumed during 

the production processes. Assuming all things to be normal, 

there is a vice effect as a result of the lapses created by the 

formation of cobbles on the fineness of the grinding. In that 

regard, the linear model of the number of cobbles and cycles 

were respectively plotted against the fineness measured in 

mesh.  

 

Figure 2. Estimated Cycles and Cobble Formations against Fineness. 

The variations on the estimated models of the three 

conditions are plotted and it was observed that error terms are 

normally distributed.  

 

Figure 3. Comparison of the Estimates. 

Since the optimum goal is to minimize the grinding mesh 

in order to maximize the fineness under the two variables 

effects of cobbles and production times, the optimization 

conditions were presented and analyzed.  

¡U�A � � 1314.25 � 0.61509�
 �  161.146�7 

Subject to 

1495.807 � 0.091�
  ¢ 0                    (1) 

1496.228 � 27.161�7 ¢ 0                   (2) 

From equation one, 

�
 �
�1495.807

�0.091
� 16437.44 

From equation two, 

�7 �
�1496.228

�27.161
� 55.087 

The ratio of cycles to the number of cobbles  

�
: �7 � 1: 0.003351; A ¥ � 1313.095 

The ratio of cobbles to cycles  

�
: �7 � 298.3885: 1; A ¥ � 969.5682 

The ratio of  �
: �7 � 298.3885: 0.003351 ; 

A � �1130.174 

A � � 1314.25 � �0.61509 � 16437.44�

�  �161.146 � 55.087� � �17673.4 

The analysis shows that the production process could be 

optimized at a ratio of one second to 0.003351 cobbles when 

all the production processes are adequately fixed. At a point 

when �
 � 16437.44and�7 � 55.08737 , the rolling mesh 

decreased by17673.4. 

4. Conclusion 

The shape parameter 	
 and	7, indicate whether the rate of 

cobble formation and cycles are respectively increasing, 

constant or decreasing. A 	
 ¦ 1.0  indicates that the 

assembly has a decreasing cobble formation rate. This 

scenario is typical of infant mortality and indicates that the 

assembly is failing during its burn-in period. The 	7 § 1 

indicates increasing cobble formation rate cycles rate which 

leads to excess time wastage due to the increase in the 

number of cobbles formed. This is typical of systems with 

components that are wearing out. Generally, there is an 

indication that the cobble formation and undesirable filth 

formation in the production mesh is as a result to fatigue and 

sub assemblies wearing out. The intercept is a measure of the 

scale or spread in the distribution of data. The ratio of the 

number of cobbles formation and the number of seconds 

which the optimal mesh would have achieved indicates 

0.003351 which implies a loss percent of 99.97. This is the 
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system optimization opportunities not utilized. 

It was discovered that thermal inconsistencies on the 

product, such as unbalanced thermal profile between operator 

side and drive side, big temperature drop between head and 

tail, excessive skid marks, lower average temperature, can 

result in difficulties to manage the rolling process and, in the 

worse cases, can lead to cobbles. Generation of a cobble 

leads to the following loss of production due to loss of about 16437  seconds in removal of cobble, damage to mill 

equipment like entry guides, side guards due to pulling and 

tugging by crane, threat of burn injury since coil remains at a 

high temperature, noise pollution caused by removal of strip 

removal over the roller table; and loss of good material 

resulting in financial loss. There is a loss of 1313.095 mesh 

in the revival of each cobble formation. 
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