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Abstract: In this article, the connections between symmetric groups and the matrix groups Γ� are investigated for exploring 

the application of Cayley’s theorem in finite group theory. The exact forms of the permutation groups isomorphic to the groups 

Γ�, Γ�, and Γ� are obtained within the frame of the group-theoretical approach. The results are analyzed in detail and compared 

with that from Cayley's theorem. It shows that the orders of the symmetric groups in present formulas are less than the latter. 

Various directions for future investigations on the research results have been pointed out.  
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1. Introduction 

It is well known that Cayley's theorem is one of the most 

important results in group theory [1-3]. The theorem shows 

that if G is a finite group of order n, then G is isomorphic to a 

subgroup of Sn. This is a classic and intriguing result [4, 5]. 

With this in hand, if we can fully understand the structure and 

properties of Sn and its subgroups, then we will automatically 

understand the structure and properties of this finite group. 

However, the symmetric group Sn of all the permutations of n 

objects has order n!, trying to use Sn to answer any questions 

about G means working with a group that factorially larger. 

Due to the sheer size of Sn, this becomes problematic. Some 

questions may arise from the investigation for the further 

applications of Cayley's theorem [6, 7]. For instance, is it 

possible that G is isomorphic to a subgroup of Sk where k<n? 

Consider the symmetry group of the equilateral triangle, D3. 

The multiplication table shows that D3 is a finite group of the 6 

group elements. These elements may be represented as 

permutations of {1, 2, 3, 4, 5, 6} according to the Cayley's 

theorem. For example, the rotation through 2π/3 can be 

represented to 


1	2	3	4	5	62	3	1	5	6	4� = �123��456�.	         (1) 

On the other hand, if we label the vertices of the triangle 

with the numbers 1, 2, and 3, then the elements may be 

represented as permutations of {1, 2, 3}. With one certain 

labeling, we would get the rotation through 2π/3 to (123). We 

are acquainted with this fact that the dihedral group D3 of 

order 6 is isomorphic to the symmetric group S3 of all 

permutations of 3 objects. We now wonder whether one can 

find the symmetric group of Sk (k<n) corresponding to some 

other specific finite groups G of order n and have the explicit 

connections between them. 

The groups of particular interest, discussed in this article, 

are Γ matrix groups. γ matrices, also known as the Dirac 

matrices, play a highly significant role in mathematics and 

physics [8-11]. As a set of matrices satisfying special 

anticommutation relations [12], 

���, ��� = ���� + ���� = 2��� , 1 ≤ �, � ≤  ,	   (2) 

N matrices �� and all its products generate a finite matrix 

group Γ�. Analogous sets of � matrices can be defined in any 

dimension and signature of the metric. In five space-time 

dimensions, the four � matrices above together with the fifth 

� matrix generate the Clifford algebra. 

According to the familiar theorem of Cayley, the 

connections between Γ� and Sn is fairly straightforward from 

the group table of the finite group Γ�. However, it is not an 

easy task to find a symmetric group of Sk with k<n 

corresponding to the group Γ� of order n. 

In the following section, we briefly describe the comparison 

of different connections between the symmetric group and the 
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matrix group Γ�  of N=2. Our method is then used for the 

analysis of the finite matrix group Γ�  in Section 3. The 

explicit form of the permutation group corresponding to the 

group Γ� of N=4 are obtained in Section 4. The results are 

discussed in detail in Section 5. We conclude in the final 

section after pointing out various directions for future 

investigations. 

2. Matrix Group �! 

Two matrices �" and ��  satisfying the anti-commutation 

relations Eq. (2) and all their possible products form the Γ 

matrix group, Γ�={1, �"��, -1, -�"��, �", -��, -�", ��}. The 

multiplication table of the group Γ� is calculated as follows. 

Table 1. The group table of #�. 
 1 2 3 4 5 6 7 8 

 1 �"�� -1 -�"�� �" -�� -�" �� 
1 1 �"�� -1 -�"�� �" -�� -�" �� 
�"�� �"�� -1 -�"�� 1 -�� -�" �� �" 
-1 -1 -�"�� 1 �"�� -�" �� �" -�� 
-�"�� -�"�� 1 �"�� -1 �� �" -�� -�" 
�" �" �� -�" -�� 1 -�"�� -1 �"�� 
-�� -�� �" �� -�" �"�� 1 -�"�� -1 

-�" -�" -�� �" �� -1 �"�� 1 -�"�� 
�� �� -�" -�� �" -�"�� -1 �"�� 1 

Denote the eight elements {1, �"��, -1, -�"��, �", -��, -�", 

��}, in the Γ�  group by the digits {1, 2, 3, 4, 5, 6, 7, 8} 

respectively as shown in the first row of the group table, then, 

in accordance with the Cayley's theorem, �" and �� appear 

	�" = 
1	2	3	4	5	6	7	85	8	7	6	1	4	3	2� = �15��28��37��46�, 

�� = 
1	2	3	4	5	6	7	88	7	6	5	4	3	2	1� = �18��27�36��45�.	    (3) 

The rest in the group can be got from the multiplication rule. 

The matrix group Γ� of order 8 is isomorphic to the subgroup 

of the permutation group S8. These are results directly from 

the Cayley's theorem. 

On the other hand, notice that the order of the elements in 

the group Γ� are respectively: 1, 4, 2, 4, 2, 2, 2, 2, which are 

the same as the elements in the dihedral group D4 of the 

symmetry group of a square. This is a helpful hint. Label the 

vertices of the square with the number 1, 2, 3, and 4, then the 

elements in the group D4 may be represented as permutations 

of 1, 2, 3, 4. 

&� = '(, ), 	)�, 	)�, 	*+，*"，*�，*�	, 
= �(, �1234�, �13��24�, �1432�, �13�, �14��23�, �24�, �12��34��,	 (4) 

where R is a π/2 rotation about the center of the square and S0, S1, 

S2, S3 are the reflections about four symmetry axes respectively. 

It is not difficult to prove that there exists an isomorphism 

between these two groups, Γ� ≈ D4. Hence, this isomorphism 

gives a one-to-one correspondence of the elements from Γ� to 

D4, the explicit form for �� (a=1, 2) is as follows 

�" = �13�, �� = �12��34�,	            (5) 

and all the remaining elements in the matrix group Γ� can be 

got from the explicit form (Eq. (5)) of �" and ��. Then, Γ� 

becomes 

	Γ�={1, �"��, -1, -�"��, �", -��, -�", ��} 

	≈ 	 �(, �1234�, �13��24�, �1432�, �13�, �14��23�, �24�, �12��34��.	 (6) 

It means that the matrix group Γ�  of order 8 is also 

isomorphic to a subgroup of the permutation group S4. The 

results in Eq. (3) and Eq. (5) present different connections 

between the symmetric group Sk and the matrix group Γ�. The 

comparison shows that the number of the different objects in 

the Sk in our results is only half of that from the theorem. We 

will continue to use our method to investigate the permutation 

group related to other Γ matrix groups in the following. 

3. Matrix Group �. 

The Pauli matrices σ1, σ2 and σ3, satisfying the relations, 

/�/� = ���1 + 0 ∑ 2��3�
34" /3 ,          (7) 

are a set of γ matrices in dimension 3 with the Euclidean 

metric signature. The matrix group Γ� is the set of three γ 

matrices and all their products, 

Γ� = �±1,±γ", ±γ�, ±γ�, ±γ"γ�, ±γ"γ�, ±γ�γ�, ±γ"γ�γ��.	 (8) 

With a similar analysis for the matrix group Γ�, the Cayley's 

theorem states that the matrix group Γ�  of order 16 is 

isomorphic to the subgroup of the permutation group S16 

directly from the multiplication table. 

What is interesting is that how to find a permutation group 

Sk (k<16 ) whose subgroup is isomorphic to the matrix group 

Γ�  of order 16 through investigation. Choose the 

correspondence between the γ matrices and the permutations 

as follows, 

�" = �12��34�, �� = �15��26��37��48�,	 
�� = �18��27��35��46�,	           (9) 

the products of γ matrices can be written as 

�"�� = �1526��3748�, �"�� = �1827��3546�, 
���� = �1423��5768�, �"���� = �1324��5768�.	 (10) 

Notice that the square of ����(a, b=1, 2, 3 and a≠ b) is 

��"���� = ��"���� = ������� = �12��34��56��78� = −1,	 (11) 

the explicit forms for -��(a=1, 2, 3) are given by 

−�" = �56��78�, −�� = �16��25��38��47�,	 
	−�� = �17��28��36��45�.	             (12) 

As noted, it is not difficult to come to the remaining 

products of the γ matrices, 

−�"�� = �1625��3847�, −�"�� = �1728��3645�, 
−���� = �1324��5867�, −�"���� = �1423��5867�.	 (13) 
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In this way, all elements are accounted for. Hence, Γ� can be written as 

Γ� = �±1,±γ", ±γ�, ±γ�, ±γ"γ�, ±γ"γ�, ±γ�γ�, ±γ"γ�γ�� 
= �	(, �12��34��56��78�, �12��34�, �56��78�, �15��26��37��48�, �16��25��38��47�, 
�18��27��35��46�, �17��28��36��45�, �1526��3748�, �1625��3847�, �1827��3546�, 

�1728��3645�, �1423��5768�, �1324��5867�, �1324��5768�, �1423��5867�	�.              (14) 

The calculated result means that the matrix group Γ�  of 

order 16 is isomorphic to a subgroup of the permutation group 

S8. Though the correspondence chosen in Eq. (9) is not unique, 

for example, 

�" = �12��34�, �� = �17��28��36��45�,	 
�� = �16��25��38��47�,                  (15) 

or 

�" = �12��56�, �� = �13��24��58��67�, 
�� = �18��27��54��36�,                 (16) 

or 

�" = �12��78�, 	�� = �15��26��38��47�, 
�� = �14��23��58��67�,	                 (17) 

it can be found that the procedures for calculating the products 

of �� matrices are almost the same. 

It is worth mentioning that the case of the matrix group Γ� 

of N=2 can be taken as that of N=4m-2 when m=1. Since 

�"�� = 0�� leads to �� = −0�"��, and 0 = �"����, Γ� can be 

written as 

	Γ� = �±1,±γ", ±γ�, ±γ"γ�, ±γ"γ�γ�, ±γ�γ�, ∓γ"γ�, ∓γ�� 
=�±1,±γ", ±γ�, ±γ"γ�, ±i, ±iγ", ±iγ�, ±iγ"γ��.	  (18) 

The results in Eqs. (6), (14) and (18) can be used to check 

the relation Γ� ≈ {Γ�, i Γ�} through direct calculations on the 

production of the permutations. This method might also be 

generalized to understand the general properties of the gamma 

matrix groups, Γ�9:" ≈ {Γ�9:�, i	Γ�9:� }. 

4. Matrix Group �; 

The set of products of the four γ matrices forms the matrix 

group Γ�, 

Γ� = �±1,±γ", ±γ�,±γ�, ±γ�, ±γ"γ�, ±γ"γ�,±γ"γ�, ±γ�γ�,±γ�γ�, ±γ�γ�, 

±γ"γ�γ�, ±γ"γ�γ�, ±γ"γ�γ�, ±γ�γ�γ�, ±γ"γ�γ�γ��.  (19) 

In order to express implicitly the symmetric pattern of the 

formulas, the second half of the digits from 1 to 16 are denoted 

by the letters A, B, C, D, E, F, G and H respectively for 

convenience. Based on careful analysis, the explicit form of 

the four γ matrices are taken as follows, 

				�" = �12��34��56��78�,	 

�� = �1<��2=��3>��4&��5(��6?��7@��8A�,	 
�� = �1?��2(��3@��4A��5<��6=��7&��8>�, 
�� = �1A��2@��3?��4(��5>��6&��7<��8=�.   (20) 

This leads to the products of two γ matrices, ���� (a, b=1, 

2, 3, 4 and a ≠ b) 

	�"�� = �1<2=��3>4&��5(6?��7@8A�,  

	�"�� = �1?2(��3@4A��5<6=��7&8>�, 
		�"�� = �1A2@��3?4(��5>6&��7<8=�,	 
	���� = �1625��3748��<(=?��>A&@�,  

	���� = �1827��3645��<@=A��>(&?�, 
���� = �1423��5867��<&=>��(A?@�,     (21) 

and the products of three �� matrices 

�"���� = �1526��3847��<(=?��>A&@�, 
�"���� = �1728��3546��<@=A��>(&?�, 
�"���� = �1324��5768��<&=>��(A?@�, 
	������ = �1&2>��3<4=��5A6@��7(8?�.    (22) 

In consideration of the square of ���� (a, b=1, 2, 3, 4 and a 

≠ b), 

��"���� = ��"���� = ��"���� = ������� = ������� 

= ������� = �12��34��56��78��<=��>&��(?��@A� = −1, (23) 

the explicit form for -�� (a=1, 2, 3, 4) becomes 

	−�" = �<=��>&��(?��@A�, 
−�� = �1=��2<��3&��4>��5?��6(��7A��8@�, 
−�� = �1(��2?��3A��4@��5=��6<��7>��8&�, 
−�� = �1@��2A��3(��4?��5&��5>��7=��8<�.	 (24) 

One may also check the results for the products of -���� (a, 

b=1, 2, 3, 4 and a ≠ b), 

−�"�� = �1=2<��3&4>��5?6(��7A8@�,	 
−�"�� = �1(2?��3A4@��5=6<��7>8&�, 
−�"�� = �1@2A��3(4?��5&6>��7=8<�, 
	−���� = �1526��3847��<?=(��>@&A�, 
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	−���� = �1728��3546��<A=@��>?&(�, 
−���� = �1324��5768��<>=&��(@?A�,			 (25) 

and the products of -�����3 (a, b, c=1, 2, 3, 4 and a ≠ b ≠ c), 

−�"���� = �1625��3748��<?=(��>@&A�, 
−�"���� = �1827��3645��<A=@��>?&(�, 
−�"���� = �1423��5867��<>=&��(@?A�, 
−������ = �1>2&��3=4<��5@6A��7?8(�.    (26) 

Similar to the previous statements, there are also other 

options for the explicit form taken in Eq. (20) for the four γ 

matrices, such as 

						�" = �12��34��<=��>&�, 
		�� = �15��26��37��48��<(��=?��>@��&A�, 
		�� = �1?��2(��3@��4A��5<��6=��7&��8>�, 
				�� = �1A��2@��3?��4(��5>��6&��7<��8=�.	 (27) 

Different from the groups Γ� and Γ�, it is interesting to find 

that the product of all �� is a two-order element in the group 

Γ�, 

�"������ = −	�"������ 
= �1&��2>��3<��4=��5A��6@��7(��8?�,	  (28) 

while Eq. (6) and Eq. (10) show that the product of all �� are 

the elements of order four. 

This formula is helpful in understanding the isomorphism 

relations between Γ� and ΓB (Γ� ≈ ΓB). Since this part can be 

viewed as the case of N=4m when m=1, this research might 

also be used to reveal the properties of the Γ matrix groups, 

such as, Γ�C	≈ Γ�CD". 

Hence, the symmetric group whose subgroup corresponds 

to the gamma matrix group Γ� of order 32 is related to S16 in 

present results, while it is connected with S32 from the 

Cayley's theorem. The order of the symmetric group in our 

method is far less than the latter. 

5. Discussions 

The symmetric groups isomorphic to the matrix groups Γ� 

have been discussed when the value of N is even or odd. It is 

found that the matrix group Γ� of order 8 is isomorphic to a 

subgroup of the permutation group S4 and the matrix group Γ� 

of order 16 is isomorphic to a subgroup of the permutation 

group S8. As is well known, up to isomorphism, there are five 

different finite groups of order 8. The first is the cyclic group 

C8. The second is the dihedral group D4, where two generators 

can be denoted by R and S0, satisfying )� = *+� = ( . The 

third is an Abelian group, >�E = >�⨂>� , where the 

generators satisfy )� = *+� = ( and RS0=S0R. The fourth is 

also a commutative group, &�E = G�⨂>�, and the generators 

satisfy )"� = )�� = *+� = (. The fifth is a quaternion group Q8, 

the generators satisfy )"� = *+� = ( . Since the symmetric 

groups corresponding to groups Γ�	and	Γ�	have been found, 

one might try to think if Γ� can be represented as the product 

of finite group of order 8 and the cyclic group C2. Since there 

should be elements of order 8 in the cyclic group C8, it is 

natural that Γ� is not related with CL⨂C2. It is verified that Γ� 

is also not the direct product D�⨂C2 or >�E⨂C2 or &�E⨂C2 

or NL⨂C2 through multiplication of the permutations. In fact, 

it is finally found that Γ�  can be represented as the 

semi-product of NL and the group C2, Γ� = NL × >�. Due to 

the expression 

Γ� = �±1,±γ", ±γ�, ±γ�, ±γ"γ�, ±γ"γ�, ±γ�γ�, ±γ"γ�γ�� 
= �±1,±γ", ±γ�, ±γ"γ�, ±i, ±iγ", ±iγ�, ±iγ"γ�� 
= �1, γ�γ�, −γ"γ�, γ"γ�, −1, −γ�γ�, γ"γ�, −γ"γ�, 
	γ", γ"γ�γ�, γ�, −γ�, −γ", −γ"γ�γ�, −γ�, γ�� 
= �1, iγ", iγ�, γ"γ�, −1, −iγ", −iγ�, −γ"γ�, 

γ", i, −iγ"γ�, −γ�, −γ", −i, iγ"γ�, γ��      (29) 

therefore, Γ� can be rewritten in the form 

Γ� = �1, iγ", iγ�, γ"γ�, −1, −iγ", −iγ�, −γ"γ�� × �1, γ"� 
= �(, �1423��5768�, �1728��3645�, �1526��3748�, �12��34��56��78�, 

�1324��5867�, �1827��3546�, �1625��3847�� × �(, �12��34��, 
= �	(, �1423��5768�, �1728��3645�, �1526��3748�, 

�12��34��56��78�, �1324��5867�, �1827��3546�, �1625��3847�, 
�12��34�, �1324��5768�, �18��27��35��46�, �16��25��38��47�, 
�56��78�, �1423��5867�, �17��28��36��45�, �15��26��37��48�� 

≃ �	(, �1526��3748�, �1728��3645�, �1324��5867�, 
�12��34��56��78�, �1625��3847�, �1827��3546�, �1423��5768�, 
�12��56�, �1625��3748�, �18��27��54��36�, �14��23��57��68�, 
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�34��78�, �1526��3847�, �17��28��35��46�, �13��24��58��67�� 
≃ �	(, �1728��3645�, �1324��5867�, �1526��3748�, 

�12��34��56��78�, �1827��3546�, �1423��5768�, �1625��3847�, 
�12��78�, �1827��3645�, �14��23��58��67�, �16��25��37��48�, 
�34��56�, �1728��3546�, �13��24��57��68�, �15��26��38��47��.	                    (30) 

It can be verified that 

the	set	of	�1, iγ", iγ�, γ"γ�, −1, −iγ", −iγ�, −γ"γ�� is a group 

isomorphic to the quaternion group Q8, which is an invariant 

subgroup of index two of Γ�. The cyclic group of �1, γ"� is a 

subgroup of Γ� and it is not a normal subgroup. That is, Γ� is 

the semi-product of these two subgroups. 
It can also be found that though 	γ", 	γ�, 	and	γ�  have 

various forms in Eqs. (15)-(17), all the elements of order 4 in 

the group Q8 remain unchanged. They are (1423)(5768), 

(1728)(3645), (1526)(3748), (1324)(5867), (1827)(3546) and 

(1625)(3847) respectively. Further, it is noticed that Eq. (11) 

leads to 

��"���� = ������� = ��"���� 

= ��"�����������"��� = �12��34��56��78� = −1.	 (31) 

If the corresponding relations between the permutations and 

fundamental quaternion units are 

�"�� ↔ 0, ���� ↔ X, �"�� ↔ Y,        (32) 

Equation (31) will immediately remind us of the famous 

formula of quaternion algebra 

i� = X� = Y� = 0XY = −1.	         (33) 

This indicates that there is an isomorphism between the 

quaternion group and an invariant subgroup of index two in 

the group Γ� . This conclusion could be meaningful in 

understanding the properties of the quaternion group. It is 

known that the quaternion group play an important role in 

mathematics and physics. Equations (31)-(33) might be an 

interesting starting point to study the quaternions and 

octonions. 

6. Conclusions 

In this article, we find the symmetric group Sk (k=n/2) 

corresponding to the matrix group Γ� of order n and provide 

the exact relations between them. This specific finite group is 

investigated for the value of N that is odd or even. Especially, 

when N is even, we studied separately the cases when N=4n-2 

and when N=4n. This research indicates that the order of the 

symmetric group in our approach is less than that of the group 

directly from the Cayley's theorem. 

The generalization of this method to matrix group Γ� when 

N is arbitrary number, even or odd, is straightforward. The 

properties of the symmetric groups can be used to check and 

understand the properties of the Γ	matrix groups which will 

widen the application of the familiar theorem of Cayley. It is 

interesting to find that the study of Γ  matrix groups is 

meaningful to understand the properties of the quaternion 

group. These conclusions might be useful to study the Clifford 

algebra, Lorentz group and its representations. It is also hoped 

to stimulate one to apply these results to other interesting 

fields. 
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