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Abstract: In this paper, we will apply the combined regularization-Adomian decomposition method within local fractional 

differential operators to handle local fractional Fredholm integral equation of the first kind. Theoretical considerations are 

being discussed. To illustrate the ability and simplicity of the method, some examples are provided. The iteration procedure is 

based on local fractional derivative. The obtained results reveal that the proposed methods are very efficient and simple tools 

for solving local fractional integral equations. 
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1. Introduction 

Many initial and boundary value problems associated with 

ordinary differential equations and partial differential 

equation can be transformed into problems of solving some 

approximate integral equations [1]. Engineering problems 

can be mathematically described by differential equations, 

and thus differential equations play very important roles in 

the solution of practical problems. The differential equations 

can be transformed into problems of solving some 

approximate integral equations. However, some initial and 

boundary value domains are fractal curves, which are 

everywhere continuous but nowhere differentiable. As a 

result, we cannot employ the classical calculus, which 

requires that the defined functions should be differentiable, to 

process ordinary and partial differential equation with fractal 

conditions [2]. 

Integral equations occur naturally in many fields of science 

and engineering. A computational approach to solve integral 

equation is an essential work in scientific research. Integral 

equation is encountered in a variety of applications in many 

fields including continuum mechanics, potential theory, 

geophysics, electricity and magnetism, kinetic theory of 

gases, hereditary phenomena in physics and biology, renewal 

theory, quantum mechanics, radiation, optimization, optimal 

control systems, communication theory, mathematical 

economics, population genetics, queuing theory, medicine, 

mathematical problems of radioactive equilibrium, the 

particle transport problems of astrophysics and reactor 

theory, acoustics, fluid mechanics, steady state heat 

conduction, fracture mechanics, and radioactive heat transfer 

problems. Fredholm integral equation is one of the most 

important integral equations [3]. 

Local fractional calculus was successfully applied in local 

fractional Fokker Planck equation [4], the fractal heat 

conduction equation [5], local fractional diffusion equation 

[6, 7], local fractional Laplace equation [8, 9], local 

fractional integral equations [10, 11], local fractional 

differential equations [12-14] and local fractional wave 

equation [15]. Several analytical and numerical techniques 

were successfully applied to deal with differential and 

integral equations within local fractional derivative operators 

such as local fractional Adomian decomposition method [16], 

local fractional variational iteration method [11, 17], local 

fractional Picards successive approximation method [18], 

local fractional Laplace decomposition method [19, 20], local 

fractional differential transform method [21, 22], local 

fractional series expansion method [23], local fractional 
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homotopy perturbation method [22, 25], local fractional 

similarity solution [26], local fractional Laplace variational 

iteration method [27, 28], and local fractional Fourier series 

[29-31]. This paper is organized as follows: In Section 2, the 

basic mathematical tools are reviewed. In section 3, we give 

analysis of the method used. In Section 4, we consider 

several illustrative examples. Finally, in Section 5, we 

present our conclusions. 

2. Mathematical Fundamentals 

In this section we present some basic definitions and 

notations of the local fractional differential operators (see [7-

9, 32, 33]). 

Definition 1. Suppose that there is the relation  

0( ) ( ) ,0 1f x f x αε α− < < ≤ ,                    (1) 

with 0x x δ− < , for , 0ε δ >  and , Rε δ ∈ , then the 

function ( )f x  is called local fractional continuous at 0
x x=  

and it is denoted by 
0

0lim ( ) ( )
x x

f x f x
→

= .  

Definition 3. In fractal space, let ( ) ( , )f x C a bα∈ , local 

fractional derivative of ( )f x  of order α  at 
0

x x=  is given 

by 

0
0

( ) 0

0

0
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∆ −
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where 0 0( ( ) ( )) ( 1)( ( ) ( )).f x f x f x f xα α∆ − ≅ Γ + −   

Local fractional derivative of high order is written in the 

form 

( )( ) ( ) ...... ( ).

k times
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Definition 4. A partition of the interval [ , ]a b  is denoted as 

1( , ),j jt t +  0,..., 1,j N= − and N
t b=  with 1j j jt t t+∆ = −  and 
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Definition 5. In fractal space, the Mittage Leffler function, 

sine function and cosine function are defined as  

0
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Note that: 
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3. Analysis of the Method 

The most standard form of Fredholm linear local fractional 

integral equations of the first kind is given by the form 

1
( ) ( , ) ( ) ( ) ,0 1

(1 )
= < ≤

Γ + ∫
b

a

f x K x t u t dt α α
α

      (14) 

The method of regularization transforms the linear local 

fractional Fredholm integral equation of the first kind (14) to 

the approximation local fractional Fredholm integral equation  

1
( ) ( ) ( , ) ( ) ( )

(1 )
= −

Γ + ∫
b

a

u x f x K x t u t dt α
µ µµ

α
       (15) 

where µ is a small positive parameter. It is clear that (15) is a 

local fractional Fredholm integral equation of the second 

kind that can be rewritten 

1 1 1
( ) ( ) ( , ) ( ) ( )

(1 )
= −

Γ + ∫
b

a

u x f x K x t u t dt α
µ µµ µ α

    (16) 

We apply the local fractional Adomian decomposition 

method for handling (16). To achieve this goal, we represent 

the term ( )u xµ  by an infinite series of components given by 

0

( ) ( )
n
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Substituting (17) into (16) leads to 
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The local fractional Adomian decomposition method 

admits the use of the following recursive relation 

0

1

1
( ) ( )

1 1
( ) ( , ) ( ) ( ) , 0

(1 )+

=

= − ≥
Γ + ∫k k

b
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Finally, the exact solution ( )u x  of (14) can thus be 

obtained by 

0
( ) lim ( )u x u xµµ→

=                                (20) 

4. Illustrative Examples 

In this section two examples for the local fractional 

Fredholm integral equation from the first kind is presented in 

order to demonstrate the simplicity and the efficiency of the 

above method.  

Example 1. we consider the local fractional Fredholm 

integral equation.  

( )
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The local fractional Adomian decomposition method 
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0

( ) ( )
n

n

u x u xµ µ

∞

=

=∑ ,                             (23) 

and the recurrence relation  

0

1
( ) ( )

3
u x E x

α
µ αµ

= − ,                          (24) 

( )
1

1

3

0

1 1
( ) ( ) ( ) ( ) , 0

(1 )k k
u x E t x u t dt kα α

µ α µµ α+
= − − ≥

Γ + ∫ .  (25) 

This in turn gives the components 
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and so on. Substituting this result into (23) gives the 

approximate solution  

1
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The exact solution ( )u x  of (21) can be obtained by  
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Example 2. we consider the local fractional Fredholm 

integral equation.  
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and so on. Substituting this result into (34) gives the 

approximate solution  
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5. Conclusions 

In this work, the analytical approximate solutions for the 

Fredholm integral equations of the second kind involving 

local fractional derivative operators are investigated by using 

the method of regularization with Adomian decomposition 

method. The obtained results demonstrate the reliability of 

the methodology and its wider applicability to local fractional 

integral equations and hence can be extended to other 

problems of diversified nonlinear nature. Our goal in the 

future is to apply this method to system of coupled PDEs 

within local fractional derivative operators. 
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