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Abstract: Inertia constant of a rotating system describes the initial transient, frequency and rotor angle behavior of that 

system when subjected to a real power disturbance. Therefore, the inertia constant of a system can be a useful tool when 

investigating the frequency and rotor angle stability of a system. The use of the swing equation gives us a viable method for 

estimating the inertia constant, if a measurement of that can provide time stamps measurements of the frequency and power 

dynamics during a disturbance. In this project work, effect of inertia constant of synchronous generator (machine constant) on 

its frequency and rotor angle is investigated. Swing equation is used for modeling the dynamics of the system. It is then built 

and simulated using MATLAB. The analysis is done by observing how the frequency and rotor angle changes when the inertia 

constant is varied while keeping all system parameters constant. The study is extended to investigate the dynamics of such 

system with very high and those with very low inertia constant and the results show that the higher the value of the inertia 

constant, the higher the settling time and of course the maximum overshoot.  
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1. Introduction 

A Power System consists of the generating machines and 

transmission network in which the generating machine 

includes turbine, alternator and excitation system [1]. Every 

synchronous generator has rotating rotor which has some 

inertia that depends upon the stored rotating energy in the 

system. Machine inertia significantly affects the rate of rise 

and fall of system frequency. In another words, frequency of 

rotor oscillations is very much affected by the size of the 

generator and its inertia. This inertia can be provided by 

flywheels, batteries with fast inverters, and other energy 

storage devices [2 - 4]. 

Inertia is an inherent property of synchronous generators, 

and frequency dynamics of the system within the first 

seconds after a disturbance is governed by inertial response 

of the rotating machines. For reliable operation of a power 

system, the operating frequency should be kept close to its 

nominal value. To ensure this, generated power should match 

power demanded by the load devices. Any disturbance in the 

grid leads to an imbalance between produced and consumed 

electrical power. Before the activation of primary frequency 

control, this imbalance is compensated by the kinetic energy 

released to the grid (or drawn from it) by rotating masses. In 

case of a severe disturbance, if the power mismatch is not 

eliminated sufficiently fast by the protection systems, 

generators of the system might lose synchronism with the 

rest of the system. The loss of stability may lead to major 

consequences, such as damage of equipment and widespread 

outages. Inertia of the machines defines the rate of their 

acceleration or deceleration and, thus, the rate of the 

frequency deviation. High level of rotational inertia in the 

system prevents the system frequency from changing too fast 

after a disturbance [5, 6]. 

Inertia constant of a system is likely to become an 

increasingly dynamic property in the future. This is because 

the available generation will be gradually replaced from the 

traditional generation systems, made up of bulky thermal 

and hydro units to a more diverse and intermittent 

generation with low or even zero inertia [7]. The 

progressively dynamic nature of the inertia constant will 

mean that the frequency response of a system to any given 
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perturbation will become less predictable. This is an issue 

as the frequency stability for a particular set of operating 

limits [8].  

Moreover, it is worth mentioning that high penetration of 

converter-connected renewable generation and consumer 

devices lead to reduction of rotational inertia in modern 

power systems. Low level of inertia in a power system 

affects system operation and its stability margin. Inertial 

response, inherent to rotating machines, deteriorates with 

the rise of inverter-connected RES. Since inertia level 

defines the rate of frequency deviation in the first seconds 

after a disturbance, reduced inertia results in faster 

frequency dynamics [9 - 11]. Operation of primary 

frequency control and protection systems becomes more 

challenging due to the larger and faster transient frequency 

deviations. One of the measures to mitigate the effects of 

reduced inertia is implementation of faster primary 

frequency control. Another possible solution is provision of 

artificial rotational inertia in the system. The latter option 

also allows providing additional damping for inter-area 

oscillations [12]. 

It is paramount to this study define the following important 

terms [13]. 

1. Power system stability is the ability of an electric power 

system, for a given initial operating condition, to regain 

a state of operating equilibrium after being subjected to 

a physical disturbance, with most system variables 

bounded so that practically the entire system remains 

intact. The three main categories of power system 

stability are rotor angle stability, voltage stability and 

frequency stability. The main focus of this work is on 

rotor angle stability and frequency stability. 

2. Frequency stability refers to the ability of a power 

system to maintain steady frequency following a severe 

system upset resulting in a significant imbalance 

between generation and load. For the reliable operation 

of the system, the probability of large frequency 

excursions should be minimized. 

3. Rotor angle stability is defined as the ability of 

synchronous machine of an interconnected power 

system to remain in synchronism after being subjected 

to a disturbance. It depends on the ability to equilibrium 

between electromagnetic torque and mechanical torque 

of each synchronous machine in the system. Instability 

that may result occurs in the form of increasing angular 

swings of some generators leading to their loss of 

synchronism with other generators. Rotor angle stability 

analysis involves the analysis of the effect of small 

disturbances on the system of interest and the dynamic 

behavior of the system subjected to a large disturbance 

(transient stability). 

4. Transient stability is the ability of the power system to 

maintain synchronism when subjected to a severe 

transient disturbance, e.g. a short circuit on a 

transmission line. Whether a system remains stable or 

not after a large disturbance, depends on the initial state 

of this system and the severity of the disturbance.  

2. Aim and Objectives 

The aim of this project work is to investigate the impact of 

inertia changes on frequency and rotor angle oscillations 

using a detailed model of synchronous machine. The 

objectives to be used for achieving the stated aim are:- 

a. Formulation of the synchronous generator dynamics 

thereby relating the inertia constant with the frequency 

and rotor angle change. 

b. Developing the model in MATLAB environment to 

carry out the dynamic simulation of the system 

c. Investigating the frequency and rotor angle dynamics 

using different inertia constant 

d. Investigating the system response with very low and 

very high inertia constant. 

3. Modeling and Simulation 

During a fault, electrical power is reduced suddenly while 

mechanical power remains constant, thereby accelerating the 

rotor. To maintain transient stability, the generator must 

transfer the excess energy toward the system. These dynamic 

phenomena in power systems have a complex 

electromagnetic and mechanical nature. The simplest model 

of electro-mechanical swings in a power system represents 

solely the motion mechanics of the synchronous machine 

rotors and is based on the swing equation: 

�

���

����

�	�
= �� − �
  

where 

H is the inertia constant of the synchronous generator 

�� is the mechanical angle of the rotor 

Tm is the mechanical torque on the rotor 

Te is the electrical torque on the rotor 

Swing equation is a nonlinear function of power angle. For 

small disturbance, the swing equation can be linearized with 

some approximation. Consider a small deviation, ∆�  in 

power angle. 
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Since ∆�  is small, cos ∆� ≅ 1  and sin ∆� ≅ ∆� , and we 

have 
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Since at theinitial operating state 
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The above equation reduces to a linearized incremental 

power angle change 

���� ��∆��	� � ���� cos �� ∆� 
 0 

In as much as there is difference in angular velocity 

between the rotor and the resultant rotating air gap field, 

induction motor action will take place between them, and a 

torque will be set up on the rotor tending to minimize the 

difference between the two velocities. The damping power 

is;  

�� 
 � ���	  

Considering the damping, the linearized swing equation 

becomes 

���� ��∆��	� � � �∆��	 � ��∆� 
 0 

This can be interpreted as  

��∆��	� � ���� � �∆��	 � ���� ��∆� 
 0 

In terms of standard second order differential equation,  

� �∆��	 � 2ξ!" �∆��	 � !"�∆� 
 0 

Where !" the oscillation of natural frequency and #	 is the 

damping ratio (dimensionless). 

ξ 
 	�2 %������ 

By solving the above equation in terms of frequency 

change and rotor angle, the following equations are obtained. 

For the motion of the synchronously revolving field,  

� 
 �� � ∆��&1 � ξ� '()*+, sin�!�	 � -� 

And the rotor frequency is  

! 
 !� � !"∆��&1 � ξ� '()*+, sin!�	 

The response time constant is; 

. 
 1ξ!" 
 2����� 

These equations are used to study the dynamics of the 

rotor angle and that of frequency using different values of the 

inertia constant, H.  

Simulation 

For the purpose of the simulation, a 50-Hz synchronous 

generator connected to an infinite bus through a purely 

reactive line shown below is considered (Adopted from 

Power System Analysis, Hadi Saadat). 

 

Figure 1. 2-bus System Adopted for Analysis. 

The following are assumed constant as related to the 

generator and the infinite bus. 

Table 1. System parameters. 

Parameter  Values Used (Unit) 

Real power delivered by the generator 0.6 (per unit) 

Transient reactance 0.3 (per unit) 

Power factor 0.8 (unit less) 

Infinite bus voltage 1.0 (per unit) 

Damping power coefficient  0.138 (per unit) 

The system is subjected to a small disturbance of 10
0
 

(0.1745 radian). The following MATLAB code is developed 

to simulate the system for different values of the inertia 

constant. The values of inertia constant considered are 6, 9, 

12, 15, 18 and 21 all in MJ/MVA. 

4. Results and Discussion 

Based on the formulation of the generator dynamics, 

real time simulation for 4 sec is carried out in MATLAB 

environment. Results obtained for variation in inertia 

constant shows different waveforms of the rotor angle and 

frequency as depicted in Figure 2 and Figure 4 

respectively. 
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Figure 2. Variation of Rotor angle (Delta) with various values of inertia constant. 

It can be inferred from the waveform of the rotor angle 

that the settling time and maximum overshoot are 

proportional to the values of the inertia constant (within 

certain range). The higher the value of the inertia constant, 

the higher the settling time and of course the maximum 

overshoot. 

Considering infinitesimally large inertia constant, like 

100MJ/MVA, the waveform will be completely sinusoidal. 

On the other hand, if very small value of inertia constant is 

considered, the waveform will be a complete exponentially 

decaying function. This can be derived in the equation 

describing the dynamics of the rotor angle. These waveforms 

are depicted in Figure 3 below. 

 

Figure 3. Variation of Rotor angle (Delta) with very large and small values of inertia constant. 

 

Figure 4. Variation of Frequency with various values of inertia constant. 

Similarly, for the frequency, it can be deduced that the 

settling time and maximum overshoot are proportional to the 

values of the inertia constant (within certain range). The 

higher the values of the inertia constant the higher the settling 

time and of course the maximum overshoot of the frequency. 

Taking a very large inertia constant, like 100MJ/MVA, the 
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waveform will be completely sinusoidal, as in the case of the 

rotor angle. On the other hand, if very small value of inertia 

constant like 0.1MJ/MVA is considered, the frequency 

waveform will be a complete exponentially decaying 

function. This can be also derived in the equation describing 

the dynamics of the frequency. These waveforms are 

depicted in Figure 5 below. 

 

Figure 5. Variation of frequency with very large and small values of inertia constant. 

5. Conclusion 

In this project work, effect of inertia constant of 

synchronous generator (machine constant) on its frequency 

and rotor angle is investigated. Modeling of the dynamics of 

the system is done using Swing equation. It is then built and 

simulated using MATLAB. The analysis is done by 

observing how the frequency and rotor angle changes when 

the inertia constant is varied while keeping all system 

parameters constant. The study is extended to investigate the 

dynamics of such system with very high and those with very 

inertia constant.  

Although there are many parameters that can affect the 

rotor angle and the frequency of the generator, only the 

inertia constant is considered. Since the transient reactance 

generator model and swing equation model is not good 

enough for transient stability studies because of the 

linearization, a further study is necessary in order to take into 

account more detailed generator models together considering 

various parameters in the future. 

Appendix 

MATLAB CODES 

%% DYNAMICS OF SYNCHRONOUS GENERATOR FREQUENCY AND ROTOR ANGLE 

E = 1.35;% Excitation Voltage 

V= 1.0;% Generator Terminal Voltage 

X=0.65;% Transient reactance 

Pm=0.6;% Power Delivered 

D=0.138;% Damping Power Coeff. 

f0 = 50;% System Frequency  

H= [6 9 12 15 18 21];  

Pmax = E*V/X, d0 = asin (Pm/Pmax)% Max. power 

Ps = Pmax*cos (d0)% Synchronizing power coefficient 

for i=1:1:length (H); 

wn = sqrt (pi*60/H (i)*Ps)% Undamped frequency of oscillation 

z = D/2*sqrt (pi*60/(H (i)*Ps))% Damping ratio 

wd = wn*sqrt (1-z^2), fd = wd/(2*pi)% Damped frequency oscill. 

tau = 1/(z*wn)% Time constant 

th = acos (z)% Phase angle theta 

Dd0 = 10*pi/180;% Initial angle in radian 

t = 0:.01:4; 

Dd = Dd0/sqrt (1-z^2)*exp (-z*wn*t).*sin (wd*t + th); 

d = (d0+Dd)*180/pi;% Load angle in degree 

Dw = -wn*Dd0/sqrt (1-z^2)*exp (-z*wn*t).*sin (wd*t); 

f = f0 + Dw/(2*pi);% Frequency in Hz 
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subplot (2, 1, 1), plot (t, d), grid 

xlabel ('t, sec'), ylabel ('Delta, degree') 

hold on 

subplot (2, 1, 2), plot (t, f), grid 

xlabel ('t, sec'), ylabel ('Frequency (Hz)') 

hold on 

end 

grid 
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