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Abstract: It is of paramount importance to establish an identity of citizenry to curb criminalities. Principal Component 
Analysis (PCA) which is one of the foremost methods for feature extraction and feature selection is adopted for identification and 
authentication of people. The computational time used by PCA is too much and Chinese Remainder Theorem was employed to 
reduce its computational time. TOAM database was setup which contained 120 facial images of 40 persons frontal faces with 3 
images of each individual. 80 images were used for training while 40 were used for testing. Training time and testing time were 
used as performance metrics to determine the effect of CRT on PCA in terms of computational time. The experimenal results 
indicated an average training time of 13.5128 seconds and average testing time of 1.5475 second for PCA while PCA-CRT 
average training time is 13.2387 seconds and average testing time of 1.5185 seconds. Column chart was used to show the 
graphical relationship between PCA and PCA-CRT Training time and testing time. The research revealed that CRT reduce PCA 
computational time.  
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1. Introduction 

Reference [8] pointed out that establishing identity of an 
individual is of paramount importance in extremely interrelated 
organization. It is of greatest important because of increase in 
daily criminal acts in the world today especially in Nigeria. The 
time required to identify and authenticate such individual needs 
to be minimized for effectiveness of the system. Therefore, 
dimensionality algorithms computational time should be 
reduced. Principal Component Analysis (PCA) and Linear 
Discriminant Analysis (LDA) are two foremost methods used 
for feature extraction and feature selection in the 
appearance-based methods. It has been discussed by Reference 
[1] that when the training dataset is small, PCA can outperform 
LDA, and also that PCA is less sensitive to different training 
datasets. Reference [6] explained that PCA and LDA are the 
two most popular techniques usually used for dimensionality 
reduction. Reference [5] were among the first to use PCA with 
face images and found that it effectively and efficiently 

represents pictures of faces into its eigenface components. 
Principal Component Analysis is a powerful dimensionality 
reduction algorithm and it is reliable in face recognition system 
but its computational time needs to be reduced. Reference [4] 
described PCA as a technique for reducing the dimensionality 
of datasets, increasing interpretability but at the same time 
minimizing information loss. 

Reference [9] adopted the use Compute Unified Device 
Architecture (CUDA) to tackle the problem of enormous data 
processing time that resulted as a consequence of very large data 
extracted from the face images. In order to reduce the execution 
time of these operations, parallel programming techniques are 
used. Reference [2] focused on Improving Performance and 
Accuracy of Local Principal Component Analysis (LPCA). 
LPCA also referred to as Clustered PCA (CPCA). A novel 
SortCluster LPCA (SC-LPCA) was recommended. The 
arrangement of SC-LPCA algorithm is related to the SortMeans 
algorithm [7]. The new algorithm (SortCluster LPCA) was 
compared with the original LPCA for compression of Pattern 
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Recognition Technique (PRT) and Bidirectional texture function 
(BTF) datasets. Both algorithms were implemented in C++ using 
Intel MKL library for matrix computations. All measurements 
were performed on a PC with Intel Xeon W3540, 2.93 GHz and 
14GB RAM. The new algorithm considerably reduces the cost of 
the point-cluster classification stage, achieving a speed-up of up 
to 20s. However, instead of computing distances with respect to 
the clusters’ centroids, distances were computed with respect to 
affine subspaces. 

Having since other researchers’ efforts in reducing the 
computational time of PCA. Chinese Remainder Theorem 
(CRT) was introduced to PCA as shown in Figure 3. CRT 
which is one of the forms of Residue Number System is 
appropriate because the computation can be parallelized. In 
RNS, addition, subtraction and multiplication are inherently 
carry-free. As a result of this carry-free property, addition, 
subtraction and multiplication can be executed in CRT in less 
time than would be required for performing parallel binary 
addition in a computer of equal component operating speed 
and number range. A face database (TOAM database) will be 
set up for the purpose of the research work. Euclidean distance 
will be used as a classifier for incoming test data. 

2. Principal Component Analysis 

Principal Component Analysis is the basic linear technique 
for dimensionality reduction which implements a linear 
mapping (as shown in Figure 1) of the data to a 
lower-dimensional space in such a method that the 
discrepancy of the data in the low-dimensional representation 
is maximized. Traditionally, the covariance matrix of the data 
is constructed and the eigenvectors on this matrix are 
computed. PCA tries to find a low-dimensional linear 
subspace that the data are confined to. Principal Component 
Analysis (PCA) algorithm involves substantial mathematical 
operations with matrices. The PCA involves two (2) stages: 
training and recognition. In the training dataset, there is an 

eigenvector for each face as shown in Table 1. Also, in the 
recognition stage the eigenvectors with highest values are 
chosen and treated as shown in Table 2. A threshold value is 
used for comparison in the recognition stage. 

 
Figure 1. PCA implementing a linear mapping of the data [11]. 

PCA is a common technique for finding patterns in data, 
and expressing the data as eigenvector to highlight the 
similarities and differences between different data set. The 
following steps summarize the PCA process: 

1. Let {D1, D2,…, DM} be the training data set. The 
average Avg is defined by: 

Avg = 
�

�
∑ ���
���  

2. Distinctive element in the training data set diverges 
from by the vector Yi=Di-Avg. The covariance matrix 
obtained as: 

Cov = 
�

�
∑ ��. ���
���

T 

3. Pick M’ significant eigenvectors of and compute the 
weight vectors Wik the training data set, where k varies 
from 1 to M’. 

Wik = ET
k .(Di – Avg),	∀	i, k 

Table 1. PCA Algorithm Calculation Steps of Feature Extraction [9]. 

Algorithm Description Explanation 

Normalization X’ = 
�
����

����	�����
 X represents the color value of a pixel in the image, minA represents the smallest color value in the 

face (i.e. image), maxA represents the biggest color value in the face (i.e. image). 

Mean Calculation Ψ = 
�

�
∑ ┌��
���  

┌1, ┌2,.. ┌M column matris corresponding to each face in the training set, if the size of the face image 
is N x N then each column matris ┌ will have the size N2 x 1, M number of faces in the training set. 
Ψ mean value of the set. 

Ф calculation Ф = ┌� �Ψ	 Ф� the difference of the face from the mean value. 
A Transpose Calculation AT A = �Ф�,Ф�, … ,Ф��, Ф� fort he size N2x1, The A matris size becomes N2xM. 

L Calculation L = AT A 
L reduced matris (sizewise) calculated instead of covariance matris, multiplication of MxN2 with 
N2xM sized matris produces MxM sized matris. 

Eigenvector Calculation L . v = λ ѵ v is eigenvector and λ is eigenvalue 
Eigenface Calculation ��  ∑ !�"Ф#

�
"��   U is eigenface, i = 1,…,M 

Feature Vector Calculation wk = uT
k (┌- Ψ) W is the feature vector 

Table 2. PCA Algorithm Calculation Steps of Face Recognition [9]. 

Algorithm Description Explanation 

Normalization x’ = 
�
����

����	�����
 The color value of the face to be recognized normalized to between 0 - 1 

Difference from mean Ф$  ┌$ � 	Ψ =  Its difference from the mean face is calculated 
 Feature vector extraction %&�'.	Ф(   The feature vector is calculated using the eigenvectors 
Distance Control )�  ∑ |%$+,- � %�+,-|�

.��   The distance between the feature vectors are calculated for a successful matching, i = 1,2…,N 
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3. Chinese Reminder Theorem 

The Chinese Remainder Theorem (CRT) in addition to the 
theory of RNS, was set forth in the 19th century by Carl 
Friedrich Gauss in his celebrated Disquisitions Arithmetical 
[10], [3]. CRT is a proposition of number theory that expresses 
that if one knows the remainders of the Euclidean division of an 
integer n by several integers, then one can establish distinctively 
the remainder of the division of n by the product of these 
integers, under the condition that the divisors are pairwise 
coprime. In the third century A. D. a Chinese mathematician 
named Sun Zhu first described CRT. The CRT makes it feasible 
to reduce modular calculations with large moduli to similar 
calculations for each of the factors of the modulus.  

Reference [12] pined the traditional CRT as follows:  
for a moduli set {m1, m2, m3, …, mk} with the dynamic range M 
= ∏ 0�

"
��� , the residue number (x1, x2,x3, …, xk) can be 

changed into the decimal number X, as follows:  

X= 1∑ 2�"
��� |2�


�3�|0�1	�,.  

Where M = ∏ 0�
"
��� , Mi = 

�

��
, and 2�


�  is the 

multiplicative inverse of Mi with respect to mi. 

4. Research Database 

A database tagged “TOAM database” was setup which 
contains 120 facial images of 40 persons frontal faces with 3 
images of each individual under different lighting, facial 
expressions, occulations, environment and time. 80 images 
will be used for training while 40 will be used for testing as 
shown in Table 3 and Figure 2.  

Table 3. Analysis of images used in the TOAM database. 

Number of persons 40 
Number of sample per persons 03 
Number of Total sample 120 
Number of Training set 80 
Number of Testing sample 40 

 

 

Figure 2. Some of TOAM database images used for training the database. 

5. Research Methodology 

i. Develop a Research framework as shown in figure 3 
ii. Develop algorithm that combine CRT with PCA (PCA-CRT) 
iii. Comparison of performance metrics ( Training time, and testing time) on PCA and PCA-CRT 
iv. Using column chart to compare results 

 
Figure 3. Research Framework. 
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The proposed system consists of number of modules: image acquisition, feature extraction, and recognition. In this research 
MATLAB R2015a was used to implement effect of PCA and PCA-CRT as shown in Figure 4 on Intel (R) Celeron (R) CPU with 
1.60GHz Processor speed. 

 
Figure 4. Proposed system for Implementing PCA and PCA-CRT. 

6. Results and Discussion 

6.1. Comparison of PCA and PCA-CRT Testing Time  

Table 4. Testing Time Performance of both PCA and PCA-CRT. 

IMAGE 
PCA TESTING TIME 

(Seconds) 

PCA-CRT TESTING 

TIME (Seconds) 
IMAGE 

PCA TESTING TIME 

(Seconds) 

PCA-CRT TESTING 

TIME (Seconds) 

1 1.6323 1.5486 22 1.5374 1.5156 

2 1.5212 1.5160 23 1.5468 1.5304 

3 1.5536 1.5302 24 1.5342 1.5200 

4 1.5065 1.4899 25 1.5396 1.5134 

5 1.5333 1.5200 26 1.5572 1.5045 

6 1.5881 1.5398 27 1.5809 1.5054 

7 1.5204 1.5197 28 1.5747 1.5395 

8 1.5088 1.4989 29 1.5240 1.4982 

9 1.5432 1.5222 30 1.5565 1.5322 

10 1.5360 1.5276 31 1.5929 1.5557 

11 1.5242 1.4679 32 1.5386 1.4900 

12 1.5538 1.5513 33 1.5257 1.5134 

13 1.4931 1.4888 34 1.5680 1.5322 

14 1.5349 1.5111 35 1.5701 1.5444 

15 1.5439 1.5166 36 1.5853 1.5509 

16 1.5497 1.5109 37 1.5665 1.5134 

17 1.5257 1.5121 38 1.5676 1.5178 

18 1.5435 1.4789 39 1.5568 1.5335 

19 1.5237 1.5225 40 1.5560 1.5268 

20 1.5453 1.4966 TOTAL 61.9014  60.7406 

21 1.5414  1.5337  AVERAGE 1.5475  1.5185 
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Figure 5. Testing Time of PCA vs PCA-CRT. 

 
Figure 6. Average Testing Time of PCA vs PCA-CRT. 

Critical observation of Table 4 and Figure 5 revealed that each of the images used spent more PCA Testing Time than 
PCA-CRT. Using image 20 as case study, PCA uses 1.5453 seconds Testing Time while PCA-CRT uses 1.4966 seconds. The 
Total Testing time for PCA is 61.9014s and PCA-CRT Total Testing Time is 60.7406s as shown in Table 3. Figure 6 shown 
pictorially Average Testing Time for PCA of 1.5475 seconds and PCA-CRT of 1.5185 seconds. The experimental results 
indicated reduction in Testing time of PCA as a result of employing CRT. 

6.2. Comparison of PCA and PCA-CRT Training Time 

Table 5. Training Time Performance of both PCA and PCA-CRT. 

IMAGE 
PCA TRAINING TIME 

(Seconds) 

PCA-CRT TRAINING 

TIME (Seconds) 
IMAGE 

PCA TRAINING TIME 

(Seconds) 

PCA-CRT TRAINING 

TIME (Seconds) 

1 13.4357 12.7146 22 13.4907 13.2654 

2 13.4860 12.8783 23 13.5329 13.2315 

3 13.3402 12.9886 24 13.5176 13.3211 

4 13.2610 13.1009 25 13.4696 13.2444 

5 13.2622 13.2352 26 13.9067 13.5229 

6 13.3843 13.1243 27 13.6725 13.4342 

7 13.2277 13.2001 28 13.5546 13.2345 

8 13.4613 13.3211 29 13.6596 13.3246 

9 13.2307 13.1320 30 13.5981 13.2228 
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IMAGE 
PCA TRAINING TIME 

(Seconds) 

PCA-CRT TRAINING 

TIME (Seconds) 
IMAGE 

PCA TRAINING TIME 

(Seconds) 

PCA-CRT TRAINING 

TIME (Seconds) 

10 13.4249 13.2882 31 13.6565 13.3434 

11 13.4873 13.2657 32 13.5530 13.2388 

12 13.2343 13.0900 33 13.6573 13.4668 

13 13.5341 13.3458 34 13.8141 13.4456 

14 13.4626 13.3222 35 13.6960 13.3267 

15 13.3118 13.1567 36 13.6682 13.1299 

16 13.9499 13.5493 37 13.6569 13.3368 

17 13.3768 13.2111 38 13.5756 13.1296 

18 13.3579 13.2889 39 13.7193 13.3006 

19 13.3976 13.2355 40 13.7175 13.2666 

20 13.2843 12.9872 TOTAL 540.5134 529.5474 

21 13.4861 13.3255 AVERAGE 13.5128 13.2387 

 
Figure 7. Training Time of PCA vs PCA-CRT. 

 
Figure 8. Average Training Time of PCA vs PCA-CRT. 

Table 5 and Figure 7 shown variation of Training Time used 
by both PCA and PCA-CRT on each image. It was deduced 
that each of the image Training Time used by PCA-CRT is 
lesser than those of PCA. Training time for image 1 for PCA is 
13.4357s while image 1 Training time for PCA-CRT is 
12.7146s. The Table 5 also had shown Total Training Time of 
540.5134 seconds for PCA and 529.5474 seconds for 
PCA-CRT indicating a more Computational time for PCA 
than PCA-CRT. Figure 8 shown distinctions between the 
average Training time used by PCA and PCA-CRT. The 

average Training time used by PCA is 13.5128 seconds while 
average Training time used by PCA-CRT is 13.2387 seconds.  

7. Conclusion 

In this paper, chain of input images from setup database 
tagged “TOAM database” were trained and tested to 
determine the effect of CRT on computational time of PCA for 
face recognition. Training and Testing time were used as 
performance metrics. The investigation shown that PCA uses 
more Training Time and Testing time when CRT was not 
employed than when employed. PCA-CRT average testing 
time is 1.5185 seconds while the average testing time for PCA 
is 1.5475 seconds. The experimental result reveals a total 
Training time of 540.5134 seconds for PCA while total 
Training time used by PCA-CRT is 529.5474 seconds. 
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