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Abstract: Channel correlation is closely related to the capacity of the multiple-input multiple-output (MIMO) correlated 

channel. Indeed, the high correlated channel degrades the system performance and the quality of wireless communication 

systems in terms of the capacity. Thus, we design an inverse-orthogonal matrix such as Toeplitz-Jacket matrix to design 

transmit and receive correlation matrices to mitigate the channel correlation of the MIMO systems. The numerical and 

simulation results are performed for both uncorrelated and correlated channel capacities in the case of single sided fading 

correlations. 
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Inverse-Orthogonal Matrices Toeplitz -Jacket Matrices, The Channel Capacity, The Spatial Correlation 

 

1. Introduction 

MIMO communication offers significant capacity gains as 

well as improved diversity advantage [1], [2]. Multipath 

fading environment denotes a remarkable challenge in the 

implementation of reliable wireless MIMO systems. More 

recently, the development community has organized that 

using multiple antennas at the transmitter and the receiver 

can help overcome the detrimental effects of fading using a 

technique known as antenna diversity. In recent year studies 

report that in single-user, point-to-point links, using multiple-

element arrays (MEAs) at both transmitter and receiver 

increases the capacity significantly over single-antenna 

systems [3], [4]. The information-theoretic capacity of MEA 

systems in a narrow-band Rayleigh-fading environment have 

analyzed in [3]. They consider independent and identically 

distributed (i.i.d.) fading at different antenna elements, and 

assume that the transmitter does not know the channel. Due 

to the channel variability of time and frequency where 

circumstances permit coding across many channel coherence 

intervals, the achievable rate scales as

( ) ( )min , log 1T RM M SNR+  since
T

M
 
and 

R
M

 
are the 

numbers of transmit and receive antennas, respectively and

SNR  is the Signal to Noise Ratio. 

Thus, the channel capacity of a multiple antenna system 

can be increased by the factor of ( )min ,T RM M  without 

using additional transmits power or spectral bandwidth in [5]. 

However, on the Shannon capacity of multi-antenna 

wireless systems, the seminal work of Telatar in [6] has 

attracted a lot of attention. A single-user MIMO system has 

started the development with the investigation of the channel 

capacity. Many results on the capacity for different types of 

channel state information at the transmitter and/or receiver 

are known or unknown. Thus, we discuss in some detail 

about input and output correlation matrices such as transmit 

and receive correlation matrices and their effects on the 

channel capacity, with focus on the case of multiple numbers 

of antennas. The impact of correlation of the channel matrix 

on the achievable capacity in [4], [7], [8]. Most of the related 

works are using the assumption, that the channel covariance 

matrix is the Kronecker product of the covariance matrices of 

transmit and receive antennas [9], [10]. Many publications 

dealing with MIMO channel modeling aim at describing the 

spatial correlation properties of MIMO channels directly, 

e.g., [11], [12], [13], [14], [15], [16]. Their common 

approach is to model the correlation at the receiver and the 

transmitter independently, neglecting the statistical 

interdependence of both link ends. It may be desirable to 

study capacity and error rate performance accounting for 

spatial-correlation effects, due to the propagation channel and 



 International Journal of Discrete Mathematics 2017; 2(1): 20-30 21 

 

the transmit/receive arrays. Typically derived of spatially 

correlated MIMO channels under certain assumptions about 

the scattering in the propagation environment. One 

fashionable correlation model like the stochastic model has 

been used to investigate the capacity of MIMO radio 

channels in [11]. 

The assumption of narrowband channel [17] can be easily 

extended to include the discrete Fourier transform (DFT) 

unitary matrices [18] whose defining property is being 

unitarily equivalent (same singular values) to a channel with 

independent non-identically distributed entries. The unitary 

independent unitary channel model in [7] can also revert to 

the separable correlation model [10, 13, and 19]. In [20], [21], 

the transmit and receive antennas with orthogonal 

polarizations may provide low levels of correlation include 

minimum or antenna spacing while making communication 

link robust to polarization rotations in the channel. Therefore, 

we are interested in the correlated MIMO channel with 

inverse-orthogonal transmit and receive correlation matrices 

like Toeplitz-Jacket matrices in this paper. 

The Toeplitz matrix is introduced in [22], [23] and the 

Jacket matrix is currently proposed by M. H. Lee in [24], [25]. 

A Jacket matrix in which all entries are of modulus 1 is called 

a complex Hadamard matrix in [26], [27]. The Jacket matrices 

are a generalization of complex Hadamard matrices. A 

Hadamard matrix is a square matrix whose entries are either 

+1 or -1 and whose rows are mutually orthogonal. A class of 

Jacket matrices are motivated by the center weighted 

Hadamard matrices available in signal processing, image 

compression, numerical analysis and communications. The 

researchers have made a considerable amount of effort to 

develop various kinds of orthogonal transforms. Since the 

orthogonal transform with the independent parameters can 

carry many different characterizations of digital signals, it is 

interesting to investigate the possibility of generalization of 

Hadamard and DFT and so on.  

This paper is organized as follows:  

In Section 2 and Section 3 gives some details about the 

system model and Toeplitz structure of transmit and receive 

correlation matrices design, respectively. In Section 4 we design 

Toeplitz-Jacket structure of transmit and receive correlation 

matrices. In Section 5, we describe the capacity of the MIMO 

deterministic channel. We analyze the numerical result in 

Section 6. Finally, we investigate the simulation results and 

conclusions are presented in Section 7 and Section 8. 

2. System Model 

Let us consider a narrowband point-to-point MIMO 

system with T
M  transmit and R

M  receive antennas which 

are modeled as:  

, 1, 2...x

k k k

T

E
k

M
= + =y Hx n                       (1) 

where 
1RM

k

×∈y ℂ  and 
1TM

k

×∈x ℂ  are the received and 

transmitted signal vectors at time k , xE  is the energy of the 

transmitted signals and kn
 
is the zero-mean independent and 

identically distributed (i.i.d.) complex Gaussian noise vector 

at time k  include covariance matrix
2

Rz M
σ I . The matrix 

R TM M×∈H ℂ  is assumed R TM M×  MIMO channel matrix to 

be Rayleigh fading i.e. ( ) ( )0,vec CNH R∼ . 

The channel matrix H  for the cases in which we have 

correlated transmit and outputs receive antennas is 

approximately modeled as [7, 8, 9, 10, 11]. 

( )1/2 1/ 2

R T

H

M iid M=H R H R                               (2) 

where T T

T

M M

M

×∈R ℂ and R R

R

M M

M

×∈R ℂ are the deterministic 

transmit and receive correlation matrices, respectively while 

iidH
 
is i.i.d., Rayleigh-faded channel. The operator ( )H⋅ is 

called Hermitian. The deterministic transmit and receive side 

correlation matrices can be defined as: 

1
T

R

H H

H

M H
RM

E E
E

MTrTr

        = = =       

H H H H
R H H

HHR
,         (3) 

1
R

T

H H

H

M H
TM

E E
E

MTrTr

        = = =       

HH HH
R HH

H HR
,         (4) 

and 

{ }H

R TE Tr M M  = HH                               (5) 

Therefore, we can write a R TM M×  MIMO channel 

correlation matrix as follows: 

T RH M M= ⊗R R R                                  (6) 

where the Kronecker product of 
T RM M⊗R R of 

TMR and 

RMR is defined as:  

11 12 1

21 22 2

1 2

R R T R

R R T R

T R T R T T R

Tx Tx Tx

M M M M

Tx Tx Tx

M M M M

H

Tx Tx Tx

M M M M M M M

ρ ρ ρ
ρ ρ ρ

ρ ρ ρ

 
 
 =  
 
 
 

R R R

R R R
R

R R R

…

…

⋮ … ⋱ ⋮

…

            (7) 

where as, we can be defined the transmit and receive 

matrices, 
TMR

 
and 

RMR
 
are 

11 12 1

21 22 2

1 2

T

T

T

T T T T

Tx Tx Tx

M

Tx Tx Tx

M

M

Tx Tx Tx

M M M M

ρ ρ ρ
ρ ρ ρ

ρ ρ ρ

 
 
 =  
 
 
 

R

…

…

⋮ … ⋱ ⋮

…
, 

And 
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11 12 1

21 22 2

1 2

R

R

R

R R R R

Rx Rx Rx

M

Rx Rx Rx

M

M

Rx Rx Rx

M M M M

ρ ρ ρ
ρ ρ ρ

ρ ρ ρ

 
 
 =  
 
 
 

R

…

…

⋮ … ⋱ ⋮

…
 

For an example 1: If 2 2×  transmit and receive correlation 

matrices as follows [11]: 

Let, *

1

1RM

ρ
ρ
 

=  
 

R  and *

1

1TM

µ
µ
 

=  
 

R , 

So the MIMO correlation matrix becomes 4 4×  matrix as: 

* *

*

* *

* *

* *

** * *

1 1
1

1 1

1 1
1

1 1

1

1

1

1

H

ρ ρ
µ

ρ ρ
ρ ρ

µ
ρ ρ

ρ µ µρ
ρ µρ µ

ρµ µ ρ
ρµ ρ µ

    
× ×    
    =

    
 × ×   
     

 
 
 =
 
 
  

R

                  (8) 

However, the general treatment of H  matrix we refer the 

reader to [7]. Under the virtual channel condition in [28], the 

use of uniform linear arrays (ULAs) at the transmitter and the 

receiver makes 
TMR

 
and 

RMR
 
are an approximately 

Toeplitz. Thus, we will discuss about an approximately 

Toeplitz structure of transmit and receive correlation 

matrices, 
TMR and 

RMR
 
are in the next Section 3.  

3. Toeplitz Structure of Transmit and 

Receive Correlation Matrices Design 

Definition of Toeplitz Matrix: It is well known that a 

Toeplitz matrix { },M i j
t=T is a M M×  matrix where 

,i j j it t −=  for very1 ,i j M≤ ≤ , i.e., form in [22, 23] 

0 1 2 1

1 0 1

2 1 0

1 0

M

M

M

t t t t

t t t

t t t

t t

−

−

− −

− +

 
 
 
 =
 
 
  

T

⋯

⋮

⋮ ⋱

…

                  (9) 

By the definition of (9), we recall Theorem 1 as  

Theorem 1: A square M M×  correlation matrix 
M

R  is an 

approximately Toeplitz. 

Proof of Theorem 1: Let T R
M M M= =  and the 1M ×

observation vector k
x  denote the elements of the time series

k
x , 1k

x − ,…, 1k M
x − + . To show the composition of the vector 

k
x explicitly, we write, 

[ ]1 1
, ,....,

T

k k k k M
x x x− − +=x                         (10) 

Now we define the correlation matrix of a stationary 

discrete-time stochastic process denoted by the time series as 

the expectation of the outer product of the observation vector 

k
x

 
with itself. Let 

M
R

 
is a M M×  correlation matrix, 

reflecting the correlations between the rows or column 

vectors of H  and define in this way. Thus we obtain from 

[29] 

H

M k k
E  =  R x x                                   (11) 

where the operator ( )H⋅
 
represents Hermitian transposition, 

i.e., the operation of transposition combined with complex 

conjugation. By substituting “(10)” in “(11)” 

0 1 2 1

1 0 1

2 1 0

1 0

M

M

M

r r r r

r r r

r r r

r r

−

−

− −

− +

 
 
 
 =
 
 
  

R

⋯

⋮

⋮ ⋱

…

                      (12) 

Hence, we claim “(12)” is an approximately M M×  

Toeplitz matrix. Similarly we can rearranged backward of an 

observation vector [ ]1 1,...., ,T

k k M k kx x x− + −=x is given by 

0 1 2 1

1 0 1

2 1 0

1 0

M

T

M

M

r r r r

r r r

r r r

r r

− − − +

−

−

 
 
 
 =
 
 
  

R

⋯

⋮

⋮ ⋱

…

                    (13) 

In “(12)” and “(13)” shows that the element 
0

r  on the 

main diagonal is always real valued. For complex valued 

data, the remaining elements of 
M

R
 
assume complex values. 

The definition of “(9)” and “(12)”, we can claim transmit and 

receive correlation matrix, 
TMR

 
and 

RMR
 
is an 

approximately Toeplitz i.e., 

0 1 2 1

1 0 1

2 1 0

1 0

T

T

T

M

M

M

r r r r

r r r

r r r

r r

−

−

− −

− +

 
 
 
 =
 
 
 
 

R

⋯

⋮

⋮ ⋱

…

,                    (14) 

0 1 2 1

1 0 1

2 1 0

1 0

R

R

R

M

M

M

r r r r

r r r

r r r

r r

−

−

− −

− +

 
 
 
 =
 
 
 
 

R

⋯

⋮

⋮ ⋱

…

                     (15) 

Therefore, the correlation matrix 
M

R
 
plays a key role in 

the statistical analysis and design of discrete-time filters in 

[29]. It is therefore important that we understand its various 

properties and their applications. Especially, the definition of 

“(11)”, we find that the correlation matrix of a stationary 

discrete-time stochastic process the following properties as 

[29]: 

Case1: Correlation matrix 
M

R  of a stationary discrete-
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time stochastic process is Hermitian. 

So a complex-valued matrix is Hermitian if it is equal to 

its conjugate transpose. We may thus express the Hermitian 

properties of the correlation matrix 
M

R
 
by writing 

H

M M=R R                                       (16) 

where this property follows directly from the definition of 

“(12)”. Thus the Hermitian property of the MR
 
is to write 

from “(12)”  

*

k kr r− =                                         (17) 

where the operator ( )*⋅  is called conjugate transpose and kr  

is the auto-correlation function of the stochastic process kx  

for a lag of k . Accordingly, for a wide-sense stationary 

process we only need TM  or RM  values of the auto-

correlation function kr  
for 0,1,..., 1k M= −  in order to 

completely define the MR
 
matrix. Thus, we may rewrite 

from “(12)” as follows: 

0 1 2 1

*

1 0 1

* *

2 1 0

*

1 0

T

T

T

M

M

M

r r r r

r r r

r r r

r r

−

−

 
 
 
 =
 
 
 
 

R

⋯

⋮

⋮ ⋱

…

                   (18) 

Case2: Correlation matrix MR  of a stationary discrete-

time stochastic process is Toeplitz. 

By “(12)”, we can say, a M M×  correlation matrix MR  is 

Toeplitz, if all elements on its main diagonal are equal and if 

the elements on any other diagonal parallel to the main 

diagonal are also equal. From the expanded form of MR  

given in “(18)”, we see that all the elements on the main 

diagonal are equal to 
0

r , all the elements on the first diagonal 

above the main diagonal are equal to 
1
r , all the elements 

along the first diagonal below the main diagonal are equal to
*

1
r , and so on for the other diagonals. Therefore, we conclude 

that transmit and receive correlation matrices, 
TMR and 

RMR  

is an approximately Toeplitz which has shown in “(14)” and 

“(15)”. 

4. Design Toeplitz - Jacket Structure of 

Transmit and Receive Correlation 

Matrices 

Let a square M M× correlation matrix [ ]M ijij
r=R  is 

called Jacket matrix in [30] or inverse-orthogonal Toeplitz 

matrix in [31, 32], or type II matrix in [33], if its inverse 

matrix satisfies: 

1

,
,

1
M i j

j iMr

−  = R ,                                  (19) 

i.e., the inverse matrix can be obtained by taking element-

wise inverse and transposition up to a negligible constant 

factor. Equivalently these matrices satisfy the following 

relations [31], [32] as 

,

,

1 ,

, , 1, 2,...
M

i k

i j

k j k

r
M i j M

r
δ

=

= =∑                    (20) 

where ,i jδ
 
is the Kronecker delta- a function of two variables 

usually integers, 

,

1

0
i j

if i j

if i j
δ

=
=  ≠

                              (21) 

If C  is nonzero constant then the definition of Jacket 

matrix in [30] can be rewritten as follows: A square M M×
matrix 

0,0 0,1 0, -1

1,0 1,1 1, -1

-1,0 -1,1 -1, -1

M

M

M

M M M M

r r r

r j r

r r r

… 
 … =
 
  … 

R
⋮ ⋱ ⋱ ⋮

,                 (22) 

is called a Jacket matrix if it’s normalized element-inverse 

transposed  

0,0 0,1 0, -1

1,0 1,1 1, -1

-1,0 -1,1 -1, -1

1/ 1/ 1/

1/ 1/ 1/1

1/ 1/ 1 /

T

M

MT

M

M M M M

r r r

r r r

C

r r r

… 
 … =
 
  … 

R
⋮ ⋮ ⋱ ⋮

       (23) 

Satisfies, 

T

M M M
M=R R I                                    (24) 

where operator ( )T⋅  is called transpose inverse. 

For an example 2: Let a , b  and c  is nonzero complex 

numbers then Toeplitz-Jacket matrix of order 4 becomes 

from [31], 

[ ] ( ) 2

2 2

2

4
, ,

bc

a

ab

c

a abij
c c

a b a ab

c cc

a b c

a b c
a b c

a b

a

− 
 − =  −
 
 − 

R ,             (25) 

and the element-wise inverse of [ ] ( )4 , ,
ij

a b cR is given by  
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[ ] ( )
2

2 2

2

1

4

1 1 1 1

1 1 1 1

, ,
1 1 1 1

1 1 1 1

bc
a

ab
c

ij

aba
cc

aba b a
ccc

a b c

a b c
a b c

a b

a

−

 
 −
 
 
 − =  
 

− 
 
 

−  

R            (26) 

where [ ] ( )[ ] ( )1

4 4 4
, , , , 4

ij ij
a b c a b c I

− =R R  (see in [34]). 

Particularly, a real Hadamard matrix of order 2M >  with the 

Toeplitz structure is either circulant or negacyclic in [31, 

corollary 3.1]. So we can write by “(12)” and [31]: 

1

1

1
M

r

r

−

−

= ±                              (27) 

We see that when the “(27)” becomes,
1 1

/ 1
M

r r− − = + , then 

by “(12)”, we get 
1 1M

r r− −=
 
for 1, 2,..., 1l M= −  i.e., then 

matrix 
M

R  is circulant. Otherwise
1 1

/ 1
M

r r− − = − , then by 

“(12)”, we get 
1 1M

r r− −= −  hence i.e., the matrix 
M

R
 
is 

negacyclic. The well-known example of circulant complex 

Hadamard matrices, see e.g. [35]. Therefore, when a  be an 

arbitrary of a 
M

R matrix and b  be a nonzero complex 

number, then 
M

R  matrix of order M  is given by  

( )
( )

' 1 2 1

2 1

1, , , . . . ,

1, , , . . . ,

M

M

M

M

adiag b b b

diag b b b

− − − +

−

=R        

R         
               (28) 

where the ( ),i j th−  entry of '

MR
 reads  j i

ijr ab −
 . 

Hence Hadamard matrices have both theoretical 

applications ranging from harmonic analysis [36] to quantum 

information theory [32]; as well as applications in signal 

processing [30, 37]. Thus, we recall Theorem 2 as follows:  

Theorem 2: Toeplitz-Jacket structure of correlation 

matrices [ ]
,M i j

R  is approximately circulant one. 

Proof of Theorem 2: Let, 1 1/M
Ms r r− −=  from “(12)”, 

where the operator M ⋅  represents the principal M th−  root, 

the matrix, MR  is given by “(27)”  

1

M M M M

−=R D R Dɶ                                  (29) 

where { }1 2 11 M

M
diag s s s −=D ⋯  and 

{ }1 1 2 11 M

M
diag s s s− − − − +=D ⋯ is a M M× diagonal 

matrix, respectively and we claim Toeplitz-Jacket structure of 

correlation matrix
MRɶ is a M M×  circulant matrix as in 

[31]. Finally, setting “(29)” in “(2)”, then the renovated 

channel matrix becomes 

( )1/2 1/ 2

R T

H

M iid M=H R H R                             (30) 

where 
1/2 1/ 2 1/2

R R RM M M
=R D Rɶ ,

1/2 H/2 H/2

T T TM M M

−=R R Dɶ  and

1/2 H/2

R Tiid M iid M

−=H D H D . 

5. Capacity Analysis of MIMO 

Deterministic Channel 

The well-known formula of the capacity of a deterministic 

channel is defined as [38-39] 

( )
( )max ; /

f
I bits channel use=

x
C x y                    (31) 

where ( )
( ) ( ){ }

11 1
exp

22 det

H

xx
k

xx

f

π
− = − 

 
x x R x

R

 is the 

probability density function (PDF) of the transmit signal 

vector x , and ( );I x y
 
is the mutual information of random 

vector x and y is given by 

( ) ( ) ( )
( ) ( ) ( ){ }
( ) ( )

2

0

;

log det
R

Hx

M xx

T

I

E
I

M N

= −

= − +

= −

 
= + 

 

x y H y H y/x

H y H x/x H n/x

H y H n

HR H

             (32) 

( ) ( )2
log det

yy
eπ=H y R

 
is the differential entropy of y  

with covariance 
yy

R in [6], since 
yy

R
 
is obtained by 

{ }

0 R

H

yy

H H Hxx

T

Hxx

xx M

T

E

E
E E

M

E
N

M

=

   = +   

= +

R yy

H xx H nn

HR H I

, 

( )H y/x
 
is the conditional entropy of y when x  is given 

and ( ) ( )2 0
log det

RM
eNπ=H n I is a constant. In “(32)” 

shows that the mutual information is maximized when ( )H y

is maximized. Therefore, when CSI is present at transmitter 

side, the capacity of deterministic MIMO channel is given by  

( ) 2

0

max log det /
R

xx T

Hxx

M xx
tr M

T

E
I bps Hz

M N=

 
= + 

 R
C HR H   (33) 

When the MIMO channel matrix H is randomly changed, 

then the channel capacity is also randomly time-varying [39] 

since the random channel is an ergodic process. Therefore, 

the average capacity is calculated by “(33)” for known 

channel with CSI at the transmitter side, 

[ ]
( ) 2

0

max log det /
R

xx T

Hxx
M xx

tr M
T

E
E C E I bps Hz

M N=

  
= +  

   
R

HR H   (34) 
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5.1. Analysis of Uncorrelated Channel Capacity 

For real channel realization, the transmitter has no CSI and 

its power is equally allocated to each transmitting element. 

Thus, the matrix 
xx

R
 
is given by 

Txx M=R I                                 (35) 

In this case, the channel capacity “(33)” is obtained by 

“(35)” 

2

0

log det /
R

Hx

M

T

E
I bps Hz

M N

 
= + 

 
C HH          (36) 

The SVD expansion of a R TM M×∈H ℂ  matrix is 

H= ΛH U V                                     (37) 

where R RM M×∈U ℂ  T TM M×∈V ℂ is an unitary matrices which 

means that  

H H= =UU VV I                                (38) 

and the diagonal matrix, R TM M×Λ ∈ℂ is given by 

{ }
min1 2

, , , , 0, , 0
M

diag λ λ λΛ = ⋯ ⋯     (39) 

where ( )min min ,T RM M M= . So the capacity (36), 

expressed in terms of the singular values 

min

2

1 0

log 1 /
M

x

i

i T

E
bps Hz

M N
λ

=

 
= + 

 
∑C                  (40) 

The “(40)” has lower and upper bound as follows [5] 

( )

( )
2

0

min 2

0 min

log det

log det

R

R

Hx

M

T

H

x

M

T

E
I Tr

M N

TrE
C M I

M N M

 
+ 

 

 
 ≤ ≤ ⋅ +
 
 

HH

HH
          (41) 

Using “(5)” in “(41)” becomes 

( )

2

0

min 2

0

log det

log det max ,

R

R

x

M R

x

M T R

T

E
I M

N

E
C M I M M

M N

 
+ 

 

 
≤ ≤ + 

 

       (42) 

Therefore, for low SNR case whereas consider 0

0

xE

N
γ = is 

a fixed SNR value, the capacity “(36)” becomes  

( )
0

0 0

0
ln 2 ln 2

H

R

T

Tr M

M
γ

γ γ
→ ≈ ≈

HH
C                          (43) 

In “(43)” expression is independent of
T

M , and thus, even 

under the most favorable propagation conditions the 

multiplexing gains are lost, and from the perspective of the 

capacity, multiple transmit antennas are of no value. 

If 
T R

M M≫ and as a consequence [5] 

( )
R

T R

H

M

T
M M

Tr

M

 
  ≈
 
 

HH
I

≫

                       (44) 

Thus, the capacity “(36)” is given by 

( )
( )

2 0

2 0

log det

log 1

T R R RM M M M

R

I I

M

γ

γ

≈ +

= ⋅ +

C
≫

,                      (45) 

which matches the upper bound “(42)”. Similarly, If 

T R
M M≪

 
and as a result 

( )
T

T R

H

M

R
M M

Tr

M

 
  ≈
 
 

H H
I

≪

                      (46) 

With the equality ( ) ( )det det+ = +I AB I BA , combines 

“(32)” and “(46)”, yields 

0

2

2 0

log det

log 1

T R R

H

M M M

T

R

T

T

I
M

M
M

M

γ

γ

 
= + 

 

 
≈ ⋅ + 

 

C H H
≪

                (47) 

which matches the upper bound “(42)”. 

5.2. Analysis of Correlated Channel Capacity 

When spatial correlation is applied in “(36)”, then using 

“(2)” in “(36)”, the channel capacity is given by [39]  

( ) ( )1/ 2 1/ 2 1/ 2 1/ 2

2

0

log det
R R T T R

H H
Hx

M M iid M M iid M

T

E
I

M N

 
= + 

 
C R H R R H R   (48) 

With the equality ( ) ( )det det+ = +I AB I BA , this can be 

written to  

2

0

log det /
R T R

Hx

M iid M iid M

T

E
I bps Hz

M N

 
= + 

 
C H R H R   (49) 

By setting the condition 
R RM M=R I and 

T R
M M≫  in 

“(49)”, that means no correlation exists between the receive 

antennas. Thus, the capacity “(49)” becomes, 

2

0

log 1 /
T R T

Hx

M M R iid M iid

T

E
M bps Hz

M N

 
= ⋅ + 

 
C H R H

≫    (50) 

which matches as “(44)”.  

By setting another condition 
T TM M=R I and 

T R
M M≪  in 

“(49)”, that means no correlation exists between the transmit 

antennas. Then, the capacity “(49)” becomes, 
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2

0

log 1 /
T R R

Hx

M M T iid iid M

T

E
M bps Hz

M N

 
= ⋅ + 

 
C H H R

≪ ,   (51) 

If 
T R

M M M= = , 
TMR and 

RMR is full rank and when the 

SNR is high, the channel capacity “(49)” can be 

approximated as [39]  

( ) ( )
2

0

2 2

log det

log det log det

T R

T R

Hxx

M M M iid iid

T

M M

E
C

M N
= =

 
≈  

 

+ +

H H

R R

               (52) 

where term ( ) ( )2 2
log det log det

T RM M
+R R is always 

negative by the fact that ( )2log det 0M ≤R  for any 

correlation matrix
M

R . So the MIMO channel capacity has 

been reduced in “(52)”. Since the determinate of a unitary 

matrix is unity, so the determinate of correlation matrix is 

given by 

( )
1

det
M

M i

i

λ
=

= ∏R ,                              (53) 

and the geometric mean is bounded by the arithmetic mean, 

that is, 

1

11

1
1

M MM

i i

ii M
λ λ

==

  ≤ = 
 

∑∏                          (54) 

From “(53)” and “(54)”, it is obvious that,  

( )2log det 0M ≤R                             (55) 

The equality in “(55)” holds when the correlation matrix is 

identity matrix. Thus, the quantity in term, 

( ) ( )2 2
log det log det

T RM M
+R R

 
are all negative. As a result, 

we assume an approximately Toeplitz-Jacket structure of 

transmit and receive correlation matrices as “(29)” to reduce 

the reflection of input and output correlation matrices of the 

MIMO correlated channel as in “(30)”. Similarly, by setting 

the values of “(29)” and “(30)” in “(50)”, “(51)” and “(52)” 

and can be written: 

2

0

log 1 /
T R T

Hx

M M R iid M iid

T

E
M bps Hz

M N

 
= ⋅ + 

 
C H R H

≫ ,    (56) 

2

0

log 1 /
T R R

Hx

M M T iid iid M

T

E
M bps Hz

M N

 
= ⋅ + 

 
C H H R

≪      (57) 

and 

2

0

log det /
T R T R

Hx

M M M iid M iid M

T

E
bps Hz

M N
= =

 
≈  

 
C H R H R    (58) 

6. The Numerical Analysis 

The channel correlation of a MIMO system is mainly due to 

two components such as spatial correlation and the antenna 

mutual coupling. Except the spatial correlation will contribute 

to the correlation, antenna mutual coupling will also contribute 

for MIMO system in [40]. In the transmitter antenna mutual 

coupling causes the input signals being coupled into 

neighboring antennas. The antenna mutual coupling influences 

both the spatial correlation and SNR, is taken into account by 

means of the impedance matrix in [5], [40]. 

In this paper, we will ignore the antenna mutual coupling 

and assume the spatial correlation scheme for simple 

example of enumeration that the channels are Gaussian 

random channels with a unit variance and a zero mean. For a 

measured MIMO i.i.d channel R TM M

iid

×∈H ℂ  has the 

following form: 

11 12 1

21 22 2

1 2

T

T

R R R T

M

M

iid

M M M M

h h h

h h h

h h h

 
 
 
 
 
  

H =

⋯

⋯

⋮ ⋮ ⋱ ⋮

…

                        (59) 

In general, we define the spatial correlation coefficient 

between the channels as [40], [41], [42] 

( ) ( )

*

,
* *

0 0

ij pq

ij pq

ij ij pq pq

Tx Rx

ip jq

t r

E h h

E h h E h h

J pd q j J pd p i

ρ

ρ ρ

  =
      

=

= − −

               (60) 

where , 1, 2,..., , , 1, 2,....,R Ti p M j q M= =  and the operator 

( )oJ ⋅  is a called zero order Bessel function, p  is the 

transmit branch, q  is the receive branch, the antenna 

separations at the transmitter and receiver are td  and rd , 

respectively.  

For example 3: Let us consider the antenna separations at 

the transmitter and receiver are 0.24td λ= , 0.15rd λ= in 

[40] and the i.i.d. MIMO channel 
4 8

iid

×∈H ℂ  is designed a 

4 8×  MIMO system where T RM M≫
 
such as 8TM =  and 

4RM =  equipped with dipole antenna aligned as uniform 

linear arrays (ULAs) as follows: 

11 12 13 14 15 16 17 18

21 22 23 24 25 26 27 28

31 32 33 34 35 36 37 38

41 42 43 44 45 46 47 48

iid

h h h h h h h h

h h h h h h h h

h h h h h h h h

h h h h h h h h

 
 
 
 
 
 

H =        (61) 

Since the transmit T TM M×  correlation matrix, 
TMρ  with 

fix receiving antenna can be calculated as:  

1 0.5074 0.2654 0.3149 0.1594 0.2608 0.1019 0.2319

0.5074 1 0.5074 0.2654 0.3149 0.1594 0.2608 0.1019

0.2654 0.5074 1 0.5074 0.2654 0.3149 0.1594 0.2608

0.3149 0.2654 0.5074 1 0.5074 0.2654 0.3149 0.1594

0.1594 0.3TM

− − − −
− − −

− − −
− − − −

=
−

ρ
149 0.2654 0.5074 1 0.5074 0.2654 0.3149

0.2608 0.1594 0.3149 0.2654 0.5074 1 0.5074 0.2654

0.1019 0.2608 0.1594 0.3149 0.2654 0.5074 1 0.5074

0.2319 0.1019 0.2608 0.1594 0.3149 0.2654 0.5074 1

 
 
 
 
 
 
 − − −
 

− − − 
 − − −

− − − − 




   (62) 
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By using “(26)” and “(62)” is given by 

1

1

0.5074
2.1880

0.2319
RM

r

r

−

−

= = −
−                         (63) 

which matches the negative values as “(26)” and the transmit 

correlation matrix “(62)” becomes negacyclic. Thus, we get,
4 2.1880 1.0189 0.4220

TM
s i= − = +  the operator 4 ⋅  

represents the principal 8 th−  root of 8 8×  transmit 

correlation matrix. Then, the transmit correlation matrix 

“(62)” becomes a new transmit correlation matrices
TMρɶ

 
is 

given by: 

1

T T T TM M M M

−=ρ D ρ Dɶ                            (64) 

where, 

{ }1 2 3 4 5 6 71
T T T T T T T TM M M M M M M M

diag s s s s s s sD =
, 

{ }1 1 2 3 4 5 6 71
T T T T T T T TM M M M M M M M

diag s s s s s s s− − − − − − − −=D
 

and 
1

T T TM M M

− =ρ ρ Iɶ ɶ which matches the “Jacket” conditions as 

in [30], [34]. 

Similarly, the antennas are dipoles, so the channel 

correlation matrix 
RMρ  at receiver with fix transmitting 

antenna can be calculated as:  

1 0.7900 0.2906 0.1962

0.7900 1 0.7900 0.2906

0.2906 0.7900 1 0.7900

0.1962 0.2906 0.7900 1

RM

− 
 
 =
 
 − 

ρ ,       (65) 

Similarly, by (65) and (26), we get 

1

1

0.7900
4.0265

0.1962
RM

r

r

−

−

= = −
−

                     (66) 

which matches the negative values as “(26)” and the receive 

correlation matrix “(89)” becomes negacyclic. Thus, we get,
4 -4.0265 1.0017 1.0017

RM
s i= = +  the operator 4 ⋅  

represents the principal 4 th−  root of 4 4×  receive 

correlation matrix. Then, the receive correlation matrix 

“(65)” becomes new receive correlation matrices
RMρɶ

 
is 

given by: 

1

R R R RM M M M

−=ρ D ρ Dɶ                         (67) 

where 

{ }1 2 31
R R R RM M M M

diag S S SD =
, 

and { }1 1 2 31
R R RM M M

diag S S S− − − −
D = . 

and 
1

R R RM M M

− =ρ ρ Iɶ ɶ which matches the “Jacket” conditions as 

in [30, 34]. 

7. Simulation Results 

In this section, all Tables and Figures show the channel 

average and total capacity among the transmitter and receiver 

side correlation at 20 [dBs] and 30 [dB] SNR including 4x8 

MIMO system, respectively. The Table 1 illustrates the 

average channel capacity in three different channel model at 

one side correlation like transmitter side correlation and 20 

[dBs] SNR include 4x8 MIMO systems. It is evident that the 

i.i.d., channel always provides higher channel capacity 

between correlated channels. When i.i.d., channel generates 

the average channel capacity 13.4026 bps/Hz at 20 [dBs] 

SNR, then the correlated channel produces 12.4258 bps/Hz 

and 13.1042 bps/Hz at the same power. The Table 1 also 

shows the percentage of average channel capacity between 

ordinary and proposed channel model at transmitter side 

correlation. The percentage of proposed correlated channel 

model is 5.45% larger than ordinary channel model. When 

the receiver side correlation is applied in 4x8 MIMO systems 

at the equal power, the average channel capacity is 

significantly decreased at correlated channel model. In Table 

2 shows 3.51% of average channel capacity at receives side 

correlation and 20 [dBs] SNR values. Similarly, we can 

depict Table 3 and Table 4 using transmitter and receiver side 

correlation at 30 [dBs] SNR values. However, while 30 [dBs] 

SNR values apply in 4x8 MIMO systems, the percentage of 

average channel capacity (4.10%) inherently increases at 

transmitter side correlation moreover the remarkable 

degrades the percentage of average capacity (2.03%) at 

receiver side correlation which has been shown in Table 3 

and Table 4 in this paper. 

Table 1. Average Channel Capacity in [bps/Hz] with 4x8 MIMO 

System at 20 [dBs] SNR (When 
T R

M M≫  and Transmitter Side 

Correlation). 

Channel Transmitter Side Percentage (%) 

Model Correlation only at Correlated Channel 

i.i.d. Channel“(36)” 13.4026 bps/Hz  

Conv. Corr. Channel 

“(50)” and “(62)” 
12.4258 bps/Hz 5.45% 

Prop. Corr. Channel 

“(56)” and “(64)” 
13.1042 bps/Hz  

Table 2. Average Channel Capacity in [bps/Hz] with 4x8 MIMO 

System at 20 [dBs] SNR (When 
T R

M M≫  and Receiver Side 

Correlation). 

Channel Receiver Side Percentage (%) 

Model Correlation only at Correlated Channel 

i.i.d. Channel “(36)” 13.3698 bps/Hz  

Conv. Corr. Channel 

“(50)” and “(65)” 
9.7379 bps/Hz 3.51% 

Prop. Corr. Channel 

“(56)” and “(67)” 
10.0800 bps/Hz  
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Table 3. Average Channel Capacity in [bps/Hz] with 4x8 MIMO 

System at 30 [dBs] SNR (When 
T R

M M≫  and Transmitter Side 

Correlation). 

Channel Transmitter Side Percentage (%) 

Model Correlation only at Correlated Channel 

i.i.d. Channel “(36)” 19.4997 bps/Hz  

Conv. Corr. Channel 

“(50)” and “(62)” 
18.3098 bps/Hz 4.10% 

Prop. Corr. Channel 

“(56)” and “(64)” 
19.0611 bps/Hz  

Table 4. Average Channel Capacity in [bps/Hz] with 4x8 MIMO 

System at 30 [dBs] SNR (When 
T R

M M≫  and Receiver Side 

Correlation). 

Channel Receiver Side Percentage (%) 

Model Correlation only at Correlated Channel 

i.i.d. Channel “(36)” 19.5300 bps/Hz  

Conv. Corr. Channel 

“(50)” and “(65)” 
14.3781 bps/Hz 2.03% 

Prop. Corr. Channel 

“(56)” and “(67)” 
14.6710 bps/Hz  

The line graph which has been generated by Mat-Lab 

program compares the channel capacity in [bps/Hz] at 20 

[dBs] and 30 [dBs] SNR values in the three different channel 

models in Figure 1, Figure2, Figure 3 and Figure 4, 

respectively. The Figure 1 exhibits the channel capacity at 20 

[dBs] SNR values in the case of transmitter side correlation. 

When the transmitter and receiver side correlation is applied 

at 20 [dBs] in two different correlated channel models, then 

the proposed channel gain performs 1.02 [bps/Hz] over than 

ordinary correlated channel has been shown in Figure 1 and 

Figure 2. Overall, it can be seen that in Figure 3 and Figure 4 

represents channel gain at least 1 [bps/Hz] than general 

correlated channel model. 

 

Figure 1. Channel capacity at transmitter side correlations and 20 

[dB] SNR with 4x8 MIMO systems. 

 

Figure 2. Channel capacity at receiver side correlations and 20 

[dB] SNR with 4x8 MIMO systems. 

 

Figure 3. Channel capacity at transmitter side correlations and 30 

[dB] SNR with 4x8 MIMO systems. 

 

Figure 4. Average channel capacity at receiver side correlations 

and 30 [dB] SNR with 4x8 MIMO systems. 

8. Conclusions 

In this paper, we have mainly investigated the ordinary 

Toeplitz structure and the proposed Toeplitz-Jacket structure of 

transmit and receive correlation matrices over the MIMO 

correlated channel. There are two prospects in this paper. In one 

is lower order channel matrix and the other is higher order of 
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channel matrix. When a lower order channel matrix is applied to 

MIMO system, the capacity and performance of an ordinary 

Toeplitz structure are better than proposed method. In contrast, a 

higher order of channel matrix is applied to MIMO system, the 

performance of proposed Toeplitz-Jacket structure is much 

better than ordinary method. Thus, we can say the proposed 

Toeplitz-Jacket structure of transmit and receive correlation 

matrices is suitable for the case of the high dimensional MIMO 

system. Future research works will more universal cases such as 

more than recent general scenarios. 
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