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Abstract: Chicken Pox (also called Varicella) is a disease caused by a virus known as Varicella Zoster Virus (VZV) also 

known as human herpes virus 3 (HHV -3). Varicella Zoster Virus (VZV) is a DNA virus of the Herpes group, transmitted by 

direct contact with infective individuals. In this work, a deterministic mathematical model for transmission dynamics of 

Varicella Zoster Virus (VZV) with vaccination strategy was solved, using Adomian Decomposition Method (ADM) and 

Fourth-Fifth Rungekutta Felhberg Method and Approximate solutions were realized. ADM, yields analytical solution in terms 

of rapidly convergent infinite power series with easily computed terms. This solution was realized by applying Adomian 

polynomials to the nonlinear terms in the system. Similarly, fourth-fifth-order Runge-Kutta Felberg method with degree four 

interpolant (RK45F) was used to compute a numerical solution that was used as a reference solution to compare with the semi-

analytical approximations. The main advantage of the ADM is that it yields an approximate series solution in close form with 

accelerated convergence. The effect of Varicella was considered in five compartments: The Susceptible, the Vaccinated, the 

Exposed, the Infective and the Recovered class. The Varicella Zoster virus model which is a nonlinear system can only be 

solved conveniently using powerful semi-analytic tool such as the ADM. Numerical simulations of the model show that, the 

combination of vaccination and treatment is the most effective way to combat the epidemiology of VZV in the community. 
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1. Introduction 

In recent years, a lot of attention has been on the study of 

the Adomian decomposition method to investigate various 

scientific models. The ADM method is used for finding the 

numerical solution of higher-order deferential equations. This 

method which accurately computes the series solution is of 

great interest to applied science, engineering, physics, 

biology, and so forth. The method provides the solution in a 

rapidly convergent series with components that can be 

elegantly computed [1]. The work by [2], was aimed at 

producing approximate solutions which are obtained in 

rapidly convergent series with elegantly computable 

components by the Adomian decomposition technique. They 

also revealed that the Adomian decomposition method is 

useful for obtaining both a closed form and the explicit 

solution and numerical approximations of linear or nonlinear 

differential equations, and it is also quite straight forward to 

write computer codes. This method has been applied to 

obtain formal solution to a wide class of stochastic and 

deterministic problems in science and engineering involving 

algebraic, diffferential, integrodifferential, differential delay, 

integral and partial differential equations. 

It is well known in the literature that the decomposition 

method provides the solution in a rapidly convergent series 

where the series may lead to the solution in a closed form if it 

exists. 

Adomian Decomposition Method (ADM) is a technique 

for solving functional equations. This method was first 

introduced by Adomian to be used in solving stochastic and 

deterministic problems in basic and applied sciences. The 

method was observed to give analytical solution in terms of 

an infinite series which can be obtained without linearization, 

perturbation, transformation or discretization [3]. It can also 

be applied to non-linear differential equations both ordinary 

and partial linear equation and other kind of problems in 

science. The advantage of this method is that it provides a 

direct scheme for solving the problem of nonlinear 

epidemiological model [4]. 

In [5] the Adomian's scheme was used for solving 

differential systems for modelling the HIV immune dynamics. 
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The weaknesses of the thin-sheet approximation was 

investigated and a higher-order development allowing 

increasing range of convergence and preserving the nonlinear 

dependence of the variables was proposed [6]. In general, the 

decomposition method yields rapidly convergent series 

solutions by using a few iterations for both linear and 

nonlinear deterministic and stochastic equations. The 

advantage of this method is that it provides a direct scheme 

for solving the problem, i.e., without the need for 

linearization, perturbation, massive computation and any 

transformation. The convergence of this method was 

investigated by Cherruault and workers. A new convergence 

proof of Adomian's method based on properties of 

convergent series was proposed [7]. The convergence of 

Adomian's method to periodic temperature fields in heat 

conductors was investigated in [8]. This method has been 

applied to nonlinear algebraic equations, ordinary differential 

equations, delay differential equations, system of ordinary 

differential equations, partial differential equations and 

certain problems of linear algebra [9]. 

The approximation to the solution of hyperbolic equations 

by Adomian Decomposition Method and comparison with 

the method of characteristics was carried out by [10]. 

Numerical methods which are commonly used, needed large 

size of computation work and usually, round off error causes 

the loss of accuracy. As such, Adomian Decomposition 

Method has been applied to solve many functional equations 

and system of functional equations. They stated that 

Adomian Decomposition Method has proved to be very 

effective and results in considerable saving of computation 

time. 

The ADM technique is based on a decomposition of a 

solution of a nonlinear functional equation in a series of 

functions. Each term of the series is obtained from a 

polynomial generated by a power series expansion of an 

analytic function. The Adomian method is very simple in an 

abstract formulation but the difficulty arises in computing the 

polynomials and in proving the convergence of the series of 

functions [11]. In recent years, more and more researchers 

have applied this method to solving nonlinear systems [13–

15]. We firstly study the algorithm and convergence analysis 

of ADM, and then apply ADM to constructing approximate 

solutions for nonlinear equations with initial data, including 

algebraic equations, fractional ordinary differential equations 

and fractional partial differential equations. It is very easy to 

apply and can solve wide classes of nonlinear systems 

including algebraic equation, ordinary differential equations, 

partial differential equations, integral equations, integro-

differential equations, and so on and so forth [12]. 

The Adomian decomposition method (ADM) proved to be 

an effective technique in dealing with nonlinear problems 

with initial data. By applying the ADM, one can construct 

approximate solutions to algebraic equations, fractional 

ordinary differential equations (time-fractional Riccati 

equations etc.), fractional partial differential equations 

(timefractional Kawahara equations, modified time-fractional 

Kawahara equations etc.), and even integro-differential 

equations, differential algebraic equations and so on. In 

practical applications, we can take a finite sum according to 

the accuracy we need [16]. 

We would be using the Adomian Decomposition Method, 

which has been proven reliable to solving complex nonlinear 

equation to analyze the Varicella Zoster Virus model in this 

work. 

Several studies have been carried out on Varicella Zoster 

Virus, which causes what we commonly know as Chicken 

pox. Varicella zoster virus (VZV) is a common and 

ubiquitous human-restricted neurotropic alphaherpesvirus of 

the Herpes viridae family that persists for life in the host after 

a primary infection (varicella or chickenpox). The site of 

latency is within neurons in ganglia of the peripheral somatic, 

autonomic, and enteric nervous systems [17]. Up to one third 

of infected individuals will clinically reactivate VZV in their 

lifetimes, usually in their elderly years when immunity is 

naturally senescing, or when immunity is suppressed by 

disease or iatrogenic cause. The most common clinical sign 

of reactivation is herpes zoster (HZ), manifested as a 

dermatome-limited, painful vesicular skin rash that causes 

greater morbidity than varicella with frequent complications. 

VZV reactivation may also underlie a variety of neurological 

[19], vascular [20], and gastrointestinal diseases [17] that 

may occur with or without rash.  

A greater understanding of the events occurring during 

VZV latency and early reactivation may reveal targets and 

strategies for novel therapeutics that treat or prevent HZ. 

However, VZV shows a high degree of host specificity, 

which has precluded most small animal modeling of VZV 

disease. There is arguably still no in vivo model of 

reactivated disease. A possible exception for the growth 

restriction of VZV in small animals is the guinea pig, 

discussed below. Many insights have come from study of the 

VZV-related Simian Varicella Virus (SVV), which replicates 

in several macaque species and African green monkeys, but 

SVV is a distinct virus that may not completely model all 

aspects of VZV. There are also significant financial and 

ethical issues associated with primate research. The relevance 

of the SVV model to VZV was recently reviewed [21].  

A second issue that has made VZV persistence difficult to 

understand is the difficulty in interpreting studies of VZV-

infected human cadaveric ganglia. We are now more 

cognizant that a partial viral gene expression program occurs 

throughout the post mortem interval (PMI) [22, 23]. Early 

reports suggesting that VZV proteins were made during 

latency were subsequently complicated by staining artifacts 

or antibody cross-reactivity to blood group A1 antigens [24]. 

Very recent work indicates VZV latent transcription is highly 

restricted in ganglia obtained with short PMI [25]. 

It was revealed in [18] that the virus is spread either by 

direct contact with a person with active chicken pox or 

shingles, or by direct contact with clothes or other articles 

infected with vesicle fluid, saliva, nasal discharge, or by air 

borne spread of small droplets of infected mucous of fluid. 

They identified that in 2006, the Food and Drug 

Administration approved the zoster vaccine, a higher 
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concentration of the same live attenuated virus used in the 

primary Varicella vaccine, for persons 60 years of age or 

older. In their work, they revealed that the treatment for a 

patient with chicken pox is: reducing itches and irritation by 

keeping the skin cool with light clothing and tepid baths or 

sponging.  

2. The Model of Edward et al. (2014) 

We would review a deterministic mathematical model for 

VZV formulated by Edward et al. (2014) which incorporates 

vaccination strategy. The total population is divided into the 

following epidemiological classes or subgroups: susceptible, 

vaccinated V, Exposed E, infectious I, recovered R. Basically, 

we modify the SEIR model by adding a vaccination 

compartment which caters for immunization. 

Let us assume that the per capita birth rate � is constant, 

the natural fatality rate � is time constant, there is no disease 

induced death, the members of the population mix 

homogenously (have the same interactions with one another 

to the same degree), and assume that on recovery, there is a 

permanent immunity of the rate �. Furthermore, assume that 

individuals can be infected through direct contact �, with an 

infectious individual. We let �  to be the probability that a 

susceptible individual becomes infected by one infectious 

individual. We also let �  be the constant recruitment rate. 

The susceptible and vaccinated individuals are recruited by 

both birth and immigration. A proportion 	  of the recruits are 

vaccinated, the remaining 1 − 	 are not vaccinated so they 

join the susceptible compartment. Proportions of newborns � 

are vaccinated, and the remaining 1 − �  newborns are not 

vaccinated and hence join the susceptible compartment. We 

consider that a proportion of the population of susceptible to 

receive a first dose vaccine at the rate  
�, whereas the rest of 

it progress with the disease. 

The primary vaccine wanes at the rate � after a fixed time �. After the first vaccine has expired, a proportion 1 − � of 

the vaccinated individuals at dose one, join the susceptible 

compartment at the rate � while the remaining proportion f 

receive a second dose at the rate 
�, Our assumption is that 

the individuals who have attended the first and the second 

dose consecutively receive permanent immunity; otherwise 

they become susceptible to the disease again. The susceptible 

individuals enter the exposed compartment at the rate � 

which is a force of infection. The exposed individuals are the 

ones who are infected but not infectious. After some time the 

exposed become infectious, they move from exposed state to 

infectious at the rate �. An infected individual recover at rate �, and according to the nature of the disease; the recovered 

individuals are permanently immune. 

The description of dynamics of VZV above can be 

summarized by compartmental diagram as seen in Figure 1. 

3. Methods 

In this chapter, we will apply the Adomian Decomposition 

Method (ADM) to nonlinear epidemiological model of 

chicken pox. 

3.1. The Adomian Decomposition Method (Al-Hayani et al., 

2013) 

Let us consider a general functional equation � − ���� = �                              (1) 

Where � is a non-linear operator, � is a known function in 

which the solution � satisfying equation (1) is to be found. 

We assume that for every �, the problem (1) has a unique 

solution. 

The Adomian technique consists of approximating the 

solution of (1) as an infinite series. 

� = � ��
�

���  

and decomposing the non-linear operator �as 

���� = � ��
�

���  

where �� , are Adomian polynomials of ��, ��, … , ��given by 

�� = 1"! $�$�� %� �&�&
�

��� ' │)�� 

For each values of n, the Adomian polynomial is computed 

as below: 

�� = $$� ���� + ���� = [���,����])���� 

= 12! $$� [��� + 2�����,��� + ����])�� 

= ���,���� + ����,,�������,����2! �/ = �/= 13! $$� � 1��� + 3�/���,��� + ����
+ 12! ��� + 2������,,��� + ����2 ⃒)�� 

= �/�,���� + �����,,���� + ��/�,,,����3!  

�4 = 14! $$� 1��/ + 4�4���,��� + ���� + ���+ 2������� + 3�/���,,��� + ����+ 13! ��� + 2�����,,,��� + ���2 ⃒)�� 

= �4�,���� + ����/ + ���2 �,,���� + ������,,,����3!  

+ ��44! �,,,,���� 

Continuing this course, we can get the other Adomian 

polynomials. Now going back on our equation 
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� = � − ����, � = ∑ ������  and 

���� = � ��
�

���  

So that � = ∑ �� − ∑ ���������� Thus, we can identify ��7� = �����, ��, … , ���" = 0, 1, 2 … 

We would further show the convergence of the above 

series by considering a system of nonlinear differential 

equations: $�$� = ���, ��, �9ℝ; , �: ℝ × ℝ; → ℝ;, 
with the initial condition ��0� = ��9ℝ; .  Assume that � is 

analytic near � = �� and � = 0. It is equivalent to solve the 

initial value problem for 
;@;A = ���, ��, �9ℝ; , �: ℝ × ℝ; →ℝ; , and Volterra integral equation 

���� = �� + B �CD, ��D�E$D.A
�  

To set up the Adomian method, consider y in the series 

form: 

� = �� + � �� ,�
���  

and write the nonlinear function ���, ��  as the series of 

functions, 

���, �� = � ����, ��, ��, … , ���.�
���  

The dependence of �� on � and �� may be non-polynomial. 

Formally, �� is obtained by 

�� = 1"! $�$F� � G�, � F&�&
�

&�� H ⃒I��, " = 0,1,2, … 

where F is a formal parameter Functions �� are polynomials 

in ���, … , ��� , which are referred to as the Adomian 

polynomials. 

In what follows, we shall consider a scalar differential 

equation and set $ = 1. 

A generalization of $ ≥ 2  is possible but is technically 

longer. 

The first four Adomian polynomials for $ = 1 are listed as 

follows: �� = ���, ��� 

�� = ���,��, ��� 

�� = ���,��, ��� + 12 ����,,��, ��� 

�/ = �/�,��, ��� + �����,,��, ��� + �K ��/�,,,��, ���, 

Where prime denote the partial derivatives with respect to �. 
It was proven by Abbaoui and Cherruault (1994) that the 

Adomian polynomials ��are defined by the explicit formulae: 

�� = ∑ �L!�L�� ��L���, ���C∑ �MN … �MO�MN7⋯7MO�� E, n≥ 1 

or, in an equivalent form, by 

�� = � ∣ "R ∣= ��∣L∣���, ��� ��LN … ��LSR�! … R�! , " ≥ 1, 
where∣ R ∣= R� + ⋯ + R� , and ∣ "R ∣= R� + 2R� + ⋯ + "R� . 

Khehlifa and Cherrault (2000) proved a bound for 

Adomian polynomials by 

∣ �� ∣≤ �" + 1���" + 1�! U�7�, 
where DVW ∣ ��L���, ��� ∣≤ U�9X  

for a given time interval X ⊂ ℝ.  Substituting � = �� +∑ �� ,∞���  

and 

���, �� = � ��   ��, ��, �� , … , ���.�
���  

into 

���� = �� + B �CD, ��D�E$D.A
�  

gives a recursive equation for ��7� in terms of ���, ��, … , ���: 

��7���� = B ���D, ���D�, ���D�, … , ���D��$D, " = 0,1,2 …A
�  

Hence, the convergence of series � = �� + ∑ ��,∞��� has 

been obtained by ��7���� = Z ��CD, ���D�, ���D�, … , ���D�E$D, " = 0,1,2 …A�  

The rapid convergence of the solution is guaranteed by [7]. 

3.2. The Model of Edward et al. (2014) 

We would review a deterministic mathematical model for 

VZV formulated by Edward et al. (2014) which incorporates 

vaccination strategy. The total population is divided into the 

following epidemiological classes or subgroups: susceptible, 

vaccinated V, Exposed E, infectious I, recovered R. Basically, 

we modify the SEIR model by adding a vaccination 
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compartment which caters for immunization. 

Let us assume that the per capita birth rate �is constant, 

the natural fatality rate� is time constant, there is no disease 

induced death, the members of the population mix 

homogenously (have the same interactions with one another 

to the same degree), and assume that on recovery, there is a 

permanent immunity of the rate �. Furthermore, assume that 

individuals can be infected through direct contact �, with an 

infectious individual. We let �  to be the probability that a 

susceptible individual becomes infected by one infectious 

individual. We also let �  be the constant recruitment rate. 

The susceptible and vaccinated individuals are recruited by 

both birth and immigration. A proportion 	  of the recruits are 

vaccinated, the remaining 1 � 	 are not vaccinated so they 

join the susceptible compartment. Proportions of newborns � 

are vaccinated, and the remaining 1 � �  newborns are not 

vaccinated and hence join the susceptible compartment. We 

consider that a proportion of the population of susceptible to 

receive a first dose vaccine at the rate  
�, whereas the rest of 

it progress with the disease. 

The primary vaccine wanes at the rate � after a fixed time�. 

After the first vaccine has expired, a proportion 1 � � of the 

vaccinated individuals at dose one, join the susceptible 

compartment at the rate �while the remaining proportion f 

receive a second dose at the rate 
�, Our assumption is that 

the individuals who have attended the first and the second 

dose consecutively receive permanent immunity; otherwise 

they become susceptible to the disease again. The susceptible 

individuals enter the exposed compartment at the rate � 

which is a force of infection. The exposed individuals are the 

ones who are infected but not infectious. After some time the 

exposed become infectious, they move from exposed state to 

infectious at the rate�. An infected individual recover at rate�, 

and according to the nature of the disease; the recovered 

individuals are permanently immune. 

The description of dynamics of VZV above can be 

summarized by compartmental diagram as seen in Figure 1. 

 

Figure 1. The Flow Diagram for the Model of Edward et al. (2014). 

3.2.1. Model Parameters and Description of Edward et al. (2014) 

Table 1. Model Parameters and Description. 

�  The rate of waning of a vaccine 

�  Probability of one infected individual to become infectious 

∆ Progression rate from latent to infectious 

[ Proportions of newborns who are vaccinated. 

	  Proportions of immigrants who are vaccinated 

\ Arrival rate 

c Per capita contact rate 


� Fraction of individuals who receive a first dose vaccine 


� Rate at which an individual receives a second dose vaccine 

�  Per capita natural mortality rate 

�  Per capital birth rate 

η Recovery rate of treated infectious individuals 

�  The recruitment rate of susceptible population 

� A fraction of population who receive second dose vaccine 

 

3.2.2. The Model Equations of Edward et al. (2014) 

The model equations using the model flow diagram in 

Figure 1 is: 

;]
;A � �1 � ^��� * �1 � 	�� * �1 � ���_ � �� * � * 
��`  (2) 

;a
;A � 	� * ^�� * 
�` � C�1 � ��� * �
� * �E_  (3) 

;b
;A � �` � �� * ��c                        (4) 

;d
;A � �c � �� * ��e                         (5) 

;f
;A � �e * �
�_ � �g                       (6) 

where � is the force of infection and is given by 

� � ��e
�  

The total population size is ���� � `��� * _��� * c��� *
e��� * g��� 

Adding equations (3.12) – (3.16) gives 

$�
$� � � * �� � ��� 

For simplicity of analysis we normalize the equations. This 

can be done by scaling the population of each class by the 

total population. 

We transform the model into proportion as follows: Let 

D � ]
h , i � a

h , j � b
h , k � d

h \"$l � f
h           (7) 
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From=
]h, we have D� = ` 

Differentiate the above using product rule of 

differentiation, we have 

D ;h;A + � ;m;A = ;];A, 

Therefore, 

;m;A = �h n;];A − D ;h;A o. 
Substituting the values of

;];A and 
;h;A  into the above equation, 

we have $D$�= 1� 1�1 − ^��� + �1 − 	�� + �1 − ���_ − �� + � + 
��`−D�� + ��� − ��� 2 

$D$� 

= p�1 − ^�� + �1 − 	� �� + �1 − ��� _� − �� + � + 
�� �̀ − D ��−D �� �� − ��� q 

Let 
rh = \be a constant, then $D$� = 

[�1 − ^�� + �1 − 	�\ + �1 − ���i − �� + � + 
��D − D\− D�� − ���] 
Rearranging and collecting the like terms we have 

;m;A = �1 − ��� + �1 − 	�\ + �1 − ���i − �� + 
� + \ + ��D      

Similarly, from equation of (3), we have i� = _. 
Differentiating the above using product rule, we have 

i $�$� + � $i$� = $_$�  

;s;A = �h n;a;A − i ;h;A o. 
Substituting the values of 

;a;A  and 
;h;A  into the above 

equation we have $i$� = 1� 

t	� + ��� + 
�D − C�1 − ��� + �
� + �E_ − i� − �i��− �� u $i$� = 

1	 �� + �� �� + 
� �̀ − C�1 − ��� + �
� + �E _� − i ��− �� i�� − �� 2 

But 
rh = \ $i$� = 	\ + �� + 
�D 

−C�1 − ��� + �
� + �Ei − i\ − i�� − �� 

Rearranging and collecting the like terms we have 

;s;A = �� + 	\ + 
�D − C�1 − ��� + �
� + \ + �Ei  

Similarly $j$� = �D − �� + \ + ��j 

$k$� = �j − �� + \ + ��k 
$l$� = �k + �
�i − �\ + ��l 

Hence the transformed system becomes, 

;m;A = �1 − ��� + �1 − 	�\ + �1 − ���i − ���k + 
� + \ +��D                                         (8) 

;s;A = �� + 	\ + 
�D − C�1 − ��� + �
� + \ + �Ei       (9) 

;v;A = ��kD − �� + \ + ��j               (10) 

;&;A = �j − �� + \ + ��k                (11) 

;w;A = �k + �
�i − �\ + ��l                (12) 

3.3. Analysis of the Model of Edward et al. (2014) 

The model (8) – (12) is analyzed qualitatively to get 

insights into its dynamical features which give better 

understanding of the impact of immunization on the 

epidemiology of varicella zoster virus. 

3.3.1. Positivity and Boundedness 

In order to retain the biological validity of the model, we 

must prove that solutions to the system of differential 

equations are positive and bounded for all values of time. For 

example, concluding that a population is negative is not 

biologically feasible. Furthermore, the populations must 

remain finite since the human body can only be composed of a 

finite number of cells. In addition, boundedness and positivity 

illustrate that once infected, it is possible that the population of 

the virus will continue to exist beneath the detectable threshold 

without doing significant damage (Roemer, 2013). The next 

step in analyzing our model will be to prove positivity and 

boundedness for the system of differential equations. We will 
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do so by proving the following theorems. 

3.3.2. Lemma 1 (Positivity) 

Let �� > 0. In the model, if the initial conditions satisfy `�0� > 0, _�0� > 0, c�0� > 0, e�0� > 0, g�0� > 0 then for 

all � ∈ [0, ��] , `��� , _���, c���, e��� , g���  will remain 

positive in ℝ74 . 

Proof: Positivity 

We must prove that for all � ∈ [0, ��], `���, _���, c���, e���, g���  will be positive in ℝ74 . We know that all of the 

parameters used in the system are positive. Thus, we can 

place lower bounds on each of the equations given in the 

model. Thus, 

$`$� = �1 − ^��� + �1 − 	�� + �1 − ���_ − �� + � + 
��` ≥ −�� + � + 
��` 

$_$� = 	� + ^�� + 
�` − C�1 − ��� + �
� + �E_ ≥ −C�1 − ��� + �
� + �E_ 

$c$� = �` − �� + ��c ≥ −�� + ��c 

$e$� = �c − �� + ��e ≥ −�� + ��e 

$g$� = �e + �
�_ − �g ≥ −�g 

Through basic differential equation methods we can 

resolve the inequalities and produce: `��� ≥ jz�{7)7|N�A ≥ 0                       (13) 

_��� ≥ jzC��z}�~7}|�7)EA ≥ 0               (14) c��� ≥ jz�)7��A ≥ 0                           (15) e��� ≥ jz��7)�A ≥ 0                          (16) g��� ≥ jz)A ≥ 0                                (17) 

Thus, for all � ∈ [0, ��], `���, _���, c���, e���, g��� will be 

positive and remain in ℝ74 . 

3.3.3. Lemma 2 (Boundedness) 

There exists an `�, _�,c�, e�, g� > 0 such that for `���, 

_��� , c��� , e��� , g���limA→� DVW�`���� ≤ `� , limA→� DVW�_���� ≤ _�, limA→� DVW�c���� ≤ c�, limA→� DVW�e���� ≤ e� , limA→� DVW�g���� ≤ g�  for all � ∈ [0, ��]. 
Proof: Boundedness 

We must prove that for all � ∈ [0, ��], `��� , _���, c��� , e���, g��� will be bounded. We know that all of the constants 

used in the system are positive. $`$� + $_$� + $c$� + $e$� + $g$� = � + �� − ��� 

Since all of the constants are positive, 

;�]7a7b7d7f�;A ≤ � + min��, �� �` + _ + c + e + g����  (18) 

which implies, 

�` + _ + c + e + g���� ≤ r�����,)� + ��jz �����,)�A        (19) 

Taking the lim sup of both sides, 

limA→�DVW�` + _ + c + e + g���� ≤ limA→�DVW � r�����,)� + ��jz �����,)�A� = r�����,)�                          (20) 

So choose 

`� = _�=c� = e� = g� = r�����,)�             (21) 

Thus, �` + _ + c + e + g���� is bounded, so `���, _���, c���, e��� and g��� are all bounded since `���, _���, c���, e���, g��� ≤ �` + _ + c + e + g����. 
So, `��� ≤ `� , _��� ≤ _� , c��� ≤ c� , e��� ≤ e� , g��� ≤ g� for all � ∈ [0, ��]. 

3.3.4. Existence and Uniqueness of Solutions 

Prior to conducting an in–depth analysis of the model, it is 

crucial to show that the solutions to the initial-value problem 

exist and are unique. 

Theorem 1 (Existence) Let �� > 0 . In the model, if the 

initial conditions satisfy `�0� > 0 , _�0� > 0 , c�0� > 0 , e�0� > 0,g�0� > 0 then for all � ∈ ℝ`���, _���, c���, e���, g��� will exist in ℝ74 . 

Proof: In the case of our model we have: 

� =
��
��
�`���_���c���e���g�����

��
�
 

and 

���� =
���
���
�1 − ^��� + �1 − 	�� + �1 − ���_ − �� + � + 
��`	� + ^�� + 
�` − C�1 − ��� + �
� + �E_�` − �� + ��c�c − �� + ��e�e + �
�_ − �g ���

��� (22) 

Note that � has a continuous derivative on ℝ4 and thus, � 

is locally Lipschitz in ℝ4 . Hence, by the Fundamental 

Existence and Uniqueness Theorem as well as the lemmas 

proved on positivity and boundedness of solutions, we know 

that there exists a unique, positive, and bounded solution to 
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the ordinary differential equations given in (8) – (12). 

3.3.5. Disease Free Equilibrium (DFE), �� 

The disease free equilibrium of the model system (8) – (12) 

is obtained by setting
;s;A = ;m;A = ;v;A = ;&;A = ;w;A = 0 and ��  of 

the model system (8) – (12) exist and given by: ���D∗, i∗, j∗, k∗, l∗� = �D�∗, i�∗, 0, 0, l�∗� 

In case there is no disease; j = k = 0  the sum of 

susceptible and vaccinated populations is equal to total 

population. 

That is to say D�∗ + i�∗ + l�∗ = 1 

Consequently, system (3.18) - (3.22) reduces to: 

−�� + 
� + \ + ��D + �1 − ���i + �1 − ��� + �1 − 	�\ = 0 �
�D − ��1 − ��� + �
� + \ + ��i + �� + 	\ = 0 �
�i − �\ + ��l = 0 

which implies: 

D�∗ = �1 − ����\ + �� + ��
� + \ + ��[�1 − ��� + �1 − 	�\]�\ + ���1 − ��� + ��
� + \ + ���
� + \ + ��  

i�∗ = �\ + ���
� + �� + 	\�
���
� + \ + �� + �\ + ��[�1 − ��� + �
� + \ + �] 
l�∗ = �
��
� + �� + 	\�
���
� + \ + �� + �\ + ��[�1 − ��� + �
� + \ + �] 

Thus the Disease Free Equilibrium (DFE) point denoted by �� of the model system (3.18) – (3.22) exists and is given by: ���D∗, i∗, j∗, k∗, l∗� = �D�∗, i�∗, 0, 0, l�∗� 

3.3.6. The Basic Reproduction Number, �� 

Polettiet al. (2013) defined the basic reproduction number 

denoted by g� , as the average number of secondary 

infections caused by an infectious individual during his or 

herentire periodof infectiousness. The basic reproduction 

number is an important non-dimensional quantity in 

epidemiology as it sets the threshold in the study of a disease 

both for predicting its outbreak and for evaluating its control 

strategies. Thus, whether a disease becomes persistent or dies 

out in a community depends on the value of the reproduction 

number, g�. 

Furthermore, stability of equilibrium can be analyzed using g�.  If g� < 0 it means that every infectious individual will 

cause less than one secondary infection and hence the disease 

will die out and when g� > 1, every infectious individual will 

cause more than one secondary infection and hence the disease 

will invade the population. A large number of g� may indicate 

the possibility of a major epidemic. For the case of a model 

with a single infected class, g�  is simply product of the 

infection rate and the mean duration of the infection. 

In more complicated epidemics we compute the basic 

reproduction number, g� using the next generation operator 

approach by Van den and Watmough (2002). 

From the system Equations (8) – (12) we define ℱ& and �& 
as 

ℱ& = n��kD0 o,                             (23) 

�& = 1 �� + \ + ��j�j − �� + \ + ��k2                         (24) 

We differentiate �& with respect to j and k to get 

ℱ = n0 ��D0 0 o                               (25) 

We differentiate _&with respect to j and k and get 

�� = 1�� + \ + �� 0−� �� + \ + ��2                 (26) 

We find the inverse of_ and get 

�z� = � ���7 7�� 0�� + \ + ���� + \ + �� ���7 7��¡                                                         (27) 

ℱ�z� = 1¢ℱ£�b¤�¢¥¦ 2 1¢�£�b¤�¢¥¦ 2z� n0 ��D�∗0 0 o � ���7 7�� 0�� + \ + ���� + \ + �� ���7 7��¡ = % ��D0∗�C�+\+�E��+\+�� ��D0∗�+\+�0 0 '                   (28) 

The eigen values, �  of this equation above can be 

computed from the characteristic equation: |ℱ�z� − �e| = 0, 
and we see that from our matrix that 

�� = ¨©m¤∗���7 7����7 7�� and �� = 0 

Obviously, ��  is the dorminant eigenvalue and becomes 
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equal to gv of the model. 

Therefore, if we substitute D�∗  from equation (22) above 

into ��, we get effective reproduction number denoted by gv 

in the equation (14) below 

gv = ¨©����z}�~�ª�7« �7���z}�~7}|�7 7����zª��7��z«� ]��|N�}|�7 7��7� 7��[��z}�~7}|�7 7�]���7 7����7 7�� (29) 

where there is no any control strategy, then 
� = 
� = � =	 = 0 

and hence � = 0, � = 0, so we get basic reproduction number 

g� = ¨©���7 7����7 7��                            (30) 

3.3.7. Global Stability of Disease Free Equilibrium State 

(DFE) 

In this section, we analyze the global stability of disease–

free steady state. Here we use the Next Generation Matrix 

Approach by Castillo-Chavez et al., (2002). Now we state 

two conditions which guarantee the global stability of the 

disease free state. We rewrite the model system (8) – (12) as 

;¬;A = ��­, ®�, 

;¯;A = °�­, ®�, °�­, 0� = 0,                    (31) 

where ­ = �`� and ® = �c, e�, with ­9ℝ denotes the number 

of uninfected individuals and ­9ℝ�denoting (its components) 

the number of infected individuals including latent and 

infectious. The disease-free equilibrium is now denoted by ±� = �­�, 0�. The following conditions �²�� and �²�� must 

be met to guarantee a local asymptotic stability: 

�²�� for 
;¬;A = ��­�, 0�, ­�  is globally asymptotically stable 

(g.a.s), °�­, ®� = �® − °�­, ®�, ²�where°�­, ®� ≥ 0 for �­, ®�9³                                     (32) 

Where � = �́°�­�, 0�  is an U -matrix (the off-diagonal 

elements of � are non-negative) and ³ is the region where the 

model is practically possible. Then the following lemma holds: 

Lemma 3 

The fixed point ±� = �­�, 0� is globally asymptotic stable 

(g.a.s) equilibrium of system (8)-(12) provided that gv < 1 

(l.a.s) and that the assumptions �²�� and �²�� are satisfied. 

We state the following theorem: 

Theorem 1 

Suppose gv < 1.  The disease free equilibrium �� is 

globally asymptotically stable. 

Proof: 

The system equation (8)-(12) can be expressed in the form 

of equation (16) and thus we get 

X=(s, r), Z=(e, i), 

� = 1−�� + \ + �� �D∗� −�� + \ + ��2 

° = 1−�� + \ + �� �D� −�� + \ + ��2 

We need to show that �²�� holds in the system equation (8) 

- (12). 

°�­, ®� = �® − °�­, ®�, ⇒ °�­, ®� = �® − °�­, ®� 

° = 1−�� + \ + �� �D∗� −�� + \ + ��2 

njk o − 1−�� + \ + �� �D� −�� + \ + ��2 njk o 
= n0 ��D∗ − D�0 0 o njk o 

= n��D∗ − D�k0 o 
Since D∗ ≥ D  then Ĝ ≥ 0  therefore �²��  and �²��  are satisfied. Hence the disease free equilibrium point is globally 

asymptotically stable. 

4. Results 

4.1. Application of Adomian Decomposition Method to the Model Equations of Edward et al. (2014) 

The model (3.18) – (3.22) as shown below: $D$� = �1 − ��� + �1 − 	�\ + �1 − ���i − ���k + 
� + \ + ��D 

$i$� = �� + 	\ + 
�D − C�1 − ��� + �
� + \ + �Ei 
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$j$� = ��kD − �� + \ + ��j 

$k$� = �j − �� + \ + ��k 
;w;A = �k + �
�i − �\ + ��l will be considered in finding the solution of the system of the model equations using ADM. 

To apply the Adomian Decomposition Method to the equations above, we will find the canonical transformation of each 

equation. The equivalent canonical transform of this system gives 

D��� = D�0� + �1 − ���� + �1 − 	�\� + �1 − ��� Z iA� $� − �� Z Dk$�A� − �
� + \ + �� Z D$� A�             (33) 

i��� = i�0� + ��� + 	\� + 
� Z DA� $� − C�1 − ��� + �
� + \ + �E Z iA� $�                      (34) 

j��� = j�0� + �� Z DkA� $� − �� + \ + �� Z jA� $�                                               (35) 

k��� = k�0� + � Z jA� $� − �� + \ + �� Z kA� $�                                                  (36) 

l��� = l�0� + � Z kA� $� + �
� Z iA� $� − �\ + �� Z lA� $�                                          (37) 

In Adomian Decomposition Method, the equations above are considered to be the sum of the following series: D = ∑ D� ,���� i = ∑ i� ,���� j = ∑ j�,���� k = ∑ k�,���� l = ∑ l�����                                      (38) 

Then we approximate the nonlinear terms in the system as shown below Dk = ∑ ���D�, … , D� , k�, … , k������                                                           (39) 

where 

�� = ��! n;SC∑ ]O{O·O¸¤ E�∑ dO{O·O¸¤ �;{S o{��                                                         (40) 

The nonlinear function�� is called the Adomian polynomial. Substituting we get: 

� D�
�

��� = D�0� + �1 − ���� + �1 − 	�\� + �1 − ��� B � i�
�

���
A

� $� −  �� B � ��
�

���
A

� − �
� + \ + �� B � D�
�

���
A

� $� 

� i�
�

��� = i�0� + ��� + 	\� + 
� B � D�
�

���
A

� $� − C�1 − ��� + �
� + \ + �E B � i�
�

���
A

� $� 

� j�
�

��� = j�0� + �� B � ��
�

���
A

� $� − �� + \ + �� B � j�
�

���
A

� $� � k�
�

��� = k�0� + � B � j�
�

���
A

� $� − �� + \ + �� B � k�
�

���
A

� $� 

� l�
�

��� = l�0� + � B � k�
�

���
A

� $� + �
� B � i�
�

���
A

� $� − �\ + �� B � l�
�

���
A

� $� 

From the equation above, we define the following scheme: D� = D�0� + �1 − ���� + �1 − 	�\�, i� = i�0� + �� + 	\�, j� = j�0�k� = k�0�l� = l�0� and                                                                    (41) 

D�7� = �1 − ��� Z i�A� $� − �� Z ��A� − �
� + \ + �� Z D�A� $�                                            (42) 

i�7� = 
� Z D�A� $� − C�1 − ��� + �
� + \ + �E Z i�    A�                                               (43) 

j�7� = �� Z ��A� $� − �� + \ + �� Z j�A� $�                                                          (44) 
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k�7� = � Z j�A� $� − �� + \ + �� Z k�A� $�                                                             (45) 

l�7� = � Z k�A� $� + �
� Z i�A� $� − �\ + �� Z l�A� $�                                                     (46) 

we generate the Adomian polynomials as follows: 

�� = ��! n ;S;{S �∑ DL�L�L�� ��∑ kL�L�L�� �o{��                                                                (47) 

at" = 0, �� = D�k� " = 1, 
�� = $$� �D� + D����k� + k��� 

�� = D��k� + k�� + k��D� + D��� = D�k� + D�k� " = 2, 
�� = 12 $$� [�D� + 2D����k� + k����k� + 2k����D� + D���] 

�� = D�k� + D�k� + D�k� " = 3, 
�/ = 13 $$� �D� + 3D/���k� + k��� + �k� + 2k����D� + 2D��� + �k� + 3k/���D� + D��� 

�/ = D/k�+D�k� + D�k� + D�k/. �4 = D4k�+D/k� + D�k� + D�k/+D�k4. 

The first Adomian Polynomials are �� = D�k �� = D�k� + D�k� �� = D�k� + D�k� + D�k� �/ = D/k�+D�k� + D�k� + D�k/ �4 = D4k�+D/k� + D�k� + D�k/+D�k4 �¹ = D¹k�+D4k� + D/k� + D�k/+D�k4 + D�k¹ �K = DKk�+D¹k� + D4k� + D/k/ + D�k� + D�k/+D�kK 

Now we can go ahead and solve for the system of the model equations 

(8) – (12) as shown below. 

Computation for º-Series 

Consider 

D�7� = �1 − ��� B i�A
� $� − �� B DkA

� − �
� + \ + �� B D�A
� $� 

at" = 0, 
D� = �1 − ��� B i�A

� $� − �� B ��A
� − �
� + \ + �� B D�A

� $� 

D� = ��1 − ���i� − ���D�k� + 
� + \ + ���� 
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= �1 � ���i�� � ��i�� � �
� * \ * ��D�� 

At " � 1, 

D� � �1 � ��� B i�
A

�
$� � �� B ��

A

�
$� � �
� * \ * �� B D�

A

�
$� 

D� � �1 � ��� B »
�D� � C�1 � ��� * �
� * \ * �Ei�¼�
A

�
$� � �� B �D�k�*D�k��

A

�
$� � �
� * \ * �� B D�

A

�
$� 

The result is gotten by substituting the values ofD�,��, i� 

in the equation above and solving. 

Therefore 

� D� � D� * D� * D� * D/ * P
�

���
 

is the approximate solution for D. 

Approximate Solution for `��� 

D��� � � D�
�

���
 

D��� � D� * D� * D� * D/ * P 

Thus, the summation of this series gives us an approximate 

solution. 

This is therefore the third order approximate solution 

for D���. This can be obtained to the nth term but for the 

purpose of this research, we have to truncate at the third term. 

The same will apply to the other computations 

4.2. Computing Approximate Solutions by Introducing 

Parameter Values 

In this section, we will make use of estimated parameter 

values to derive approximate solutions. To enhance our work, 

we use tables for various cases. Note that the values used in 

this work are the estimated values from Edward et al. (2014). 

These parameters are clearly shown for various cases of � , 

� and 
�. 

Recall that �  is the proportions of newborns that are 

vaccinated while 
�  and 
�  are the fraction of individuals 

who receive a first dose vaccine and the rate at which an 

individual receives a second dose vaccine respectively. 

[ � 0, signifies no fraction of the population of new born 

was vaccinated. [ � 0.5 shows half of the population of new 

born was vaccinated while [ � 1  shows that all the 

population of new born were vaccinated. This also explains 

the significance of each fraction for 
�and 
� as the case may 

be. 

4.3. Graphical Representation of ADM, RKF45 and Exact 

Solution from the Various Tables 

We shall consider the graphical behavior of ADM, RKF45 

and the exact solution for various cases of � , 
� 

and 
� respectively to enable us analyze the effect of the 

vaccination introduced into the system both at birth and 

adulthood. 

First and second dose vaccination was introduced at adult 

stage to ascertain the behavior of the disease after close 

monitoring. 

  
                                                                            a                                                                                                   b 

Figure 2. (a, b): Comparison plot of Susceptible Population in an Outbreak varing the proportion of adults who take dose 2 (
�=0, 1.0) considering Table 11 

and13 using ADM, RKF45 Method. 
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                                                                            a                                                                                                   b                                                                          c 

Figure 3. (a, b, c): Comparison plot of Recovery Population in an Outbreak varing the proportion of adults who take dose 1 (
�=0, 0.5, 1.0) considering Table 

8, 9 and 10 using ADM, RKF45 Method. 

   
                                                                            a                                                                                                   b                                                                          c 

Figure 4. (a, b, c): Comparison plot of Infective Population in an Outbreak varing the proportion of adults who take dose 1 (
�=0, 0.5, 1.0) considering Table 

8, 9 and 10 using using ADM, RKF45 Method. 

  
                                                                            a                                                                                                   b 

Figure 5. Comparison plot of Recovery Population in an Outbreak varing the proportion of adults who take dose 2 (
�=0, 1.0) considering Table 11, and 13 
using ADM, RKF45 Method. 

These graphs will also help us see the efficacy of the ADM 

in comparison to the conventional Rungekutta Method for 

future application in solving nonlinear equations. 
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5. Discussion 

5.1. Discussion on Proportion of Individuals Who Received 

First Dose of Vaccine 

The first dose of vaccination yielded significant effect as 

the number of susceptible and infective drop immediately the 

whole population of adults were given the first dose (in the 

case of 
� = 1). It can be seen from Figure 4 that increase in 

vaccination proportion of susceptible adults, tend to reduce 

the proportion of susceptible and as a result reduction in 

number of sick humans and hence Chicken Pox diminishes. 

This decline of the proportion of susceptible and infective 

changed as the first dose began to wane. We had the entire 

population becoming infected leading to a resurface of the 

disease. This trend if not controlled on time could lead to 

more outbreak of Chicken Pox that may become endemic. 

This call for the introduction of the second dose vaccination 
�. 
5.2. Discussion on Rate at Which Individuals Received the 

Second Dose of Vaccine 

It can be seen from Figure 5 that the more increase in the 

coverage of dose two among the humans, the more the 

decrease in the proportion of susceptible but in a small 

amount. This is due to the fact that susceptible humans are 

not directly related to individual who receive second dose. 

Susceptible humans will receive dose two only if they had 

already received dose one otherwise they do not receive dose 

two. Such a condition is what made a slight decrease in 

susceptible population even when more individuals are 

vaccinated in dose two because such people might be 

newborns or recruited hence not or less affecting population 

of susceptible. So in general this practice has less but 

significant impact in reducing the disease. 

5.3. Discussion on Recovery Rate of Population when 

Vaccinated 

It can be seen from Figure 6 that the number of recovered 

individuals increases with increase in the vaccination 

coverage of newborns. It can also be seen that when no 

newborns are vaccinated, the proportion of recovered 

population decline after a slight increase which might be due 

to natural immunity of the sick ones. This decline in the 

proportion of recovery is Perhaps due to loss of immunity 

which wanes with time. In the Figure 6, the graph with the 

grey line shows that with a 50% of newborns being 

vaccinated, there is a significant increase in the population of 

recovered humans. However as time increases we note a 

slight decline in the recovered humans, this agrees with our 

intuition that the first vaccine wanes with time and this calls 

for the next boosting up vaccine coverage. The top most 

graph, with the light shade of black of Figure 4 shows the 

maximum proportion of recovered humans when the 

vaccination coverage is 100%. The graph is seen increasing 

and remains almost constant after reaching the maximum 

point. This suggests that when vaccination coverage is 

optimal then the disease can be eradicated from the 

community. 

5.4. Comparison Between ADM and RKF45 Solution 

The Adomian decomposition method determine solutions 

in a close form by using initial conditions. These solutions 

are continuous while Runge-Kutta method gave us the 

solutions at fixed points. This feature of the ADM makes it 

more efficient in solving various problems. 

The Adomian decomposition method also avoid the 

difficulties and massive computational work that we 

encountered in the conventional method where more tedious 

computations are involved. 

Both Method revealed that the rate ofdecline of the 

recovery population is faster for the nonvaccinated 

population. The entire graphical representation for both 

methods shows that the convergence of the Adomian 

decomposition method (ADM) is faster than the Runge-

Kutta-Fehlberg method (RKF45). This confirmed and proved 

the argument by Babolianet al. (2004) of the Adomian 

decomposition method being a method that provides solution 

in a rapidly convergent series with components that can be 

elegantly computed. 

6. Conclusion and Recommendations 

6.1. Conclusion 

We have reviewed the VZV model of Edward et al. (2014), 

and also applied the ADM to it. We have also computed 

approximate solutions of this model using the ADM. The 

results of this method are compared to that of Fourth-Fifth-

order Runge-Kutta-Fehlberg method (RKF45) in table 5 

which affirms the reliability and accuracy of the Adomian 

decomposition method. It also revealed its reduction in the 

size of computation domain. This gives the method a wider 

applicability. The Adomian decomposition method also 

shows a high degree of accuracy, and in most cases, accurate 

with lower step sizes. 

Numerical solutions of the model have shown that the 

combination of vaccination and treatment is the most 

effective way to combat the epidemiology of VZV in the 

community. 

6.2. Recommendation 

Based on the findings in the research study, to minimize 

VZV transmission in a population, this study recommends 

that, the combination of vaccination and treatment should be 

implemented. This is due to the fact that, vaccination reduces 

the likelihood of an individual to be infected while treatment 

of latently infected people reduces the progression rate to 

infectious stage and also, treatment of infectious people will 

stop them from transmitting the disease. 

Hence, we equally recommend that further research should 

be made on the application of the Adomian decomposition 

method to the system of VZV model with the combination of 

vaccination and treatment as the strategy. 
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