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Abstract: Many models were presented to solve the static transmission network expansion planning (STNEP) problem by 

previous research. However, in these models, lines’ voltage level and losses were not studied in STNEP. Therefore, in present 

paper, static transmission expansion planning is investigated by considering lines’ voltage, losses and bundles using decimal 

codification genetic algorithm (DCGA). The DCGA is better than mathematical methodologies to solve large-scale, nonlinear 

and mixed-integer optimization problems, like the TNEP. The proposed method is tested on the real transmission network of 

Azarbaijan regional electric company, Iran. The results show that operation costs decreases considerably and the transmission 

system delivered more safe and reliable electric power to customers if the network losses, voltage levels and the number of 

bundle lines are considered in transmission expansion planning. 
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1. Introduction 

Transmission network expansion planning (TNEP) is an 

important part of power system planning that its main goal is 

to determine place, time and number of new transmission 

lines that should be constructed in the network. The network 

construction and operation costs are minimized in TNEP 

when technical, economic and reliability constraints were 

satisfied. TNEP should provide necessary adequacy of the 

lines in delivering electric power to consumers through the 

planning horizon [1–4]. Dependency of network expansion 

cost on the various reliability criteria [5, 6] makes difficult 

calculation of this cost. Transmission network expansion 

planning generally divided into static and dynamic. Static 

planning determines place and number of new transmission 

lines that should be installed in the network up to the 

planning horizon. If in the static expansion the planning 

horizon is categorized in several stages we will have dynamic 

planning [7, 8]. 

Generating plants usually are far from the load centers, so 

investment cost of transmission network is huge. Thus, the 

STNEP problem should be evaluated carefully in order to 

reduce transmission system expansion cost. After 1970 that 

Garver’s paper was published, many papers studied the 

TNEP problem [9]. Some of these papers like [10–26] are 

about problem solution method. Some others considered 

various parameters such as uncertainty in demand [10, 27, 

28], uncertainty in fuel price [29], reliability criteria [1, 30–

33], line loading [34], adequacy [35], voltage level [36], 

network losses [37], and bundled conductors [38] to solve 

this problem. Also, some of them studied simultaneous 

transmission and generation expansion planning [38]. 

Recently, different methods such as GRASP [14], Benders 

decomposition [16], HIPER [19] branch and bound algorithm 

[40], sensitivity analysis [17], genetic algorithm [1, 2, 13], 

[22, 26], simulated annealing [18] and Tabu search [14] were 

introduced to solve the STNEP problem. Nevertheless, the 

role of voltage level in reduction of network losses was not 

considered in all of them. 

In [10], artificial neural network (ANN) proposed to solve 

the TNEP problem by considering the network losses and 
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construction cost of lines. But the role of lines’ voltage level 

and expansion cost of substations were not studied. In [12], 

the network expansion costs and power flow to the lines were 

embedded in objective function and optimized 

simultaneously, but the lines’ voltage level, network losses 

and bundled lines were not included in the problem 

formulation. The objective function in [41] includes 

expansion and generation costs and reliability criteria of 

power not supplied energy. The expansion planning was 

studied as dynamic without considering network losses. In 

[19], the Benders hierarchical decomposition approach 

(HIPER) was proposed to solve STNEP problem. 

Nevertheless, the non-convexities were not canceled 

completely and application of this approach to networks with 

a large number of candidate circuits was time consuming. So, 

in [15], a heuristic approach, called greedy randomized 

adaptive search procedure (GRASP) was presented to solve 

the STNEP problem. GRASP is a useful alternate approach to 

solve many optimization problems. However, this technique 

is so time consuming and has some difficulties in pruning by 

comparison. Therefore, in [40], branch and bound (B&B) 

algorithm was proposed to determine the expansion cost in 

STNEP problem. However, this algorithm has too slow 

convergence speed and difficult implementation in complex 

TNEP problems. In [17], sensitivity analysis was proposed to 

expand transmission network. But, if the number of nodes or 

candidate lines increases, finding reasonable solutions within 

short computational time will be very difficult. In [18] 

simulated annealing (SA) was presented to optimize the 

investment cost and loss of load in STNEP. Although SA is a 

robust optimization algorithm, however, computing time 

increases and quality of solutions is degraded if the number 

of alternatives to be analyzed increase. However, these 

papers solved the TNEP problem disregarding voltage level, 

network losses and bundled lines. Recently, global 

optimization techniques like genetic algorithm (GA) were 

proposed to optimize the STNEP problem. These methods 

are heuristic approaches based on random variation and 

selection operators. GA is a good method to solve the 

transmission expansion planning problem. 

The role of voltage level and network losses of 

transmission lines were studied in [42]. It has been shown 

that network losses are reduced considerably by using higher 

level of voltage. In [43], a stochastic framework was 

introduced for multi-objective power system expansion 

planning considering wind generation, absorption of private 

investment, and network reliability. Finally, in [44], the 

multistage transmission and generation expansion planning 

was formulated considering generation reliability as a mixed 

integer linear programming (MILP) problem using the 

Benders decomposition. However, these works did not 

consider the voltage level and bundle of lines in TNEP 

formulation. 

Thus, in this paper, STNEP problem is solved by 

considering lines’ voltage level, power losses and bundles 

using DCGA. Moreover, the network losses cost and the 

expansion cost of substations are included in the objective 

function. The proposed method is tested on a real 

transmission network of the Azarbaijan to show the 

efficiency of the proposed method. This network has been 

located in northwest of Iran. 

This paper is organized as follows: the mathematical 

model is represented in Section 2. Section 3 describes the 

proposed solution method. The simulation results are given 

in Section 4. Finally, in Section 5 the conclusion is presented 

2. Mathematical Formulation of the 

Problem 

The proposed objective function is defined as follows 

using DC load flow model to consider lines’ voltage level 

and expansion cost of substations. 
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Where, ( , )i j ∈Ω  and: 

TC : Total expansion cost of network 

ijCL : Construction cost of each line in branch i-j (it is 

different for 230 and 400 KV lines). 

kCS : Expansion cost of kth substation. 

lossC : Annual losses cost of network. 

Loss: Total losses of network. 
CMWh: Cost of one MWh ($US/MWh). 
kloss: Losses coefficient. 

ijn : Number of all new circuits in corridor i-j. 

Rij: Resistance of branch i-j. 

Iij: Flow current of branch i-j. 

Ω : Set of all corridors. 

Ψ : Set of all substations. 
NY: Expanded network adequacy (in year). 

S: Branch-node incidence matrix. 

f: Active power matrix in each corridor. 
g: Generation vector. 
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d: Demand vector. 
θ: Phase angle of each bus. 

ijγ : Total susceptance of circuits in corridor i-j. 

0
ijn : Number of initial circuits in corridor i-j. 

ijn : Maximum number of constructible circuits in corridor 

i-j. 

g : Generated power limit in generator buses. 

ijf : Maximum of transmissible active power through 

corridor i-j which will have two different rates according to 
voltage level of candidate line. 

Line_Loading: Loading of lines at planning horizon year 
and start of operation time. 

LLmax: Maximum loading of lines at planning horizon year. 

The calculation method of kloss and 
kCS is given in [42]. In 

this study, the objective function is different from cost 
functions in [1–5, 7, 10, 12–41]. Also, in the problem 
constraints, Line_Loading is considered as a new restriction 
to meet the network adequacy after expansion. It should be 
noted that LLmax is an experimental parameter that its value is 
between 0 and 1 and determined with respect to the load 
growth. 

3. Proposed Method 

The optimization variables of the STNEP problem 

proposed in this paper are discrete, because the goal is to 

obtain the number and voltage level of new lines in order to 

satisfy the required adequacy of transmission network. There 

are various methods to solve this integer programming 

problem. In this study, the decimal codification genetic 

algorithm is used to solve the STNEP problem because of its 

flexibility and simple implementation. The GA is used to 

solve practical complex optimization problems such as TNEP 

using three fundamental operators of reproduction, crossover 

and mutation. It is a random search method that doesn’t need 

a good initial estimation, because it is corrected in 

evolutionary process. The number of new transmission lines 

can be coded as binary or decimal in GA. Although binary 

codification is more conventional in GA but, here, the 

decimal codification is used due to avoid coding and 

decoding of optimization variables and diverge the solutions 

(production of completely different offspring from their 

parents). Figure 1 shows a typical chromosome for a network 

with 4 corridors. In part 1, each gene includes number of 

existed circuits (both of constructed and new circuits) in each 

corridor. Genes of part 2 and part 3 describe voltage levels 

and number of bundle lines for genes in part 1. 

 

Figure 1. Typical chromosome. 

It should be noted that the binary numbers of 0 and 1 were 

used to represent voltage levels of 230 and 400 kV, 

respectively. In the first corridor, one 400 kV transmission 

circuit with one bundle, in the second corridor, two 230 kV 

transmission circuits with two bundle conductors, in the third 

corridor, three 400 kV transmission circuit with one bundle 

conductor and finally in the fourth corridor, two 230 kV 

transmission circuit with one bundle conductor were proposed. 

The flowchart of the proposed DCGA based method to solve 

the STENP problem is illustrated in Figure 2. 

 

Figure 2. Flowchart of the DCGA. 

Then, selection operator based on roulette-wheel selects 

the parent chromosomes for reproduction. This strategy 

causes more fit strings to select with a greater probability for 

forming the next generation. After selection of the pairs of 

parent strings, the crossover operator is applied to each of 

these pairs. In this method crossover randomly takes place at 

the boundary of two integer numbers with probability of 1 
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(PC=1). Then, two chromosomes of each pair swap their 

genes. Each children resulting from crossover is now 

subjected to the mutation. This operator selects one of existed 

integer numbers in chromosome with probability of 0.01 

(PM=0.01) and then changes its value randomly by increasing 

or decreasing the gene value by 1. Afterward, reproduction 

operator reproduces each chromosome with respect to the 

value of its objective function. The production of new 

generation is completed and the process all over again with 

fitness evaluation of each chromosome. The process is 

terminated by setting a definite number of iterations 

(generations). In this paper, the definite number of iterations 

is considered to be 1500. 

4. Simulation Results 

As it mentioned earlier, the transmission network of the 

Azarbaijan [46] is used to test the proposed method. This 

actual network has been located in northwest of Iran and is 

shown in Figure 3. The system data is given in Appendix A. 

The proposed method was applied to the test system and the 

results are given as follows. Also, to verify and prove the 

stability and robustness of proposed method, the proposed 

algorithm was performed with different three runs (Run 1, 2 

and 3). In all three runs, the planning horizon year is 10. 

 

Figure 3. Transmission network of the Azarbaijan. 

Run 1 

The results of run 1 (lines which should be added to the 

network up to the planning horizon year) are given in Tables 

1 and 2. Also, Tables 3 and 4 show the expansion costs. The 

first and second configurations are obtained ignoring and 

considering the network losses, respectively. 

Table 1. First configuration: without the losses. 

Corr. Voltage (kV) 
Number of new 

circuits 

Number of bundled 

conductors 

8-9 230 1 1 

2-7 230 1 1 

1-5 230 2 2 
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Corr. Voltage (kV) 
Number of new 

circuits 

Number of bundled 

conductors 

8-18 230 1 1 

5-7 230 1 1 

7-16 230 1 1 

3-6 230 1 1 

7-17 230 1 1 

Table 2. Second configuration: with the losses. 

Corr. Voltage (kV) 
Number of new 

circuits 

Number of bundled 

conductors 

8-9 230 2 2 

2-8 400 2 3 

2-7 400 1 3 

1-5 400 2 3 

8-18 230 2 2 

4-5 230 2 2 

7-16 230 1 2 

2-5 230 2 2 

7-17 230 1 2 

5-11 230 1 2 

6-13 400 2 3 

7-13 230 1 2 

6-9 400 1 3 

14-15 400 1 2 

11-18 230 1 2 

Table 3. Expansion costs of the first configuration. 

Expansion Cost of Substations 0 

Expansion Cost of Lines 36.751 million $US 

Total Expansion Cost of Network 36.751 million $US 

Table 4. Expansion costs of the second configuration. 

Expansion Cost of Substations 20.645 million $US 

Expansion Cost of Lines 128.817 million $US 

Total Expansion Cost of Network 149.462 million $US 

Total expansion costs of the both proposed configurations 

are shown in Figure 4. 

 

Figure 4. Total expansion cost for both configurations in run 1. 

Also, rate of investment return of second configuration 

with respect to the first one is shown in Figure 5. 

 

Figure 5. Capital return of the second configuration in run 1. 

Run 2 

Similar to previous section, the results (lines which should 

be added to the network up to the planning horizon year) are 

listed in Tables 5 and 6. Also, Tables 7 and 8 show the 

expansion costs. 

Table 5. First configuration: without the losses. 

Corr. Voltage (kV) 
Number of new 

circuits 

Number of bundled 

conductors 

6-8 230 1 1 

1-5 230 1 2 

4-5 230 2 1 

9-16 230 1 1 

2-13 230 1 1 

5-17 230 1 1 

4-18 230 1 1 

Table 6. Second configuration: with the losses. 

Corr. Voltage (kV) 
Number of new 

circuits 

Number of bundled 

conductors 

6-8 400 2 3 

7-8 230 2 2 

5-15 400 1 3 

1-5 400 2 3 

4-5 400 2 3 

17-12 230 1 2 

9-13 400 2 3 

1-11 230 2 2 

2-13 400 2 3 

6-9 230 1 2 
4-18 400 1 3 

Table 7. Expansion costs of the first configuration. 

Expansion Cost of Substations 0 

Expansion Cost of Lines 43.548 million $US 

Total Expansion Cost of Network 43.548 million $US 

Table 8. Expansion costs of the second configuration. 

Expansion Cost of Substations 44.73 million $US 

Expansion Cost of Lines 144.624 million $US 
Total Expansion Cost of Network 189.354 million $US 
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Total expansion cost of both proposed configurations is 

shown in Figure 6. Also, process of cost savings is shown in 

Figure 7. 

 

Figure 6. Total expansion cost for both configurations in run 2. 

 

Figure 7. Capital return of the second configuration in run 1. 

Run 3 

The results are given in Tables 9 to 12. 

Table 9. First configuration: without the losses. 

Corr. Voltage (kV) 
Number of new 

circuits 

Number of bundled 

conductors 

8-9 230 1 1 

1-5 230 2 1 

8-18 230 1 1 

5-7 230 1 2 

2-16 230 1 1 

1-3 230 1 1 

7-17 230 1 1 

Table 10. Second configuration: with the losses. 

Corr. Voltage (kV) 
Number of new 

circuits 

Number of bundled 

conductors 

8-9 400 2 3 

2-8 230 2 2 

2-7 400 1 3 

1-5 400 2 3 

Corr. Voltage (kV) 
Number of new 

circuits 

Number of bundled 

conductors 

8-18 230 2 2 

5-7 230 1 2 

2-5 400 2 3 

13-15 230 2 2 

4-13 230 2 2 

11-13 400 2 3 

5-17 230 1 2 

Table 11. Expansion costs of the first configuration. 

Expansion Cost of Substations 0 

Expansion Cost of Lines 36.774 million $US 

Total Expansion Cost of Network 36.774 million $US 

Table 12. Expansion costs of the second configuration. 

Expansion Cost of Substations 44.73 million $US 

Expansion Cost of Lines 122.9 million $US 

Total Expansion Cost of Network 167.63 million $US 

Also, total expansion cost of proposed configurations and 

process of cost savings are shown in Figures 8 and 9, 

respectively. 

 

Figure 8. Total expansion cost for both configurations in run 3. 

 

Figure 9. Capital return if the second configuration in run 3. 

From Tables 3, 7 and 11, the expansion cost of substations is 

calculated zero, because voltage level of the proposed lines 
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existed in their both first and end substations and therefore the 

expansion of substations was not necessary. Figures 4, 6 and 8 

shows that total construction cost of second configuration is 

more than first one in the beginning, but it decreases under total 

construction cost of first configuration after about 4 years later 

(year 2021). Although it seems that the first configuration (all 

the lines are 230 kV) is less expensive, the second configuration 

is more economic if the network is studied considering the 

network losses after planning time. 

The reason is that the annual network losses cost of the 

first configuration will become large in comparison with the 

second configuration about 4 years after planning horizon. In 

this way, total expansion cost of the first configuration will 

become more than the other one after about 4 years from the 

planning horizon. 

Thus, the second configuration leads to cost savings after 

the 4th year of the expansion time. Convergence process of 

the algorithm in run 3 is shown typically in Figure10. 

 

Figure 10. Convergence curve of the algorithm in run 3. 

It should be noted that although construction cost of 400 

kV lines is more than 230 kV lines, but their total expansion 

cost (expansion and losses costs) is less than 230 kV lines in 

long-run. In addition, the second configuration is overloaded 

later than first one. For example, in run 1, second one is 

overloaded 13 years after expansion time (planning horizon), 

whereas the first configuration is overloaded about 9 years 

after expansion time. Moreover, although lines with bundled 

conductors are more expensive than unbundled lines, these 

lines increase the network adequacy and decrease the 

network losses more than lines with single conductor. 

In addition, construction of unbundled lines prevents 

increase in network dimension. For this, in this study, all 

transmission lines (both 400 kV and 230 kV) were added to 

the network with their maximum number of bundled 

conductors (2 for 230 kV and 3 for 400 kV). 

5. Conclusions 

In present paper, the static transmission network 

expansion planning was studied using the decimal 

codification genetic algorithm in a multi-voltage level 

transmission network containing bundled lines. According 

to simulation results, it was concluded that the network 

losses and voltage level of lines play important role in 

determination of network configuration and arrangement, 

because considering those in transmission expansion 

planning causes more 230 kV and 400 kV lines to install 

in the network. It can be said that total expansion cost of 

network (expansion costs and network losses cost) 

decreases and transmission lines are overloaded later 

when voltage level and network losses are considered in 

TNEP. Also, considering lines with bundled conductors 

instead of single conductor-lines in TNEP causes the 

transmission expansion planning problem to optimize 

more. 

Appendix 

A. Test system data 

Tables 13- 17 shows the network’s configuration, 

substation data, generation and loads information of the test 

system as given in Section 4. The construction costs of 230 

and 400 kV lines are listed in Tables 18 and 19. 

Table 13. Network Configuration. 

Corr. 
length 

(km) 

Voltage 

(kV) 

Number of 

new circuits 

Number of bundled 

conductors 

6-1 55 230 1 1 

2-1 14 230 2 1 

9-6 18 230 1 1 

4-2 83 230 1 1 

14-5 110 230 1 1 

11-8 65 230 2 1 

11-10 125 230 2 1 

15-14 139 230 1 1 

12-1 122 400 1 2 

9-5 100 230 1 1 

6-5 103 230 2 1 

13-3 105 400 1 2 

4-3 81 230 1 1 

14-13 44 230 2 1 

12-10 134 230 2 1 

8-1 75 230 2 1 

7-6 33 230 1 1 

7-1 22 230 1 1 

5-16 53 230 2 1 

Table 14. Arrangement of substations. 

Substation Voltage (kV) Substation Voltage (kV) 

1 400/230 10 230/132 

2 230/132 11 230/132 

3 400/230 12 230/132 

4 230/63 13 230/63 

5 230/132 14 400/230 

6 230/132 15 230/63 

7 230/132 16 230/20 

8 230/132 17 230/132 

9 230/132 18 230/132 
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Table 15. Generation and load data. 

Bus 
Load 

(MW) 

Generation 

(MW) 
Bus 

Load 

(MW) 

Generation 

(MW) 

1 378 715 10 0 134 

2 202 0 11 0 125 

3 42 0 12 288 256 

4 53 0 13 101 78 

5 45 0 14 60 46 

6 64 0 15 101 45 

7 88 0 16 0 11 

8 49 514 17 0 14 

9 70 0 18 0 79 

Table 16. 230 kV lines’ characteristics. 

Number of bundled 

conductors 

Maximum 

loading (MVA) 

Reactance 

(p.u/Km) 

Resistance 

(p.u/Km) 

1 397 3.85e-4 1.22e-4 

2 794 2.84e-4 2.44e-4 

Table 17. 400 kV lines’ characteristics. 

Number of bundled 

conductors 

Maximum 

loading (MVA) 

Reactance 

(p.u/Km) 

Resistance 

(p.u/Km) 

1 750 1.24e-4 3.5e-5 
2 1321 9.7e-5 7e-5 

3 1982 8.6e-5 1.05e-4 

Table 18. Construction cost of 230 kV lines. 

Number of bundled 

conductors 

Fix Cost  

(×103 dollars) 

Variable Cost  

(×103 dollars) 

1 546.5 45.9 

2 546.5 63.4 

Table 19. Construction cost of 400 kV lines. 

Number of bundled 

conductors 

Fix Cost  

(×103 dollars) 

Variable Cost  

(×103 dollars) 

1 1748.6 92.9 

2 1748.6 120.2 

B. GA data 

Load growth= 8% 

Losses cost = 36.1($/MWh) 

LLmax=50% 
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