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Abstract: In this paper, Peaceman-Rachford alternating direct implicitly methods presented and applied for solve linear 

advection-diffusion equation. First, the domain was discretized using the uniform mesh of step length and time step. Secondly, 

by applying the Taylor series methods, we discretize partial derivative of governing equation and we obtain the central 

difference equation for Partial differential equation of given governing equation in both duration. Then rearranging the 

obtained central difference equation; we write the two half scheme of the present method. From each half of these schemes, we 

obtain tri-diagonal coefficient matrices associated with the system of difference equation. Lastly by applying the Thomas 

algorithm and writing MATLAB code for the scheme we obtain solution of the governing linear advection diffusion equation. 

To validate the applicability of the proposed method, three model examples are considered and solved for different values of 

mesh sizes in both directions. The convergence has been shown in the sense of maximum absolute error (L1-norm) and L2-

norm, numerical error and experimental order of convergence. The stability and convergence of the present numerical method 

are also guaranteed and the comparability of numerical solution and the stability of the present method are presented by using 

the graphical and tabular form. The numerical results presented in tables and graphs confirm that the approximate solution is in 

good agreement with the exact solution. 

Keywords: Linear Advection-diffusion Equation, Peaceman-Rachford Alternating Direct Implicitly Method, 

Taylor Series Methods, Tri-diagonal Coefficient Matrices, Thomas Algorithm, Stability and Convergence 

 

1. Introduction 

Advection–diffusion equation is a parabolic partial 

differential equation which is derived on the principle of 

conservation of mass using Fick’s 1�� law [11]. Particles, 

energy, or physical quantities are transferred inside a physical 

system [11] due to two processes: advection and diffusion 

[11]. The advection-diffusion equation describes the set of 

processes for several substances [11]. 

The significant applications of the advection-diffusion 

equation lie in fluid dynamics, heat transfer, and mass 

transfer [1]. The diffusion-convection-reaction equation 

arises in several physical phenomena, such as the dispersion 

of chemicals in reactors [2], the shocks in hydrodynamical 

flows, the mass transfer in the capillary membrane [2] 

bioreactor, and the tracer dispersion in the porous medium. 

Mathematically, the class of equations can be expressed as a 

set of partial differential equations (PDEs) with the initial or 

boundary conditions [2]. Most physical quantities are 

involved with the interaction of the temporal and spatial 

domain [2]. This equation is used in the momentum 

conservation part of the Navier-Stokes equations [3]. The non 

linear advection-diffusion type equation is one of the popular 

and important models describing many phenomena derived 

from various areas of mathematical physics and engineering 

fields such as gas dynamics, hydrodynamics, shockwaves, 

heat conduction, and so on [4]. Also, the type of equation 

represents the Burgers equation, the heat conduction equation, 

the non linear Schrödinger equation, the Navier–Stokes 

equation [4]. Hence, the development of efficient and 

accurate algorithms for solving the equations is of great 

importance in the computational fluid dynamics community 

and has been widely studied by many researchers [4]. 

Advection-diffusion problems arise when the time 

evolution of chemical or biological species in a flowing 

medium is described [15]. The blending of particulate 
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materials is a common manufacturing unit operation in many 

industries, such as those that produce chemicals, 

pharmaceuticals, food products, and agrochemicals [5]. For 

instance, multi-scale modeling approach for predicting the 

blending of particulate material in a rotating cylindrical drum 

is an advection-diffusion equation [5]. Solute dispersion 

under the combined effects of diffusion and advection in the 

hetero generous porous medium is modeled by parabolic 

advection-diffusion equations (ADE). Many harmful effects 

on humans and the environment such us atmospheric 

pollutions, contaminated flows in ground water aquifers, 

chemicals and migration of contamination in the sea waters 

and river systems, tracer dispersion in a porous medium are 

modeled by such types of equations [6, 11]. It also considers 

physical phenomena where in the diffusion process particles 

are moving with a certain velocity from higher concentration 

to lower concentration [11]. The analytical and numerical 

solutions along with an initial condition and two boundary 

conditions aid to understand the pollutant concentration 

distribution behavior through an open medium like air, rivers, 

lakes, and porous medium. River water pollution can be 

established by the one-dimensional advection-diffusion 

equation [11]. It has wide applications in other disciplines too, 

like soil physics, petroleum engineering, chemical 

engineering, and biosciences [11]. The practitioners of 

computational fluid dynamics have decomposed the analysis 

of the complexity and stiffness of the Navier–Stokes 

equations in to simpler problems like the Stokes (linear) 

equations that embody the difficulties of the space 

discretization of the velocity and pressure fields and the 

advection-diffusion problem that is related to the transport 

character of the non-linear terms [7]. This last class of 

problems includes the non-linear Burgers equations and the 

linear advection-diffusion equation. In this paper, we will 

address the one-dimensional linear advection-diffusion 

equation with homogeneous Dirichlet boundary conditions as 

this is a meaningful test for established of discrete schemes. 

For high Reynolds number flows the advection is dominating 

diffusion but the presence of the boundaries imposing no-slip 

wall conditions complicates the solution of the problem. 

Boundary layers develop and in most cases influence deeply 

the flow dynamics. No-slip wall boundary condition impedes 

the general use of periodic Fourier representation and 

spectral calculation [7]. Even though the linear advection-

diffusion equation is difficult to find a closed-form analytical 

solution in the literature. Most of the efforts have been 

devoted to the solution of linear advection-diffusion equation 

with an upstream boundary condition and a Robin or 

Neumann downstream condition. The presence of the 

gradient condition at the exit of the domain eases the 

development of the analytical solution. In their study, Pérez 

Guérrero et. al. [10] uses a change of variable to obtain a heat 

equation and then solved it by using a generalized integral 

transform technique which proposed by Cotta [8]. In their 

study, van Genuchten et al. [9] can use a variable 

transformation that reduces the partial differential equation to 

an ordinary differential equation and they obtain solution of 

governing partial differential equation which is expressed by 

the complementary error function [7]. 

Moreover, in the literature review, there are different 

numerical methods applied by the author to solve linear 

advection-diffusion equations [16]. However, still, the 

accuracy and stability of the method need attention because 

the treatment of the method used to solve the linear 

advection-diffusion equation is not trivial distribution. Even 

though the accuracy and stability of the aforementioned 

methods need attention, may they require large memory and 

/or long computational time. So the treatments of this method 

present ever difficulties that have to be addressed to ensure 

the accuracy and stability of the solution. To this end, this 

paper aims to develop and present the accurate and stable 

numerical method which is Peaceman-Rachford alternating 

direct implicitly scheme that is capable of solving linear 

advection-diffusion equation and approximate the exact 

solution. The convergence has been shown in the sense of 

maximum absolute error �� -norm and �� -norm, numerical 

error�	
�  and so that the local behavior of the solution is 

captured exactly. The stability and convergences of the 

present methods are also investigated. 

The present paper is organized as follows. Section two is 

Statement of the problem, section three is Formulation of the 

numerical scheme, section four is Stability and convergence 

analysis for the approximate solution, section five is 

Numerical results, and section six is Discussion and 

conclusion. 

2. Statement of the Problem 

Consider that the following linear Advection diffusion 

equation: �
 + ��� = ���� + �(�, �),(�, �) ∈  (�, �) × (0, �)     (1) 

with initial and boundary condition respectively �(�, 0) = ��(�), � ≤ � ≤ � �(�, �) = 0 = �(�, �), 0 ≤ � ≤ �                  (2) 

where a and d are none zero constants and ��(�)  and �(�, �)are smooth function on �, �! ×  0, �!. Now we define 

a mesh size h and k and the constant grid point by drawing 

equidistance horizontal and vertical line of distance ‘h’ and ‘k’ 

respectively in ‘x’ and ‘t’ direction. These lines are called 

grid line and the point at which the interacting is known as 

the mesh point. The mesh point that lies at the end of the 

domain is called the boundary point. The points that lie 

inside the region are called interiors points. The goal is to 

approximate the solution ‘u’ at the interior mesh points. 

Hence we discretized the solution domain as: � = �� < �� < �� < ⋯ < �$ = � 0 = �� < �� < �� < ⋯ < �% = �                 (3) 

Where �&'� = �& + (ℎ and �	'� = �	 + *+ , = 0(1),, * =0(1)-. M and N are the maximum numbers of grid points 

respectively in the x and t direction. 
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3. Formulation of the Numerical Scheme 

3.1. Central Difference Method 

Assuming that �(�, �) has continuous higher order partial 

derivative on the region [a, b]x[0, T]. For the sake of 

simplicity, we use  �.�& , �	/ = �&	 ,
01
0�1 = 2�3�& 	 and 

01
0
1 =2
3�& 	for4 ≥ 1is4
6 order derivatives. By using Taylor series 

expansion, we have, 

�&'� 	 = �&	 + ℎ2��&	 + 67
�! 2���&	 + 69

:! 2�:�&	 + ⋯  

�&;� 	 = �&	 − ℎ2��&	 + 67
�! 2���&	 − 69

:! 2�:�&	 + ⋯  

�&	'� = �&	 + +2
�&	 + =7
�! 2
��&	 + =9

:! 2
:�&	 + ⋯  

�&	;� = �&	 − +2
�&	 + =7
�! 2
��&	 −  =9

:! 2
:�&	 + ⋯    (4) 

Adding the first equation to the second equation, subtract 

the second equation from the first equation, and again 

subtract the fourth equation from the third equation of Eq. (4), 

respectively we obtain: 

2���&	 = �&'� − 2�&	 + �&;� 	ℎ� + ��, 
2��� = 
?@A;
?BA�6 + ��, 

2
�&	 = 
?C@A;
?CBA�= + �:                        (5) 

Where �� = − 69
�� 2�D�& 	 , �� = − 67

E 2�:�& 	 and �: =
− =9

E 2
:�& 	are respectively their local truncation error terms. 

Now substituting Eq.(5) into Eq.(1) we obtain the difference 

equation of the form: �&	'� − �&	;�2+ + �: + � F�&'� 	 − �&;� 	2ℎ + ��G 
= � H�&'� 	 − 2�&	 + �&;� 	ℎ� + ��I 

Multiplying both side of this equation by 2+  and 

simplifying it we obtain: 

(J − K)�&'� 	 − 2J�&	 + (J + K)�&;� 	 = �&	'� − �&	;� +�&	                                 (6) 

Where K = L=6 , J = �M=67  and  �& 	 = NL=67
: 2�: + =9

: 2
� +
M=67

E 2�DO �& 	 is local traction error obtained from difference 

scheme in Eq.(6). 

3.2. Peaceman-Rachford Alternative Direct Implicitly 

Methods 

Alternative direct implicit methods were first introduced by 

Peaceman, Douglas, and Rachford for obtaining the solution 

of parabolic and elliptic Partial differential equations in two 

or three variables [12]. They develop alternative direct 

implicitly (ADI) methods to overcome the difficulty to find 

the solution of PDEs by a different method. The difference 

equation for PDEs at interior mesh point lead linear system 

of the equation whose coefficient matrices has at most five 

none zero entries in each row [13]. For many years splitting 

methods have proved valuable in the numerical solution of 

time-dependent, multi (space)-dimensional partial differential 

equations (PDE's). The general idea of splitting is to attack a 

multi-dimensional problem in such a way that only one-

dimensional computations are required. This idea has led to 

the development of a great variety of so-called alternating 

direction implicit (ADI) methods, locally one-dimensional 

(LOD) or fractional step methods, and hopscotch type 

methods [13]. There for feint his paper is interest to use this 

idea to solve the advection-diffusion equation. 

Now we choose starting point to apply this method. 

Let �& 	� is starting point lies at each interior mesh point of the 

computational domain ((, *) and our interior-point contains 

two half. Hence forms Eq. (6) equation of these two half of 

Peaceman-Rachford ADI methods are: 

First half: 

(J − K)�&'� 	3'� �P − 2J�&	3'� �P + (J + K)�&;� 	3'� �P = �&	'�3 − �&	;�3
 

Second- half: 

�&,	;�3'� − 2J�&	3'� − �&	'�3'� = (K − J)�&'� 	3'� �P − (J + K)�&;� 	3'� �P
 (7) 

Where  4 = 0,1,2, … . , * = 1(1)-, ( = 1(1),. The 

algorithm in Eq.(7) contains the complete time step of the 

first half from  * = 4 �S * = 4 + 1 2P  and second half-

from * = 4 + 1 2P to * = 4 + 1  in to two sub-step 

respectively. For n=p=0, the initial condition or starting 

points are preformed for each interior points((, *). Hence by 

choosing the starting point  �&,	�  for each interior 

point((, *) we update the scheme for both halves. For each 

interior point, our starting points are values of the initial 

condition at each interior point. Note that in the single 

iteration process we have two half. For instance, in the first 

iteration process, we have two. So for the first half of the first 

iteration process, we update the starting point‘ �&,	� ’row by 

row of first of Eq. (7). Hence for *
6 row we have: 

(J − K)�&'� 	� �P − 2J�&	� �P + (J + K)�&;� 	'�� �P = �&'�� − �&	;��  (8) 

where j=0 (1) M and p=n=0. In this equation, the same value 

of “u” is known value and they are boundary value that lies at 

j=0 and j=M. They are not affected by starting value. The 

remaining values of ‘u’ at the interior point in the scheme are 

remaining unchanged until the process is finished. Therefore 

for a fixed value of ‘n’ [16, 17] in Eq.(8) is applied to all 

interior mesh points along with the row. Thus the obtained 

system of the equation contains the M equation. So these 

equations contain-
6rows and the system contains NM total 

equation. The coefficient matrix is tri-diagonal. The solution 
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of this iteration expressed in terms of�&'� 	� �P
. For the second 

half of the first iteration; we update the value �&'� 	� �P
that 

obtained from the first half of the first iteration. Hence the 

second half of the first iteration generated by the formula 

�&	;�� − 2J�&	� − �&	'�� = (K − J)�&'�,	� �P − (J + K)�&;� 	� �P
  (9) 

Where p=0, n=0 (1) N. For fixed ‘j’, we apply Eq.(9) for 

all interior- point along the jth column and produced the N 

equation. Once again our starting value is the value 

of �&	� �P
that obtained first half and the remaining value of “u” 

at interior point (j, n) remain unchanged. Like the first half, 

the second half of the first iteration contains the NM equation. 

The coefficient matrix is a tri-diagonal matrix. The values of 

solutions for this half stored in terms of �& 	� . Generally, the 

successive iteration of the PRADI-method are: 

Second iteration (for p=1): First half: (J + K)�&'� 	: �P −2J�& 	: �P + (J + K)�&;� 	: �P = �& 	'�� − �&,	;�� , j=1 (1) M, nth 

row. 

Second half: �&	;�� − 2J�& 	� − �& 	'�� = (K − J)�&'�,	: �P −(J + K)�&;� 	: �P
, n=1 (1) N, jth column. 

Third iteration (for p=2): 

First half: (J + K)�&'� 	T �P − 2J�& 	T �P + (J + K)�&;� 	T �P =�& 	'�� − �&,	;�� , j=1 (1) M, nth row. 

Second half: �&	;�: − 2J�& 	: − �& 	'�: = (K − J)�&'�,	T �P −(J + K)�&;� 	T �P
, n=1 (1) N, jth column. 

Fourth iteration (for p=3) 

First half: (J + K)�&'� 	U �P − 2J�& 	U �P + (J + K)�&;� 	U �P =�& 	'�: − �&,	;�: , j=1 (1) M, nth row. 

Second half: �&	;�D − 2J�& 	D − �& 	'�D = (K − J)�&'�,	U �P −(J + K)�&;� 	U �P
, n=1 (1) N, jth column. 

This process is continuous until the tolerance of the solution is 

obtained. For all-iteration, we obtain the tri-diagonal matrices and 

we use the Thomas method to find the solution of each system of 

iteration. One of the termination conditions is assembling the 

value of ‘u’ at each interior point’s into a matrix with the same 

configuration of the grid point. If the norm of the difference 

between two successive [18] such matrices is less than a 

prescribed tolerance, the iteration is terminated. 

3.3. Thomas Method 

The tri-diagonal system of equation arises after in 

engineering application. It appears in the special form whose 

coefficients matrix contains three none zero entries with main 

diagonal. Let us conceder the coefficient matrix of the first 

iteration given usV�� �P = �� �P andW�� = �� respectively for 

both first and second half’s where 

V =
XYY
YZ −2JJ + K J − K 0 …2J J − K … 000⋮ J + K⋮ ⋱ ⋮ 00 0 0 J + K −2J]̂̂

_̂
 

W = XYY
YZ−2J−1 1 0 …2J 1 … 000⋮ −1⋮ ⋱ ⋮ 00 0 0 −1 −2J]̂

^̂
_
 

And the corresponding column vectors are: 

�� �P = ` (−K − J)�&'�,�� �P + �&�� − ��,a� , … ,
−(K + J)�$;� �� �P + �$;� �a − �$ �� b



 

�� = H�� 	;�� + (K − J)��	� �P − �� 	'� � �P , … , −��%� +
(K − J)�� %;�� �P − (K + J)��%;�� �P I


            (10) 

If the prescribed tolerance of iteration is not captured at the 

first iteration, the solution of this iteration is the starting 

value for the second iteration. The process is continuous until 

the tolerance is a capture. To solve these types of system of 

the equation the most recommended numerical method is the 

Thomas method. This is because the coefficient matrix 

contains several zero entries. This method is to use the Gauss 

elimination technique with the diagonal entries scaled to 1ine 

each step. Thus we can write MATLAB code and find the 

solution to Eq. (1). 

4. Stability and Convergent Analysis 

Since the time step changed from * = * to * = *+1 2P  and * = *+1 2 P to * = * + 1. Now we want to find the global 

error bound condition for the scheme. Let c& 	be the small 

constant who’s their nth sum is less than one for all point (j, 

n). Hence form Eq. (7) the next succeeding says: 

(J − K)�d&'� 	'� − 2J�d&	 + (J + K)�d&;� 	;� �P  

= �d&	 − �d&	;� + ec&	'� �P  

�d&	 − 2J�d&;� 	;� − �d&	'� = (K − J)�d&'� 	'� �P −(J + K)�d&;� 	'� �P + ec&	'�              (11) 

Where e > 0 be constant. Now let �& 	  and  �d& 	  two 

numerical solutions at two were succeeding points. Hence the 

error between these two numerical solutions is:g& 	 = �d& 	 −�& 	for n=1 (1) N and j=0 (1) M forg& 	is a round off error. 

Subtracting Eq. (7) from Eq. (11), we obtain: 

(J − K)g&'� 	'� − 2Jg&	 + (J + K)g&;� 	;� �P  

= h&	 − g&	;� + ec&	'� �P  
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g&	 − 2Jg&;� 	;� − g&	'� = (K − J)g&'� 	'� �P −(J + K)g&;� 	'� �P + ec&	'�            (12) 

Now eliminating the error term g&'� 	'� �P and g&;� 	;� �P from Eq.(12) and simplifying it, we obtain: 

2Jg&	 + 2Jg&;� 	;� − g&	'� = g&	;� − e Nc&	'� �P + c&	'�O 

ijg&	'� = kg&	;� −  e Nc&	'� �P + c&	'�O            (13) 

Where ijtri-diagonal matrix and I is an identity matrix whose 

Eigen-value is less than one. From Eq.(13) we obtain 

g& 	'� = ij;�g& 	;� −  eij;� Nc& 	'� �P + c& 	'�O       (14) 

Now applying the properties of matrix norm and using 

triangular in equality on Eq.(14) we obtain: 

lg&	'�l = mij;�g&	;� −  eij;� Nc&	'� �P + c&	'�Om 

≤ lij;�g&	;�l + meij;� Nc&	'� �P + c&	'�Om  ≤lij;�llg&	;�l + leij;�l mc&	'� �P + c&	'�m < lg&	;�l +en                                           (15) 

Wherelij;�l < 1andlij;�l mc& 	'� �P + c& 	'�m < n, G is 

constant. Let j=1 and n=0. Then from Eq.(15), we 

obtain lg�,�l < lg�,;�l + en impliesthat lg�,�l < lg�,�l +en. This shows that the global error is bounded. Generally 

from the above condition, we mean that for any‘(j,n)’ we 

have a different matrix coefficient of the error term ijand the 

error is by  the norm of this matrix which is given as: 

lg&'�,	'�l < lg&	l + max�r&r$�r	r%lst&	l               (16) 

where st&	 = ij;� Nc& 	'� �P + c& 	'�O . This shows that the 

proposed method (PR-ADI methods) in Eq. (7) is stable. 

Definition 1: For linear difference operator i6 =(. )  is 

stable if, for sufficiently small mesh size h and k, there is a 

constant “G” in dependent of size h and k such that 

uv&	u ≤ n wmax (|v� �|, |v$%|) + max�r&r$;��r	r%;�ui6=v&	uy     (17) 

Where v& 	 is any mesh function. By adding the first and 

second half of Eq.(7) we obtain the differential equation 

given as: 

�&	;�3'� − 2J�&	3'� − �&	'�3'�
 

+2 H(J − K)�&'� 	3'� �P − J�&	3'� �P + (J + K)�&;� 	3'� �P I 

= �&	'�3 − �&	;�3
 

E�&	3'� + 2z�&'� 	3'� �P = {�&	'�3
               (18) 

� = �|}(-, 0, −2J) + �|�}(-, −1, −1) + �|�}(-, 1, 1), 
z = �|�}(-, 0, −J) + �|�}.-, −1, (J + K)/+ �|�}(-, 1, (J − K)) 

and 

{ = �|�}(-, 0,0) + �|�}(-, −1,1) + �|�}(-, −1, −1). 

Theorem 1: The difference operator defined in Eq.(18) is 

stable any for constant G. 

Proof: Let i6 =  and �6 =  are denoted the difference 

operator that defined on the left and right-hand side of Eq.(18) 

respectively and v& 	 is any mesh function satisfies 

i6=.v&	/ = �6=.v&	/                          (19) 

where  �6 =(�) = {�& 	'�3
. If themax uv& 	uoccur at (( *) =(0,0)  or (( *) = (,, -)  from definition 1, the difference 

equation is stable. Let us consider max uv& 	u exist at (( *) =(0,0). from Eq.(19) we have: 

~�6=(v� �)~ = ~i6=(v� �)~ ⟹ l{�� �3 l 

= �E�� �3'� + 2z�� �3'� �P � 

⟹ l{v� �3 l ≤ lEv� �3'�l + � �zv� �3'� �P � 

||v� �3 || ≤ lE||||v� �3'�l + �||z||||v� �3'� �P || 
||v� �3 || ≤ � �lE||||v� �3'�l + �||z||||v� �3'� �P ||� 

where n = �||�||is constant. Hence the difference equation is 

stable. Therefore this condition is true for ((, *) = (,, -). 

Now for any interior point  ((, *) = (2(1), − 1,2(1)- −1) we have: 

l�6=.v&	/l = li6=.v&&/l ⟹ l{�&	'�3 l 

= �E�&	3'� + 2z�&'� 	3'� �P � 

⟹ l{v&	'�3 l = �Ev&	3'� + 2zv&'� 	3'� �P � 

u|{|u �uv&	'�3 u� ≤ �uE||||v&	3'�u� + 2 ��z||||v&'� 	3'� �P �� 
lv&	'�3 l ≤ n � 12u|z|u �v� �3'3'� �P , v$%3'3'� �P �

+ 1||�|| max�r&�$�r&�%
�i6= �v&	3'� �P ��� 

where n = 2~�~~z~ ~{~P  provided that all matrix norms are 

different from zero. The in equality in Eq. (17) is held. So the 

difference equation in Eq. (18) is stable. This implies that the 
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solution to the system of equation in Eq. (7) is uniformly 

bounded and independent of mesh-size h and k. Therefore the 

scheme is stable. 

Corollary 1. Under the condition of the above theorem, the 

error  g& 	 between the exact solution �.�& , �	/ and the 

numerical solution �& 	 givenas g& 	 = �.�& , �	/ − �& 	  with 

boundary and initial condition satisfy: ug&	u ≤ n max�r&r$�r&r%u�&	u 
where � & 	localtruncationerrorinEq.(6). 

Proof: Let g& 	 be the error and under the given condition 

its satisfies 

i6= Ng.�& , �	/O = i6=.�.�& , �	/ − �&	/ = �&	 

where j=2 (1) M-1, n=2 (1) N-1andg� � = g$ % = 0. By the 

above theorem stability of i6 = implies that u�.�& , �	/ − �&	u = ug&	u ≤ n max�r&r$�r&r%u�&	u 
= n max�r&r$;��r&r%;� ���+ℎ�3 2�: + +:3 2
� + �+ℎ�6 2�D� �&	� 

Thus the error is bounded and the scheme is stable. From 

this as (ℎ, +) → (0, 0)  the maximum local truncation is 

tending to zero. It means (ℎ, +) → (0, 0), max�r&r$�r&r% u� & 	u →0. Again the scheme is consistent. Therefore the proposed 

scheme is convergent. 

5. Criteria for Investigating the Accuracy 

of the Method 

In this section, we investigate the accuracy of the present 

method. There are two types of errors Round-off errors and 

Truncation errors occur when differential equations are solved 

numerically. Rounding errors originate from the fact that 

computers can only represent numbers using a fixed and limited 

number of significant figures. Thus, such numbers or cannot be 

represented exactly in computer memory. The discrepancy 

introduced by this limitation is called Round-off error. Truncation 

errors in numerical analysis arise when approximations are used to 

estimate some quantity. The accuracy of the solution is depend on 

how small we make the step size, h, and time step k. To test the 

performance of the proposed method, L�  and L� is used to 

measure the accuracy of the method. This error norm are 

calculated as followed in [14] is given by �� = max�r	r$u�.�& , �	/ − �&	u, 
�� = � 1, �u�.�& , �	/ − �&	u�$

&��
 

�	
�� A� ∑ u
.�?,
C/;
?Cu.�?��  

where  , is the maximum number of step,  �.�& , �	/ is the 

exact solution and�& 	 approximation solution of advection-

diffusion equation in Eq.(1) at the grid point .�& , �	/. 

6. Numerical Experiments 

To test the validity of the proposed method, we have 

considered the following three model problem. Numerical 

results and errors are computed and the outcomes are 

represented tabular and graphically. 

Example1: Consider the advection-diffusion equation 

considered by Sigrunin [15] given as: �
 + ��� = ���� + g(x, t), −� ≤ � ≤  �, 0 ≤ � ≤ �,  

And the exact solution is 

�(�, �) =  ;M
sin (� − ��) 

Example2: Consider the advection-diffusion equation 

considered by Abdullahand Khatunin [11] given as: �
 + ��� = ����, 0 ≤ � ≤  50,1 ≤ � ≤ 60 

And the exact solution is 

�(�, �) = 1√4���  (�;L
)7 DM
P   
for a=0.3m/s, d=.005m2/s. 

Example3: Consider the advection-diffusion equation 

considered by Appadu in [1] given as: 

�
 + ��� = ����,0 ≤ � ≤  1,0 ≤ � ≤ 1 

and initial and boundary condition is given as 

�(�, 0) =  ;N §@�.¨�.��A7¨O7
, 

�(0, �) = �.��T√�.���E�T'�.��
  ;N �.¨B©�.��A7¨@�.�ª©O7
, 

�(0, �) = �.��T√�.���E�T'�.��
  ;N A..¨B©�.��A7¨@�.�ª©O7
. 

Table 1. Comparison of �� errors and experimental order of convergence (EOC) concerning the classical diffusion fluxes for the exponentially growing 

solution with a=1 and d=0.1 for example one. Computations carried out until final time T=10 with time step h=k. 

 NO of grid Sigrun in [15] (BR2)  Present Method  

M N  «� EOC  «� EOC 

20 20 1.03E-01 __ 1.6288E-08 2.2297 

40 40 2.36E-02 2.13 6.2484E-08 2.6962 
80 80 5.63E-03 2.07 2.2977E-09 3.1788 

160 160 1.38E-03 2.02 8.2810E-10 3.6699 

320 320 3.44E-04 2.01 8.2671E-10 3.9218 
640 640 8.60E-05 2.00 3.1289E-11 4.1193 



 International Journal of Discrete Mathematics 2021; 6(1): 5-14 11 

 

Table 2. Expiration of  �	
�-errors, ��-errors  ��-errors and experimental order of convergence (EOC) for the classical diffusion fluxes for the exponentially 
growing solution of [15] Example2 with a=0.03 and d=0.005. 

Step size Present methods 

h k ¬­®¯ «� «� EOC 

2.5 3 2.4273E-07 5.3400E-6 1.1385E-06 2.2297 

1.25 1.5 1.2794E-06 5.3733E-05 8.2912T-06 2.6962 
0.83 1 4.6734E-06 2.8975E-04 3.6799E-05 2.9771 

0.625 0.75 8.6415E-06 7.0860E-04 7.8252E-05 3.1788 

0.5 0.6 1.2005E-06 1.2245E-04 1.2124E-05 3.3362 

 

a) The surface of numerical solution of example one - � , � 80. 

 

b) plotting graphs of numerical versus exact solutions M=9. 

Figure 1. Graphs of numerical and exact solution of example one for  ) � + � 0.5. 
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Figure 2. Graphs of numerical solution of example two for  + � 3, ) � 2.5. 

 

a) The surface of numerical solution for  ) � 0.05, + � 0.1. 

 

b) Plotting graphs of numerical versus exact solutionk � 0.01, h � 0.02. 

Figure 3. Graphs of numerical and exact solution for example three. 
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Table 3. Computations of  �	
� -errors,  �³ -errors  �� -errors and experimental order of convergence (EOC) for the classical diffusion fluxes for the 
exponentially growing solution [15] of Example 3 with a=1 and d=0.1. 

Mesh size By present method 

h k  ¬­®¯  «³  «� EOC 

0.005 0.02 2.3352E-07 4.7350E-05 3.3189E_06 3.8291 

0.01 0.02 4.6246E-07 4.7170E-05 4.6706E-06 3.3362 
0.01 0.04 4.6245E-07 4.6175E-05 4.6705E-06 3.3362 

0.02 0.04 9.0713e-07 4.7171e-05 6.5414e-06 2.8502 

Appadu in [1]  
0.005 0.02 1.8166E-04 5.8157E-04 1.6348E-04 0.25 

0.01 0.02 7.3296E-04 0.0024 1.6348E-04 0.50 

0.01 0.04 0.0021 0.0065 0.0011 0.25 
0.02 0.04 1.2252E-04 3.7946E-04 3.7946E-04 0.50 

 

7. Discussion and Conclusion 

In this paper, Peaceman-Rachford alternating direct 

implicit method is applied and presented for solving linear 

advection-diffusion equation. To demonstrate the 

competence of the method, it is applied on three model 

examples by taking different values for mesh size, h, and k. 

Numerical results obtained by the present method has been 

computed with numerical results obtained by the methods 

in [1, 11, 15] and they are summarized and presented in 

Tables and graph. In this paper both theoretical and 

numerical error bounds has been established for the 

Peaceman-Rachford alternating direct implicit method. As 

can be seen from the numerical results in terms of 

maximum absolute error, Numerical Error with order of 

convergence that predicted in tables and graphs above, the 

present method is superior to the method developed in [1, 

11, 15] and approximates the exact solution very well. 

Further, as shown in Figures1-3, the proposed method 

approximates the exact solution very well for which most of 

the current methods fail to give good results. To further 

verify the applicability of the planned method, graphs were 

plotted aimed at the above examples for exact solutions 

versus the numerical solutions obtained with their errors. 

As Figure 1 (b) indicates numerical solution obtained by 

present method is good a agreement of the results with 

exact solutions, which proves the reliability of the method 

for example1. Figures 2 indicate the numerical solution has 

a good agreement of the results with the exact solution for 

example 2. Figures 3 (b) indicate the numerical solution has 

a good agreement of the results with the exact solution for 

example 3. Further, the numerical results presented in this 

paper validate the improvement of the proposed method 

over some of the existing methods described in the 

literature. 
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