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Abstract: The q-Calculus has served as a bridge between mathematics and physics, particularly in case of quantum physics. 

The q-generalizations of mathematical concepts like Laplace and Fourier transforms, Hypergeometric functions etc. can be 

advantageously used in solution of various problems arising in the field of physical and engineering sciences. The present 

paper deals with some of the important results of q-Laplace transform of Fox-Wright and Mittag-Leffler functions in terms of 

well-known Fox’s H-function. Some special cases have also been discussed. 
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1. Introduction 

Our translation of real world problems to mathematical 

expressions relies on calculus which has been generalized in 

several directions. A natural generalization of calculus, called 

fractional calculus was developed during eighteenth century 

which involved the differentiation and integration operations 

of arbitrary order, which is a sort of misnomer. In the 

beginning it did not develop sufficiently due to lack of 

applications. Over the years various applications of the 

concept were explored and the efforts were so rewarding that 

the subject itself has been categorized as a significant branch 

of applicable mathematics. It plays a significant role in 

number of fields such as physics, rheology, quantitative 

biology, electro-chemistry, scattering theory, diffusion, 

transport theory, probability, elasticity, control theory, 

engineering mathematics and many others. 

In order to stimulate more interest in the subject, many 

research workers engaged their focus on another dimension 

of calculus which sometimes called calculus without limits or 

popularly q-calculus. The q-calculus was initiated in twenties 

of the last century. Kac and Cheung’s book [13] entitled 

“Quantum Calculus” provides the basics of such type of 

calculus. The fractional q-calculus is the q-extension of the 

ordinary fractional calculus. The investigations of q-integrals 

and q-derivatives of arbitrary order have gained importance 

due to its various applications in the areas like ordinary 

fractional calculus, solutions of the q-difference (differential) 

and q-integral equations, q-transform analysis etc. 

Hypergeometric functions evolved as natural unification of 

a host of functions discussed by analysts from the 

seventeenth century to the present day. Functions of this type 

may also be generalized using the concept of basic number. 

Over the last thirty years, a great resurgence of interest in q-

functions has been witnessed in view of their application to 

number theory and other areas of mathematics and physics. 

The Mittag–Leffler function and Fox-Wright functions are 

generalizations of Hypergeometric functions which appear as 

solution of well-known fractional differential and integral 

equations representing some physical and physiological 

phenomena like diffusion, transport theory, probability, 

elasticity and control theory. 

The purpose of this paper is to increase the accessibility of 
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different dimensions of q-fractional calculus and 

generalization of basic hypergeometric functions to the real 

world problems of engineering and science through various 

integral transforms including Laplace and Fourier transforms 

and their q-images. 

The classical Laplace, Fourier and Mellin transforms have 

been widely used in mathematical physics and applied 

mathematics. The classical theory of the Laplace transform is 

well known Sneddon [1] and its generalization was 

considered by many authors [2, 3, 4, 8 and 9]. Various 

existence conditions and the detailed study about the range 

and invertibility was studied by Rooney [7]. The Laplace 

transform and Mellin transform are widely used together to 

solve the fractional kinetic equations and thermonuclear 

equations [5]. 

2. Mathematical Preliminaries 

Classical Laplace transform: The Laplace transform is 

very useful in analysis and design for systems that are linear 

and time-invariant (LTI). Beginning in about 1910, transform 

techniques were applied to signal processing at Bell Labs for 

signal filtering and telephone long-lines communication by 

H. Bode and others. Transform theory subsequently provided 

the backbone of Classical Control Theory as practiced during 

the World Wars and upto about 1960, when State Variable 

techniques began to be used for controls design. Pierre Simon 

Laplace was a French mathematician who lived 1749-1827, 

during the age of enlightenment characterized by the French 

Revolution, Rousseau, Voltaire and Napoleon Bonaparte. Let 

f(t) be a function piecewise continuous on [0,A] (for every 

A>0) and have an exponential order at infinity with���� ≤���	. Then, the Laplace transform L(f) is defined for s > a, 

that is {s >a}⊂Domain(L(f)). The Laplace transform of f(t) is 

defined by 

L[f(t)]= F(s) =     ( )
0

st
e f t dt

∞ −
∫ .                    (1) 

The Laplace transform is said to exist if the integral (1) is 

convergent for some values of s. 

Classical Fourier Transform: Fourier analysis is named 

after Jean Baptiste Joseph Fourier (1768to1830), a French 

mathematician and physicist. Joseph Fourier, while studying 

the propagation of heat in the early 1800's, introduced the 

idea of a harmonic series that can describe any periodic 

motion regardless of its complexity. Later, the spelling of 

Fourier analysis gave place to Fourier transform (FT)  and 

many methods derived from FT are proposed by researchers. 

In general, FT is a mathematical process that relates the 

measured signal to its frequency content Heideman et.al.[12]. 

The Fourier series is described in theory and problems of 

advanced calculus as follows: 

If f(x) be a function defined on ( −∞,∞ ) uniformly 

continuous in finite interval such that 

0

( ) ( )f x d x

∞

∫ converges, 

then the Fourier transform of f(x) is defined by 

F(f(x))= ( )f s
−

=
isx

e
∞

−∞
∫ f(x) d(x), where ����  is said to be 

kernel of the Fourier transform. 

q-image of Laplace transform: Hahn[6] defined the q-

image of classical Laplace transform as 

Lqf(s) =

0

sx

qe
∞

−

∫ f(x)d(x),Re(s)>0.                 (2) 

Where �����  is defined by �����=

��������������. 

The Laplace transform of the power function is defined as 

L(��)= 1

( 1)

s
µ

µ
+

Γ +
                    (3) 

The q-Laplace transform of the power function is defined 

as in [10&11] 

Lq(��)=
1

( 1)(1 )q q

s

µ

µ

µ
+

+ −Γ
                  (4) 

Also, �1 − ����� ( )q αΓ = 1( ; )q q α −  

Fox-Wright generalized hypergeometric Function: 

The Fox-Wright (Psi) function is defined as follows [14]. 

1 1 2 2

1 1 2 2
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( , ), ( , ),...( , ) |

p p

p q
p p

a A a A a A

a A a A a A z
ψ
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 
 

 

=
0 1 21 2

!( ) ( )... ( )

1 21 2( ) ( )... ( ) n

n qq
nn n n

ppn n na a aA A A z
b b bB B B

∞

= Γ + Γ + Γ +

Γ + Γ + Γ +
∑    (5) 

Where �	�	, �	�	 ϵ C >0;  	�	 > 0, !	�	 > 0; 1+∑ !#�#$� −∑  �%�$�  ≥ 0; �	ϵR, for suitably bounded value of |z|.

 
The basic analogue of Fox-Wright hypergeometric 

function denoted pψq(z;q) for z ϵ C is defined in series form 

as [18] 

pᴪq(z;q)=∑ ∏ Г���(�)*(�+(,-∏ Г��./�)0/��/,-1)$2 34��;��4, where |q|<1. 

Mittag-Leffler Function:

 
The Mittag-Leffler function is named after a Swedish 

mathematician who defined and studied it. The function is a 

direct generalization of the exponential function, ��  and it 

plays a major role in fractional calculus. The one, two and 

three-parameter representations of the Mittag-Leffler 

function can be defined in terms of a power series as follows 

[15, 16, 17]. 

6��7�=
0

(1 )

n

n
n

z
α

∞

= Γ +∑ , for 8 ∈C, R(8)>0.           (6) 
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6�,:�7�=
0

( )

n

n
n

z
β α

∞

= Γ +∑ , for 8,; ∈C,R(8)>0.     (7) 

,
( )zE

γ
α β

=

0
( )

( )
n

n
n

n
z

β α

γ∞

= Γ +∑
�<!,	for8,;,> ∈C,R(8)>0.   (8) 

where, (>)n=>(> + 1)(> + 2)(> + 3)…(> + B − 1) 

and (>)0=1. 

For 8, ;, >CD, E��8� > 0, E��;� > 0, E��>� >0	�BH|�| < 1	�ℎ��LBM��NB	6�,:O �7; ���P	H���B�H	�PQ19S: 6�,:O �7; �� = 	∑ ��V;��W��;��W 3WГ���X�:�1X$2 , where Г��Y�  is the 

gamma function. 

3. Main Results 

(A) In this section of paper, the authors have derived the 

classical Laplace transform of Fox-Wright and Mittag-Leffler 

functions in terms of Fox’s H–function. 

Theorem 1: The classical Laplace transform of Fox-Wright 

function in terms of Fox’s H–function is given by 
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Proof: ForE�⍺� > 0 , the classical Laplace transform of 

Fox-Wright in terms of Fox’s H–function is given by 
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From equation (9) we have, 
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Or by using equation (3) we get, 
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Which implies that, 
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. 

This is the proof of theorem. 

Theorem 2: The classical Laplace transform of ML-

Function in terms of Fox’s H–function is given by 

L( ,
( )zE

γ
α β ) =				�� �

( )γΓ
1,1

1,1

(1 , 1)

(1 , )
SH

γ
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Proof: ForE�⍺� > 0 , the classical Laplace transform of 

ML-Function in terms of Fox’s H–function is given by 

L(
,

( )zE
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α β ) = L
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n n
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Therefore, from equation(10) we have, 
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Which implies, 
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�
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γ
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This is the proof of the theorem. 

Observations: 

(1.1): If 1γ = then from above theorem
 

,
( ( )L zEα β =

1

s

1,1

1,1

(0, 1)

(1 , )
SH β α

− 
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. 

(1.2): If 1γ = and 1β = then from above theorem 

( ( )L zEα =
1

s

1,1
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(0, 1)

(0, )
SH α
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. 

(B) In this section of paper, the authors have derived the q-

image Laplace transform of basic analogue of Fox-Wright 

and Mittag-Leffler functions in terms of Fox’s q-analogue of 

H–function which is given by 

Theorem3: The q-Laplace transform of q-analogue of Fox-

Wright Function in terms of q-analogue of H–function is 

given by 

qL
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Proof: For q > 0, E�⍺� > 0 , the q-image of Laplace 

transform of q-type of Fox-Wright Function in terms of basic 

analogue of H–function is given by 
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This is the proof of theorem. 

Theorem 4: The q-Laplace transform of q-analogue of 

ML-Function in terms of q-analogue of H–function is given 

by 
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Proof: For q > 0, E�⍺� > , the q-image of Laplace 
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analogue of H–function is given by 
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By making use of equation (4) we get, 
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Lq
,

( ( : )z qE
γ
α β = 

�
( )

q
γΓ

0
( )

( )

n q
n

q n
β α

γ∞

=

 
  
 

+ 
  

+Γ
∑ Γ

1

( ; )
n

q q
��;��W�Wx-  

Or Lq
,

( ( : )z qE
γ
α β = 

�
( )

qs γΓ 0
( )

( )∞

=

 
  
 

+ 
  

+Γ
∑ Γn q

n

q n
β α

γ ��W 

Or Lq
,

( ( : )z qE
γ
α β  

= 
�

( )
qs γΓ 0

(1 (1 ) )

(1 (1 ) )

n q
n

q n
β α

γ∞

=

 
  
 

− − + 
  

− − +Γ
∑ Γ

��W 

Or Lq
,

( ( : )z qE
γ
α β =  

�
( )

qs γΓ
1,1

1,1

(1 ,1)
;

(1 , )
S qH

γ
β α

− 
 − 

 

This completes the proof. 

Observations: 

(1.3): If 1γ = then from above theorem 

,
( ( )

q
zL Eα β =

1

s

1,1

1,1

(0,1)
;

(1 , )
S qH β α

 
 − 

, 

(1.4): if 1γ = & 1β = then from above theorem 

( ( )
q

zL Eα =
1

s

1,1

1,1

(0,1)
;

(0, )
S qH α

 
 
 

. 

4. Special Cases 

Taking q=1, we get following as special case of theorem 

(4) 

,
( ( )L zE

γ
α β =

1

( )s γΓ
1,1

1,1

(1 ,1)

(1 , )
SH

γ
β α

− 
 − 

 

if 1γ =
 
then from above theorem 

,
( ( )L zEα β =

1

s

1,1

1,1

(0,1)

(1 , )
SH β α

 
 − 

 

If 1γ =  and 1β =  then from above theorem 

( ( )L zEα
=

1

s

1,1

1,1

(0,1)

(0, )
SH α

 
 
 

 

5. Conclusion 

The results proved in this paper give some contributions to 

the theory of the q-series, especially q-analogue of 

generalized hypergeometric function and Mittag-Leffler 

Function and may find applications to solutions of certain q-

difference, q-integral and q-differential equations with the 

help of q-images of transforms like Laplace and Fourier 

transforms. The results proved in this paper appear to be new 

and likely to have useful applications to a wide range of 

problems of mathematics, statistics and physical sciences. 
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