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Abstract: We present a newly developed Replica Exchange algorithm using q -Gaussian Swarm Quantum Particle 

Optimization (REX@q-GSQPO) method for solving the problem of finding the global optimum. The basis of the algorithm is 

to run multiple copies of independent swarms at different values of q parameter. Based on an energy criterion, chosen to satisfy 

the detailed balance, we are swapping the particle coordinates of neighboring swarms at regular iteration intervals. The swarm 

replicas with high q values are characterized by high diversity of particles allowing escaping local minima faster, while the low 

q replicas, characterized by low diversity of particles, are used to sample more efficiently the local basins. We compared the 

new algorithm with the standard Gaussian Swarm Quantum Particle Optimization (GSQPO) and q-Gaussian Swarm Quantum 

Particle Optimization (q-GSQPO) algorithms, and found that the new algorithm is more robust in terms of the number of 

fitness function calls, and more efficient in terms of ability to convergence faster to the global minimum. In additional, we also 

provide a method for optimally allocating the swarm replicas among different q values. Our algorithm is tested for three 

benchmark functions, which are known to be multimodal problems, at different dimensionalities. 
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1. Introduction 

The problem of finding the global optimum in a multimodal 

and multidimensional space can be extremely difficult since 

the number of stable optima increases as the search space 

increases, for instance, the search for the global minimum 

energy in a surface energy landscape of the atomic structures. 

[1, 2] Swarm Particle Optimization (SPO) is a population-

based optimization technique, similar to evolutionary 

algorithms. [3] Kennedy & Eberhart introduced the method to 

solve the problem of finding the global optimum of a d 

dimensional function. [4] The SPO method is based on the 

swarm intelligence algorithms, which concern with the design 

of intelligent multi-agent systems based on the collective 

behavior of insects (ants, termites, bees, and wasps) or other 

animal societies (flocks of birds and schools of fish). [4] 

In SPO method, the swarm particles, representing possible 

solutions, search the phase space, defined by their velocities 

and coordinates, which are updated based on the particle’s own 

experience and experience of the particle’s neighbors or the 

experience of the whole swarm. The method has already been 

used to solve many optimization problems, [5] with some 

interests also in other fields, such as statistical mechanics. [6] 

Since the standard SPO algorithm has a low convergence 

rate, [7, 8] several improvements and variants of the SPO 

algorithm have been proposed. [9, 10, 11, 12, 13] The new 

variant of the SPO method, the so-called Swarm Quantum 

Particle Optimization (SQPO), has been considered as an 

improvement versus the classical SPO method, since there is 

a nonzero probability to escape the local minima even for 

very high barriers. [14] Efforts have been made to improve 

the SQPO method. [15, 16, 17, 18, 19, 20, 21, 22] These 

improvements focus primarily on parameter selection 

criteria, [18, 22] and maintaining diversity of the swarm. [19, 

20, 21] A detailed review of all these methods is described in 

Ref. [23] Use of different forms of attractive potential-energy 

surfaces for SQPO algorithm is also considered for 

improvement of the algorithm. [14] Different potentials yield 

different probability distributions, which describe the 

probability of finding the swarm quantum-like particle at a 

certain position in the phase space. [14] 

In our previous study [24], we showed that the use of q-

Gaussian probability distribution of swarm particles (q-
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GSQPO algorithm) improved significantly the efficiency of 

searching for the global minimum when compared with 

Gaussian probability distribution of swarm particles (GSQPO 

algorithm). The q-Gaussian distribution is characterized by 

long tails, which allow reaching long distant regions in phase 

space by increasing the diversity of the swarm particles. [24] 

The application of the probability distributions with heavy 

tails is found to be useful in allowing the system escaping 

from local optima in multimodal problems also in other areas 

[25, 26, 27, 28, 29], since the nonzero occupations taken 

from long tails of the distribution implies jumps of scale-free 

sizes. The q - Gaussian distribution is also known as Tsallis 

distribution [30] in statistical mechanics, and it is known to 

produce a smoothed potential energy surface. [31] 

The problem facing GSQPO algorithm is the premature 

convergence to a local minima due to low diversity of the 

swarm particles. [32] This problem of GSQPO algorithm can 

efficiently be solved by using the q-GSQPO algorithm [24], 

which increases the diversity between the swarm particles, 

and hence allowing the swarm to explore long distant regions 

of the searching space. 

In this paper we will explore the use of the popular replica 

exchange method [33, 34], which is known for overcoming 

the problem of the sampling convergence in dynamical 

systems. In this method several copies of the system (so-

called replicas) are run independently at different values of 

some internal parameter of the system (e.g., temperature [34, 

35, 36], strength of interaction [37], and q parameter when 

combined with Tsallis statistics [27, 38]). At regular time 

intervals the coordinates of the replicas are swapped based on 

an energy criterion that satisfies the detailed balance. The 

higher parameter value replicas are used to enhance the 

barrier crossings and the low parameter value replicas are 

used to sample the local basins. 

Similarly, in this study, we will create M copies of swarm 

particles (replicas) and run them independently at different 

values of q, where the lowest level replica is running at q=1. 

Then, in analogy with standard replica exchange methods, at 

regular iteration intervals, we swap the particles of swarm 

replicas between two neighboring values of q based on an 

energy criterion, which is explained in details in the next section. 

To increase the efficiency of the algorithm, we also discuss the 

optimization of the round-trip time of the swarm replicas from 

the lowest to the highest value of q and vice-versa. To test our 

algorithm, we studied three benchmark functions, namely the 

Ackley [39], Griewank [40] and Rastrigin [41] functions at 

different dimensions, d =5, 10, 20 and 50. 

2. Materials and Methods 

2.1. Theoretical Basics of Generalized q-GSQPO Algorithm 

The swarm quantum particle optimization algorithm 

determines the probability of finding the swarm particle at 

the position X
�

at any time t. [14] Details of the derivation of 

GSQPO and q-GSQPO algorithms can be found in our 

previous work. [24] Here, we re-write the equations, 

proposed to describe the q-GSQPO algorithm in a 

generalized form as [24]: 
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where ( )q

tγ  has to be less than 1.7 in order to guarantee the 

convergence of the particles, [24] and it is chosen here to 

have a simplified sinusoidal expression as 

( ) ( )1 sin
q

t g A tγ ω= +                      (2) 

with g being a scaling constant fixed in this study to 0.5, 

0.1ω = , and A was varying from 0.01 to 1. BestM
�

, also called 

Mainstream Thought or Mean Best of the population [22], 

defines the mean of the LBest

iX
�

 best positions of all particles 

(i=1, 2, …, N) in each dimension and it is given by [22] 
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Here, Fq(u) is a random number following q- Gaussian 

distribution if 1q > and Gaussian distribution if q=1. 

2.2. Replica Exchange Method 

In the Replica Exchange q-GSQPO (REX@q-GSQPO) 

algorithm, we replicate M copies of the swarm particles 

among different values of q: q1, q2,…, qM. A geometrical 

distribution in the interval [1, qmax) was used to select the 

values of q, where qmax is a maximum value of q, which is 

chosen here to be between 2 and 3. In order to control the 

acceptance probability of swapping swarm particles between 

two neighboring q, we introduce a “temperature” parameter 

at each level: 

1
i

ikq
α =                                   (4) 

where i=1,2,…,M. k is considered an adjustable parameter, 

which will be optimized to minimize the time of a round trip 

from the lowest to the highest value of q and vice-versa. At 

regular iteration steps we swap the configurations of swarm 

particles between two randomly chosen neighboring q, let 

say i and j, such that the detailed balance is satisfied: 

( ) ( )i j j ii q j q
P T P T→ →=                  (5) 

where i jT →  and j iT → are the transition probabilities from the 

swarm replica i to j and j to i, respectively. We will assume 

that the probability of finding the swarm i at a value q is 

proportional to the Boltzmann factor as: 

( ) ( )exp i ii q
P Eα∝ −                     (6) 
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where Ei is the minimum of the best local scoring value of 

the swarm particles in replica i at a given iteration step. 

Choosing Ei as the minimum of the best local scoring value is 

optional. Other choices may also be allowed, for instance, the 

mean best local scoring value or the best global scoring value 

of the replica. It is important that the choice should yield a 

high value of the diversity of swarm particles on each of 

replica in order to allow the swarm particles exploring more 

efficiently the searching space. This is in particular important 

for low q replicas, which are used to explore more efficiently 

the local basins. 

Then, the probability of accepting an attempting swap 

between swarm replicas i and j is given by: 

( ) ( ) ( )( ){ }min 1,exp
i j

acc i j j i

j i

T
P i j E E

T
α α→

→

↔ = = − − −  (7) 

The algorithm stops for searching the phase space when at 

least one of the swarm replicas converges to the optimal 

solution. In general, the global minimum of the problem is 

not known; therefore the searching does not have to stop 

when one of the replicas converges. For instance, one can 

restart the replica that has converged randomly from a new 

position. However, we found, for the problems under 

investigation, stopping the phase space search after the 

observation of the first replica converging to some optimal 

solution is one efficient way for determining criteria for 

stopping the algorithm. 

3. Results and Discussions 

We considered the motion in three d-dimensional potential 

functions determined mathematically as in Table 1. 

Table 1. The three benchmark functions which are used in this study. 

Benchmark Function Name and Reference 
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In order to estimate the efficiency of the algorithm, we 

calculated the frequencies of visiting each q from each 

swarm replica and compared the observed frequencies for 

each swarm with expected frequencies, which depend only 

on the number of replicas. We used the 
2χ test with a 

confidence level of 95 % to investigate the goodness of the 

comparison. [42] In this study we chose a geometrical 

distribution of q among 5 or 6 replicas. The replicated 

exchange simulations were stopped when the first global best 

score of the swarms was less than some minimum value, 

chosen here to be 10-5. As an estimation of the computational 

robustness of the method we used the number of iterations 

needed until the convergence was reached. 

In addition, we also measured the highest and the lowest 

values of the diversity, which is given by [24] 

1

1
( ) ( )Best

N
LBest

i

i

X t M t
N =

∆ = −∑
� �

            (8) 

3.1. Adjusting Temperature Parameter k 

Value of k will influence on the average allocation of the 

swarm replicas over the q space ladder, since the overlapping 

of probability distributions between two neighboring q 

values, and hence the acceptance probability of swapping the 

swarm replicas, depend on k. Due to the barriers that exist in 

the q space, the swarms at the low q values may not be able 

to visit the upper values and vice-versa. In order to adjust the 

value of k we did several test runs, and compared the 

computed frequencies of observing the swarms at a value of 

q with the expected frequencies assuming equal probability 

of finding a swarm at each value of q. 

In Figure 1 we show the ratio of the computed 
2χ with 

critical value of 
2

cχ at confidence level of 95 % for the three 

benchmark functions at different values of parameter k. The 

dimension the searching space was fixed to d=10. For
2 2/ 1cχ χ < , the probability distribution of swarm replicas in 

the q space is considered to be uniform, at a confidence level 

of 95 %, otherwise there is not enough evidence to say that 

this distribution is uniform. We found that for values of 

1k < , depending also on the benchmark function, there is 

enough evidence to say at the confidence level of 95 %, that 

the distribution of the swarm replicas in the q space is 

uniform (see Figure 1). 
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Figure 1. The ratio between the calculated and critical value of 2χ at the confidence level of 95 % for different values of the parameter k. (A) For Ackley 

function; (B) Griewank function and (C) Rastrigin function. Dimensionality of the space was fixed to d=10, and q was chosen from a geometrical distribution 

in the range between one and two. 

3.2. Robustness 

In order to examine the robustness of the REX@q-GSQPO 

algorithm in comparison with other algorithms such as 

GSQPO and q-GSQPO in terms of function calls, we studied 

the number of iterations needed for each algorithm until the 

convergence was reached for a fixed value of 0.001k < . For 

the REX@q-GSQPO algorithm we replicated five swarms 

among five values of q in the range from 1 to 2 chosen from a 

geometrical distribution. The swapping of the swarm particle 

configurations between two neighboring values of q was 

performed at each iteration step. For the q-GSQPO algorithm 

we chose these values 1.231,1.414,1.625,1.866, 2.0q = . The 

results of the number of iterations for the GSQPO (q=1) and q-

GSQPO algorithms were averaged over different values of 

[ ]0.01,1A ∈ . 

Our results are presented graphically in Figure 2 for the 

three benchmark functions versus the search space dimension 

d (Ackley (A), Griewank (B) and Rastrigin (C)): in gray the 

average values for GSQPO and q-GSQPO algorithms, and in 

black for REX@q-GSQPO algorithm. Our data indicate that 

REX@q-GSQPO algorithm is more robust than GSQPO and 

q-GSQPO algorithms since the number of iterations needed 

for reaching the convergence is much smaller compare to 

GSQPO and q-GSQPO algorithms, in particular for high 

dimensionality which is of interest for many applications. 

 

Figure 2. The number of iterations as a function of the dimensionality of the problem d=5, 10, 20, 50 for REX@q-GSQPO (black line) and combined GSQPO 

and q-GSQPO (gray line) algorithms. (A) Ackley function. (B) Griewank function. (C) Rastrigin function. 
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3.3. Convergence 

To examine the efficiency of the method on finding the 

global minimum, we investigated the average best score and 

compared the three algorithms presented here. We used the 

same setup as described above. In Figure 3 we are plotting 

the average best score for the REX@q-GSQPO algorithm (in 

black) and an average value for the GSQPO (q=1) and q-

GSQPO ( 1.231,1.414,1.625,1.866,2.0q = ) algorithms (in 

gray). Results are presented for the three benchmark 

functions and different dimensions of the searching space d. 

It can be seen that REX@q-GSQPO algorithm provides 

much smaller best scoring values compare to standard 

GSQPO and q-GSQPO algorithms. In addition, for the 

REX@q-GSQPO algorithm, in contrast to GSQPO and q-

GSQPO algorithms, the convergence to the global minimum 

was achieved for all benchmark functions and for all 

dimensions considered here (see Figure 3). 

 

Figure 3. The average best score value as a function of the dimensionality of the problem d=5, 10, 20, 50 for REX@q-GSQPO (black line) and combined 

GSQPO and q-GSQPO (gray line) algorithms. (A) Ackley function. (B) Griewank function. (C) Rastrigin function. 

4. Conclusions 

In this paper we presented a new algorithm for 

determining the global minimum of a multimodal problem 

using the replica exchange approach of the swarm quantum 

particles over the q searching space. The algorithm was 

compared with standard Gaussian swarm quantum particles 

and q-Gaussian swarm quantum particles algorithms in terms 

of the efficiency of convergence to the global minimum and 

computational robustness. 

It was found the new algorithm, REX@q-GSQPO, 

outperforms the standard algorithms GSQPO and q-GSQPO 

in both, the efficiency of the convergence and the 

computational robustness. In addition, we also examine and 

showed how to optimize the probability distribution among q 

values in order to minimize the round-trip of the swarm 

replicas between the two extreme q values. This was an 

important step to ensure the ergodicity in the q space. 

In the REX@q-GSQPO algorithm, the high q values 

swarm replicas, which are characterized by high diversity 

between the particles, can be used to explore distant regions 

in the sampling space, while the low q values, which are 

characterized by low diversity between the particles, can be 

used to sample efficiently the local basins. 

We envision that the approach proposed in this study can 

be applied to other examples, as well, of swarm formation 

during collective migration including collective behaviour of 

biomolecular dynamics [43] by improving searching 

mechanism as proposed very recently [44] using the principle 

component analysis. 
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