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Abstract: Weibull theory works well for brittle materials. However, its application to composites is not very clear. The 

present study is a comparative parametric evaluation of flexural and tensile strength ratios, and fiber bundle stresses of axial 

composites with brittle fiber bundles. A composite based model that utilizes Weibull’s theory is developed and compared with 

derived Weibull’s theory for brittle fiber bundles. It was found that the predicted strength ratios and the stresses are of similar 

magnitude to that of Weibull’s and the model converges to unity for composite materials with little or no variability. 
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1. Introduction 

Carbon composites are used in many applications such as 

in beam design, aircraft, helicopter rotor blades and fishing 

rods [1, 2]. They have the ability to resist high amount of 

damage before failure [3]. According to Tsai [4] 

unidirectional composites with higher stiffness have lower 

strength in tension than bending and the stiffness is 

controlled by stress-strain relationship. Tension, flexure, and 

combination of both are of considerable practical interest in 

predicting the tensile and flexural strength of composites. 

Whitney and Knight [5] calculated strength ratio within the 

range of 1.03 to 1.33 for tension and bending tests. Bullock 

[6] performed a three point test and obtained ratios within 

1.35 to 1.50. As per Weibull statistical strength theory, 

strength is higher in bending than tension [7]. This can be 

attributed to the fact that in a bending test, a smaller value of 

material is subjected to stress as oppose to tension test. The 

probability of critical defect is lower and there-fore the 

strength is higher. The probability P of two parameter 

Weibull model is provided by: 

P = e���� �
�	
�	
��

                                (1) 

Where P, S, So, w, e and dv are respectively survival 

probability, strength, specific strength, Weibull modulus, 

exponent and specific volume under stress [6]. Weibull 

theory works well for brittle materials, but its application to 

composite materials is less clear.  

Recently [8] research work was carried out to evaluate the 

tensile, and flexural strength of hybrid composites using 

experimental work and Finite Element Analysis (FEM). The 

outcome indicated that the hybrid composites improved 

strength.  

Development and characterization [9] of natural fiber 

based composites consisting of jute fiber as reinforcement 

and hybrid resin consisting of general purpose resin and 

cashew nut shell resin as matrix material. The tensile strength 

was studied using experiment-al and numerical analysis. 

Tensile behavior of environment friendly jute epoxy 

laminated composite was experimentally studied [10]. It was 

found that the tensile properties of the developed composites 

were strongly dependent on the tensile strength of jute fibers. 

In addition, jute fibers are very much defect sensitive. 

Unidirectional composites [11] were fabrica-fabricated in 

laboratory using compression molding. It was found that by 

increasing the molding temperature, the achievement ratio of 

tensile strength was decreased due to deterioration of jute 

fiber. 

Strength prediction of composite components subjected to 
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tension, flexure, or a combination of both are of considerable 

practical interest. However, most of the work has been either 

experimental, numerical or a combination of both. These tend 

to be expensive. Therefore, 

this study makes a basic first attempt to parametrically 

study the flexural and tensile strength ratios, and bundle 

stresses of axial composites with brittle fiber bundles. 

2. Description of Model 

The individual elements are assumed to split under tension 

and act independently. Their strength is assumed to follow 

Weibull distribution. All the symbols used in the model are 

listed in the notation section. 

3. Derivation of Proposed Model 

Survival probability of fiber under strain is: 

P = e[��(� ��)]	�⁄ 	                             (2) 

Consider tension in the fiber direction of a unidirectional 

composite. It is assumed that tensile strain is responsible for 

failure in a bundle that carries the maximum amount of 

stress. The nominal stress of bundle is equivalent to 

individual element stress multiplied by fraction of remaining 

fibers. This provides: 

S = �	�	�	                                     (3) 

Where, E is equal for all fibers. Substituting values from 

equation (2) into equation (3) provides: 

S = ε	E	e[��(� �	)]⁄ �                             (4) 

Maximum load carried by bundle is known as failure 

stress. Up to failure stress, a bundle can support a load while 

it suddenly fails in brittle materials. The maximum failure 

strain in tension of a bundle can be obtained by first 

derivative of nominal stress with respect to strain and 

equating it to zero. This provides: 

dS dε⁄ = ε	E	e[��(� �	)]	�⁄ 	dε                      (5) 

Taking the derivative of equation (5) and equating it to 

zero yields: 

Ee�(�	�/��)	�	–wE (L ε/ε0) 
w e(��	�/��)	�	=0          (6) 

Further simplifying provides,  

 Ee�(�	ε ε	)	�⁄ ![1 − w(L	 ε ε&)�⁄ ] = 0             (7) 

But E is constant for model and () = 1 So,  Ee�(�	ε ε	)	�⁄ ! 
cannot be zero. Therefore, 

[1 − w(L ε ε&)�] = 0⁄                             (8) 

1 = w(L ε ε&)�⁄                                  (9) 

1/w = (L ε ε&)�⁄  

Therefore maximum tensile strain is: 

ε* = ε&(L	w)�+ �⁄ 	                              (10) 

In the case of bending theory, the failure is taken as the 

value of strain that correspond to maximum moment. The 

flexural capacity is found by integrating the product of ε, E, 

εt, and n with respect to dn. Equation obtained from this 

assumption is: 

F- = b� ε 	Eε*	n	dn                           (11) 

Using strain profile we obtain 

ε = (ε* − ε-) n t⁄ 	                           (12) 

Substituting the values of εt and ε from equation (10) and 

(12) respectively into equation (11) provides: 

F- = b� ε 	E	ε&(L	w)�+ �⁄ 	n	dn                (13) 

For comparison of tensile and bending failure strain, we 

can simplify equation (13) by assuming width, thickness, 

Young’s modulus, and length as a unit. This yield, 

F- = � ε1 (ε* − ε-)(w)�+ �⁄ 	n2	dn             (14) 

Assuming that failure only occurs in tension part and 

specific strain remains constant for bundle. Integrating the 

whole bundle and taking the limits of integration yields: 

F- = � (w)�+ �⁄ (ε*
1
�3

− ε-)n2	dn + � (w)�+ �⁄ (�5
1 ε* − ε-)n2	dn                                           (15) 

F- = (w)�+ �⁄ (ε* − ε-) � n21
�3

	dn + (w)�+ �⁄ 	(ε* − ε-) � n2�5
1 	dn                                           (16) 

F- = (w)�+ �⁄ (ε* − ε-)[n6 3]�3	
18 + (w)�+ �⁄ 	(ε* − ε-) � n2�5

1 	dn                                           (17) 

Failure occurs in tension part. For compression purposes 

the value of strain in compression part can be taken as one. 

Therefore, 

(9)�+ :⁄ (�; − �<) = 1                         (18) 

F- = −ε-
6 3⁄ + (w)�+ �⁄ (ε* − ε-) � n2	dn�5

1            (19) 

This yields as: 

F- 	= (ε* − ε-)(w)�+ �⁄ � n2dn�5
1 − ε-

6 3⁄          (20) 

Axial force Af is zero => pure bending moment. Therefore, 

A> = � ε	E	ε1(w)�+ �⁄ 	n	dn                    (21) 
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For Af we don’t need to multiply strain with neutral axis 

distance, so strain produced is (ε* 	− ε-	). Therefore,  

A> = � 	E	ε1(ε* − ε-)(w)�+ �⁄ 	n	dn                   (22) 

Limits are same as Fc, Young’s modulus, and specific 

strain are taken as one. This yields, 

A> = � (w)�+ �⁄1
�3

(ε* − ε-)n	dn +	� (w)�+ �⁄�5
1 (ε* − ε-)n	dn   (23) 

Simplifying equation (23) yields: 

A> = (ε* − ε-)(w)�+ �⁄ � n�5
1 	dn − ε-

2 2⁄ 	            (24) 

In a bundle, the tension portion is considered to have the 

same size fibers. Figure 1 shows different segments and 

strain profile. 

 

Figure 1. Segments and Strain Profile. 

A solution from equation (24) is acquired as follows: 

Initially εc value is assumed. A trial and error method is 

adopted to calculate and iterate values of εt that provides zero 

axial force from equation (24). Strain values that provide 

maximum flexural capacity are considered failure strain in 

bending. The whole problem was repeated a number of times 

with increasing values of εc and the corresponding εt at which 

the maximum flexural capacity occurred is determined. 

For values of ε* = ε-, we obtain Af as approximately zero. 

This means the system is in pure bending. Taking the ratio of 

εt and equation (10) provides:  

	@A

@�	(	:)B
C
D	
	                                    (25) 

Considering ε0 and εt as one provides:  

Bending to tension ratio = (w)
C
E                   (26) 

4. Derivation of Weibull’s Ratios for 

Brittle Fiber Bundles 

Equation (2) provides the survival probability (P) of fibers 

under strain (ε) using Weibull’s theory. Therefore, failure 

strain distribution can be (1-P). Using the survival 

probability, strength in brittle fiber bundle can be calculated. 

The average failure strain (Sf) in brittle fiber bundle is:  

S> = � εF
1 �− 
G


�
 dε                            (27) 

This implies that 

S> = ε1L�+ �⁄ Γ(1 + 1 w⁄ )                          (28)	
The average flexural stress σI in brittle fibers is: 

σI = S>E                                     (29) 

σI = E	ε1L�+ �⁄ Γ(1 + 1 w⁄ )	                  (30)	
The expression in equation (10) is the maximum failure 

strain in tension of a composite bundle. However, in terms of 

stress for a unit length the same relation holds for maximum 

failure stress in tension. Therefore, the ratio of maximum 

failure stress in bending equation (30) and tension is: 

KL
K5

= M	���BC/E	Г	(+O+/�)
��	(��)BC/E 	                  (31) 

KL
K5

= ��O+
� 
w+ �⁄ 	                          (32) 

5. Analytical Data 

Table 1 shows a comparison of bending to tension ratio of 

the developed composite model to Weibull’s ratio for brittle 

fiber bund-le using equations (26) and (32) respectively. 

Table 2 shows a comparison of average bundle stress in 

composite fibers with average bundle stress in brittle fibers. 

These stresses are obtained using equations (4) and (30) 

respectively. For comparison purposes, various parameters 

are assumed to be one.  

Table 1. Comparison of proposed model to Weibull’s. 

W Proposed Model (p) Weibull Model (WM) p/WM 

13 1.21 1.31 0.923 

18 1.15 1.24 0.927 

23 1.14 1.19 0.957 

28 1.12 1.16 0.966 

33 1.11 1.14 0.973 

38 1.09 1.12 0.973 

50 1.08 1.10 0.981 

Table 2. Comparison of Bundle stresses. 

W 
Bundle stress in composite 

fibers 

Bundle stress in a brittle 

fibers 

10 0.794 1.1 

20 0.860 1.05 

30 0.892 1.03 

40 0.911 1.025 

1000 0.99 1.00 

6. Comparison of Ratios  

The results show that the proposed model has a higher 

strength in bending than in tension. The magnitude of the 

effect seems to be decreasing for higher Weibull modulus. 



102 Mohammed Faruqi and Ankur Patel:  A Parametric Evaluation of Flexural and Tensile Strength Ratios, and Bundle   

Stresses of Axial Composites Using Weibull’s Theory 

The strength ratio for our model varies from 1.21 for W = 13 

to 1.08 for W = 50. On the other hand, Weibull model 

predicts, 1.31 and 1.10 for respective W values. The ratios 

predicted by the proposed model are a bit conservative. In 

addition, for larger values of W the model converge to 1.0. 

This is indicative of a material with very little to no variation. 

A similar trend is observed for composite and brittle bundle 

fiber stresses.  

7. Conclusions 

Weibull theory works well with brittle materials. However, 

its application to composites is not clear. 

The present study is a comparative parametric evaluation 

of flexural and tensile strength ratios, and fiber bundle 

stresses of axial composites with brittle fiber bundles. A 

composite fiber bundle model that applies Weibull theory is 

developed and compared with derived Weibull theory for 

brittle fiber bundles. 

The following limited conclusions can be obtained from 

this work: 

1. The predicted ratios and the stresses are of similar 

magnitude to that of Weibull’s; and 

2. At higher W values, the model converges to one. 

Future Work 

Good agreement is obtained between the models. 

However, more work is needed to further validate this 

approach. This may include: 

1. Experimental work on materials of different variability; 

and 

2. Comparison of experimental results with the model. 

Notations 

P Survival probability of fibers 

S Nominal bundle stress 

So Specific strength 

w Weibull modulus 

L Length of fiber 

E Young’s modulus of fiber 

ε Strain at a particular distance from neutral axis 

ε0 Specific strain 

εt Maximum tensile strain 

εc Compressive strain 

t Thickness 

Sb Strength of bundle in bending 

Fc  Flexural capacity 

n Distance from neutral axis 

Af Axial force 

St Strength of bundle in tension 

Sf Failure strain in bundle 

Г Gamma function 

b Width of bundle 

dv First derivative with respect to volume 

dS First derivative with respect to stress 

dε First derivative with respect to strain 

dn 
First derivative with respect to distance from neutral 

axis 

σb Maximum bundle stress in flexure 

σt Maximum bundle stress in tension 

p Proposed model 

W Weibull model 
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