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Abstract: Artificial Intelligence (AI) is gaining a strong momentum in business leading to novel business models and 

triggering business process innovation. This article reviews key AI technologies such as machine learning, decision theory, and 

intelligent search and discusses their role in business process innovation. Besides discussing potential benefits, it also identifies 

sources of potential risks and discusses a blueprint for the quantification and control of AI-related operational risk. 
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1. Introduction 

Recent years have seen many successful applications of 

artificial intelligence (AI) technology, accompanied by a 

strong interest of the public in their impact. Many of these 

applications improve the flexibility and/or efficiency of 

business processes, if not even implementing entire new 

business models. In this article, we review selected key AI 

technologies and their potential benefits and risks in business 

process management (BPM). A successful application of AI 

should carefully consider both aspects, i.e., take advantage of 

opportunities to achieve benefits, but also study, quantify, and 

control the operational risk of AI technologies. As operational 

risk of AI is a new, yet unseen challenge for many business 

process experts, we discuss the technology sources of 

operational risk in AI and identify selected attention points for 

the business. 

A business process is a set of interrelated activities designed 

to achieve a specific business output or objective and provide 

value to a customer [8]. Any human activity, be it creative 

thinking, teaching, trading, manufacturing can be modeled 

and analyzed as a business process. 

A business process is usually triggered by some event, e.g., 

a customer asking for a mortgage loan, and uses data, e.g., the 

credit history of the customer. Data drives the business 

process towards its goal, which is for example to approve or 

deny the loan. 

Today’s business processes take more and more data 

sources into account, which has been made possible by 

modern IT technology. The data is mapped to a model, aggre- 

gated, condensed, and analyzed in order to arrive at an 

interpretation and assessment of the data with the goal to 

predict some aspect of the future. For example, the predic- 

tion in the mortgage approval process tries to anticipate the 

likelihood that a customer can pay down a loan. Based on the 

prediction, a decision is made and one or several actions are 

taken. For example, if the creditworthiness of the customer is 

predicted as solid, then the loan is approved, an account 

opened, the money transferred etc. Historically, humans have 

been responsible for the activities that drive the process from 

data gathering via prediction and decision making to selection 

of the action(s) to be executed. 

Figure 1 presents an abstract model for the main activities 

performed in a business process that we will use to structure 

our discussion of AI technologies. 
1

Three main transitions 

lead from data via prediction to decision and finally to action. 

                                                             
1
 We believe this model is well reflecting typical business process designs and 

widely accepted and applied by practitioners. We were not able to trace it to a 

specific source or reference, it rather seems to be common wisdom within the 

business process management community. 
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The model illustrates how these transitions build on each other. 

A process takes the given data to forecast the future in the 

form of some prediction. The prediction is the basis to 

conclude on some decision, which in turn determines how a 

human or artificial agent will behave by executing some 

action. 

 

Figure 1. A Model of Common Business Process Designs. 

The model also anticipates the change that occurs while the 

business process and its underlying decision making proceed. 

An action influences the future and may render previous 

predictions obsolete, but also a prediction can influence the 

future, which is captured by the well-known phenomenon of 

the self-fulfilled prophecy. The future is looping back into the 

‘now’ as the process repeats and new, changed data is 

gathered. 

Modern business process management is focusing on the 

improvement of business processes. This involves making 

processes more efficient, but also more flexible and 

responsive to the changing needs of business users. Two 

current trends in the design of business processes support 

process optimization and flexibility: 

First, business processes become more case-oriented [61, 

58, 38] and rule-driven [15, 33, 55, 28, 27] to support the 

flexible work styles required in a modern economy of service 

networks. Cases provide an information-oriented basis for 

dynamic business processes that progress from milestone to 

milestone while putting the required activities together ’on the 

fly’. Business rules describe business policies as guidelines 

and boundaries for flexible work styles, they make business 

decisions more transparent and manageable, and they are used 

to automate business decisions. Cases and rules are supported 

by recent OMG standards such as CMMN [39], DMN [40], 

and SBVR [41]. 

Second, business processes produce and consume more and 

more data. “Big Data” with its four Vs standing for volume, 

variety, velocity, and veracity best characterizes this trend [9]. 
2 Big data is often reduced to these 4 Vs, however, Gartner’s 

original definition consists of three parts: 

Big data is high-volume, -velocity and -variety information 

assets that demand cost-effective, innovative forms of 

information processing for enhanced insight and decision 

making. 

It is part 2 and 3, the “cost-effective, innovative forms of 

information processing” for “enhanced insight and decision 

making” that require, but also enable further innovation and 

optimization in business process management. As it is said in 

[53], “elevator logs help to predict vacated real estate, 

                                                             
2
 Gartner originally contributed the first 3 Vs to the definition, the 4th V for 

veracity was added by IBM [22] for a good reason. 

shoplifters tweet about stolen goods right next to the store, 

emails contain communication patterns of successful 

projects.... Business value is in the insights, which were not 

available before. Acting upon the insights is imperative”. 

Both trends, case- and rule-orientation as well as big-data 

adoption, provide many opportunities, but also challenges for 

practitioners as well as researchers. 

Artificial Intelligence (AI) is a family of powerful 

technologies that is particularly well suited to provide 

innovative forms of business process re-engineering. AI can 

be embedded into business processes to support humans by 

intelligent agents or to drive humans out of the process and 

replace them by fully automated solutions. The latter aspect of 

automation recently caused a wide discussion in the press 

about AI being a job killer, see for example [63]. In the 

following, we will take a closer look on how AI can be applied 

to support business processes. The model presented in Figure 

1 is a good abstraction to study the most commonly deployed 

AI technologies within business processes. AI technologies 

can be applied along the entire cycle of forecast- 

conclude-behave to improve decision making and activity 

execution. AI can deal with huge amounts of data, it is widely 

applicable and replicable, and it can achieve full automation. 

This makes it often a technology of choice as it is a 

cost-effective way to improve the efficiency of business 

processes. Furthermore, it is innovative, providing insights 

that have not been possible before. Finally, AI accelerates 

automated decision making through its various technologies 

such as intelligent agents, planning, and others.  

Our subsequent discussion is settled at a certain abstraction 

level to provide the ’big picture’ on how AI technology is 

applicable in business processes and can thus neither be 

complete nor go deep into details. However, we hope that this 

article provides a good starting point for practitioners to 

further explore and understand the potential and risks of AI 

technology within business process management. In particular, 

we believe that addressing operational risks is very important 

when embedding AI within business processes as AI is a 

powerful technology. 

The paper is organized as follows: We proceed with Section 

2, which briefly introduces three key AI technologies: 

machine learning, decision/utility theory, and search 
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algorithms. We discuss how these AI technologies support the 

forecast-conclude- behave cycle and discuss opportunities and 

benefits. Machine learning can be used to improve/automate 

the forecasting, decision/utility theory can provide more 

insightful or automatic conclusions, and search algorithms can 

optimize desired behaviors. In Section 3, we will investigate 

the operational risks of the three AI technologies under 

consideration. We will discuss where operational risks origin 

within the technologies and give some practical hints what 

practitioners can do to quantify and control these risks. In 

Section 4, we extend our perspective beyond the 

technology-related risks and explore the surrounding contexts 

of business processes. We also propose a blueprint how to 

control risks across contexts and briefly investigate how 

control theory can provide control loops for each technology 

in the cycle as well as over larger business contexts. A key 

element seems to provide references of desirable behavior and 

to develop a systematic notion of stability for AI-based 

business process designs. Section 5 concludes the paper with a 

short summary of our discussion. 

2. Applying AI in Business Processes: The 

Benefits 

Artificial Intelligence is a wide field of research. A 

definition of artificial intelligence is not straightforward at all 

and seems to presuppose a good understanding of human 

intelligence. It is thus not surprising that the major textbook on 

AI [50] avoids a definition of the term and rather discusses it 

in the broader context of understanding its various forms of 

human and rational thinking and acting. A key metaphor 

underlying AI research for at least the last 25 years has been 

the notion of a rational agent: 

A rational agent is anything that can be viewed as 

perceiving its environment through sensors and acting upon 

that environment through actuators. For each possible 

percept sequence, a rational agent should select an action that 

is expected to maximize its performance measure, given the 

evidences provided by the percept sequences and whatever 

built-in knowledge the agent has. [50, p. 35, 38] 

Most AI research considers rational thinking and acting as a 

prerequisite for intelligent behavior. Similarly to the 

forecast-conclude-behave cycle that we use as an abstract 

model to discuss typical activities within business processes, 

AI has studied rational thinking and acting within a loop of 

“prediction, decision, action”. Of course, the separation of 

making forecasts/predictions from drawing specific 

conclusions and taking a decision, which finally leads to the 

choice of some action resulting in a specific behavior is a 

simplification. In reality, these activities are intertwined in 

intricate ways and several of these loops overlap each other in 

human behavior. However, separating these activities is useful 

to deeper understand them and to develop technologies that 

support or automate them. AI has done this across its various 

subfields over many years and developed key technologies 

such as machine learning, decision theory, and search 

algorithms, respectively that we will explore more closely in 

the following. 
3 Again, in AI systems these technologies are 

often combined and embedded into each other. For example, 

search algorithms can be used within machine learning tools 

to optimize parameters and minimize classification errors. 

Machine learning can enhance search algorithms by learning 

and improving their underlying heuristics. However, to 

understand the benefits and risks of each AI technology, 

considering them in isolation is a good starting point and a 

venue that we follow in this paper. Combined technologies 

and overlapping loops can boost the benefits of the resulting 

hybrid solution, but also multiply their risks. 

In the following, we can only summarize the key concepts 

and benefits of each technology, but neither provide a 

thorough introduction nor completely list successful 

applications. Instead, we provide selected pointers to further 

readings. 

2.1. From Data to Prediction: Machine Learning 

Machine learning methods [2, 11, 21] can be applied to the 

data available for a business process to compute a prediction. 

AI has developed many different machine learning al- 

gorithms such as for example neural networks or decision 

trees that are available today in ready-to-use libraries, for 

example [64, 25]. Learning allows an agent to improve its 

performance based on its perceptions made in the world. 

Machine learning research distinguishes among others 

between supervised and unsupervised learning methods. In 

unsupervised learning, an agent learns patterns from the input 

without receiving explicit feedback. In supervised learning, an 

agent learns from labeled examples of input-output pairs, the 

training data. The result of its learning process is evaluated on 

test data on which the agent makes a prediction of the output 

based on the given input. Learning algorithms differ in the 

representations of the inputs and outputs, the types of models 

(input-output functions) they can learn, and how they do the 

learning. The machine learning community has developed 

various measures such as accuracy, precision, recall, AUC and 

others to describe the quality of a learning algorithm. In 

addition, statistical methods provide information such as 

confidence intervals and standard deviation. When evaluating 

several machine-learning algorithms for a business 

application, these measures are applied in order to decide 

which learning method should be favored over another. If the 

percent values of the measures and tests are considered as be- 

ing “good” or “adequate” (often expressed by values above a 

defined threshold for an application domain), the learned 

model is put into practice. 

Machine learning is very interesting for business process 

management as it can detect patterns, i.e., functions that 

relate input with output, which have remained unnoticed by 

humans. The methods are also useful to learn patterns when 

humans have difficulties in describing properties of the input 

data that determine the output. For example, playing the 

                                                             
3
 Other fields, such as knowledge representation for example, are important as well, 

however, their discussion would go beyond the scope of this paper. 
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game of Go has been recently mastered by a hybrid deep 

learning and search algorithm, despite it is very challenging 

for humans to evaluate a situation in a GO game and choose a 

particular move that is especially valuable in the light of a 

specific strategy [54]. In business processes, the ability to 

detect patterns is successfully used to spot deviating 

behavior, e.g., credit-card frauds, or to classify data, e.g., 

segment customers for marketing purposes. Machine 

learning methods can also be flexibly applied to changing 

inputs and thereby increase the flexibility of business 

processes, e.g., adjust the assessment of a case under 

changing circumstances. They can also be used to mine and 

detect business rules when monitoring business processes. 

Many other potential application scenarios exist or can be 

imagined. 

2.2. From Prediction to Decision: Decision and Utility 

Theory 

AI investigates decision and utility theory [26, 32, 6, 47, 43] 

to represent and compute preferences of rational agents and 

determine the actions than an agent should perform when 

maximizing its utility function. Decision theory has its roots in 

economics and investigates situations where agents have to 

deal with uncertainty about the current state of the world and 

the future (because the outcome of actions is uncertain) and 

where agents have to deal with conflicting goals, for example 

when they want to maximize the profitability while 

minimizing risks, see [23, 20] for two pointers to seminal 

early publications. Decision theory allows agents to evaluate 

uncertain and conflicting situations under finite or infinite 

decision horizons and a given set of preferences. These 

preferences are represented in the form of utility or reward 

functions that assign numeric values to possible states of the 

world in order to express the desirability of a world state for 

the agent. Rational agents will select actions based on the 

principle of maximum expected utility, i.e., an agent will 

prefer actions that maximize the expected utility or reward 

that the agent tries to achieve. The utility function determines 

whether an agent is risk-averse, risk-neutral, or risk-seeking. 

Utilities are modeled under the ’closed world’ assumption, i.e., 

they are captured for the known part of the world and need to 

ignore the unknown. Furthermore, decision theory is 

normative and describes how a rational agent should behave. 

It does not describe how humans behave. In fact, it has been 

observed several times that human decision making often 

deviates from the mechanisms applied by AI-based theories 

and that humans quite often do not take rational decisions, but 

rather behave in an altruist manner. The decisions taken by AI 

systems can be evaluated by comparing them to existing 

examples of best practices (the so-called gold standard), an 

approach which is somewhat similar to the validation of 

machine learning algorithms on test data. An evaluation 

should also systematically vary the parameters of the decision 

model to explore how sensitive the decision outcome is to 

small changes of the assigned probabilities and utilities. 

Decision-theoretic models can underlie any decision that is 

taken within a business process, e.g., to buy or sell stocks or to 

give a recommendation to a customer. AI systems benefit 

from decision-theoretic models to better deal with uncertain 

information and to find out which questions to ask to improve 

their knowledge about the world. Current commercial trends 

such as personal digital assistants or cognitive computing [62, 

56] provide interesting linkages to decision theory. 

2.3. From Decision to Action: Search Algorithms 

Search algorithms are studied in AI and mathematics 

(notably operations research) [42, 19, 36, 5, 59, 7, 60] to find 

optimal solutions to planning and scheduling problems, e.g., 

which activities to perform in a successful marketing 

campaign, how to schedule a given number of jobs on a set of 

machines to optimally produce a product, or how to plan a tour 

to optimally deliver goods across a set of scheduled sites. AI 

has developed many different search techniques, which are 

incorporated into powerful optimization and problem solving 

techniques today. These techniques often rely on a discrete 

model of the world that is described by a set of states and 

actions, where actions are applicable in certain states and their 

effects determine which state(s) an agent can reach next when 

executing the action. The states and actions of a problem 

define the search space where the states are the nodes of the 

underlying graph and the actions describe the possible 

transitions between the states represented by the edges of the 

graph. State-based search algorithms are widely applicable 

due to the many powerful discrete modeling techniques that 

are available. They have been scaled to very large search 

spaces by developing efficient encoding techniques for the 

models and by applying different strategies to explore large 

search spaces. In particular, we can distinguish between 

uninformed and informed search strategies. Uninformed 

search explores a search space using specific exploration 

strategies based on the structure of the underlying search 

graph, whereas informed search uses heuristics to measure 

the ’goodness’ of a state and then decides which state to visit 

next. Properties such as completeness and optimality 

characterize a search algorithm, i.e., does the algorithm find a 

solution in a search space if one exists (for example by visiting 

all states) and does it return a solution, which is optimal based 

on some given optimization function. 

The value of search algorithms to optimally solve 

planning, scheduling, and other problems in business 

process management is of no doubt and many successful 

applications in logistics, manufacturing, and other domains 

exist. 

3. Inherent Technology Limits: The 

Sources of Operational Risk 

Following [10], we understand operational risk as the risk 

of loss resulting from inadequate or failed internal processes, 

people, and systems or from external events.
4

 

                                                             
4
 Whereas operational risk in banking mostly focuses on financial loss, we adopt a 

wider understanding where loss is not restricted to money, but can also comprise 
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The model in Figure 1 provides some basis for first 

observations of operational risk in business processes. First, 

data selection may be biased or data may be inaccurate or very 

different than expected. Second, decisions and actions carry 

the inherent risk that they are obsolete as the predictions have 

already changed the world and with that the data. Third, when 

automating the transitions, we accelerate decision making, but 

also the change of business conditions, which we can already 

widely observe in today’s economy. Acceleration can lead to 

time-pressure and shorter decision-making horizons. 

Accelerated change affects among others the data on which 

processes are based making it more challenging to anticipate 

which change will occur and how the change affects any 

technology that is within a business process. Furthermore, we 

have to take into account that more and more businesses apply 

AI and they may impact each other in unforeseeable ways. Let 

us briefly discuss a specific example of an AI-based 

innovation of a business process to illustrate these challenges 

further.  

3.1. Operational Risk in an Underwriting Process using AI 

 

Figure 2. Growth of the loan volume, graphics as published in AI Magazine. 

The Spring Edition of AI Magazine in 2008 featured an 

article [31] about an automatic underwriting system called 

Custom DU developed by a mortgage lender Fannie Mae. 
5 

Fannie Mae purchased residential home loans from over 

2500 lending institutions in the secondary market such as 

mortgage companies, thrifts, banks, and credit unions, and 

pooled them together as mortgage-backed securities for sale 

to investors with a “guarantee” of timely payment of 

principal and interest. The automated underwriting system 

allowed mortgage lenders to determine whether a loan 

complied with Fannie Mae’s underwriting guidelines, but 

also enabled lenders to define their own lending rules. 

Lenders could put their loan approval rules into the 

                                                                                                        

human lifes, material goods, harzard to ecosystems, etc. 
5
 In 2007, Custom DU was one of the award winning applications honored at the 

Conference for Innovative Applications of AI “for taking intelligent underwriting 

to a new level with a Web-based system that enables mortgage lenders to build their 

own automated underwriting applications” [1]. 

easy-to-use system to fully automate the approval of loans in 

real-time and without the need to do any software 

development. The published article discusses technical 

aspects without revealing too many details on how new rules 

were defined and who was authorized to do so. At the core of 

Custom DU lied the IBM JRules Business Rules Engine, one 

of the leading business rule technology systems in the market, 

which uses well established and proven AI technology such 

as RETE pattern matching [17] and constraint reasoning [45]. 

Custom DU had a huge business impact, which was also 

demonstrated with the following illustration in the AI 

Magazine article, see Figure 2. 

The illustration indicates a very strong growth of Fannie 

Mae’s loan volume, although no precise information on the 

y-axis was published. Improving the efficiency of the process 

and growing loan volume was a goal for business process 

innovation in this case, but one is wondering whether such a 

strong growth should not have alerted business concerns. Only 

six months later, on September 23, 2008 the Wall-Street 

Journal published an article where it detailed how it was 

possible that the vast accumulation of toxic mortgage debt that 

was driven by the aggressive buying of subprime mortgages 

and mortgage-backed securities by Fannie Mae and Freddie 

Mac poisoned the global financial system [13]. 

It is difficult to analyze details of the system without having 

access to the details of the model by which the system 

produced its decisions. However, the text gives some 

interesting information that is worth to look at. It is not 

relevant for our discussion to identify any specific mistake as 

a source of risk accumulation, for example, if the parameters 

of a decision model are not well designed or if a method used 

to produce decisions is inadequate in the context of an 

application. We are interested in principle sources of 

operational risk that will occur within an AI technology even 

if the technology is well designed and no mistakes are made. 

The AI Magazine article emphasizes in several places how 

important it was to allow lenders to build their own 

customized rule sets based on their risk factors and operational 

challenges, but it never discusses risks and important practices 

of business rule governance. As it was pointed out in [57], 

business rules are a technology of great potential, but also of 

great risk. However, risk considerations received no attention 

in the article, although the integration of over 2500 lenders in 

one AI-based system led to economy-and technology-of-scale 

effects that made it easy to accumulate enormous risks. This 

accumulation of risks finally contributed to the financial crisis 

of 2008/09. 

What went wrong? On the one hand, we had a too 

risk-tolerant regulatory regime that did not take action on 

known systemic and operational risks in the mortgage market. 

On the other hand, a team of computer scientists and 

psychologists led by a business manager took well-understood 

technology and applied it at a massive and disributed scale. 

We do not know if the team thought about potential impacts of 

their applications, at least the article does not discuss this 

aspect of the development. The following factors likely 

contributed to the problematic side effects of Custom DU: 
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1. The focus of the development was mostly set on cost 

and time reductions with the system “giving its clients a 

decision in minutes, not days” and “the ability to deliver 

loans with larger amounts, provided they were 

underwritten by Custom DU”. This focus consequently 

led to a high incentive to take humans out of the 

mortgage approval loop. As the article emphasizes 

“according to a recent mortgage benchmarking study, 

lenders that deploy automated underwriting at the point 

of sale recognize the largest per loan cost savings and 

achieve the greatest per person loan capacity”. 

2. The system also enabled a more flexible business 

process that expanded conventional boundaries, i.e., 

lenders could use the technology to serve customers 

who would not conform to the conventional and more 

cautious credit guidelines and they could define 

business rules that varied according to channel, 

customer, product, region, line of business, and other 

factors. As a consequence, a high variability in using the 

AI technology was achieved where “the business rule 

set to be executed can be different for each transaction”. 

3. A risk-tolerant culture drove the development, which 

did not seem to put risk management in the focus of 

application development. Whereas we read about the 

user interface to support “policy administrators to create 

and update rules and messages, test rules and messages, 

create and update activation rules that determine how 

rule sets are associated with products, and customize 

findings”, we never read about the four-eyes-principle 

or any governance mechanisms that would validate and 

approve business rules prior to publication. A 

mechanism of real-time modification of business rules 

and deployment was implemented that enabled authors 

of business rules to easily change rules and make them 

effective for the next transaction. 

4. The user-friendly wrapping of the technology “allowed 

business users to build rules as if they were experienced 

rule writers” and was used by people who had “never 

managed a rule-based system” before using Custom DU, 

i.e., the system potentially exposed a complex 

technology to novice users. 

In a nutshell, the AI technology was used to speed up and 

automate complex decisions. Custom Du supported two types 

of humans: rule authors and loan approval agents. Rule 

authors defined the boundary conditions for the decisions in 

the form of business rules, whereas loan approval agents 

applied the automated decision making to their cases. We do 

not know whether each player in the application only 

considered his/her own context or also investigated beyond 

context boundaries. Defining the decision conditions was 

made so easy that even non-experts were able to do so. In the 

decision process itself, humans only played a minor or no role 

at all anymore. 

In the following, we take a closer look at some limits of the 

AI technologies under consideration and explore in more 

detail how to systematically derive and quantify the 

operational risk of AI-based process solutions. 

3.2. Limits in Machine Learning 

Heterogeneous and unstructured data sources are 

increasingly combined to build prediction models. Most data 

is uncertain and one cannot be sure about the veracity of it. 

Practitioners aggregate and abstract the data, but this does not 

make the data more reliable. The output of a prediction model 

is thus inherently uncertain. As was observed in [46], many 

machine learning techniques focus on fitting a model without 

providing any estimate on the accuracy of the model. 

To arrive at a prediction, machine learning, in particular 

supervised learning methods can be applied to the data 

available for a business process. These methods are trained 

using a set of training data and subsequently validated on a set 

of test data. All learning methods critically depend on the 

quality of the data and require among others that the training 

and test samples must be representative of the domain 

(normally distributed) and be chosen randomly. Both criteria 

are not so easy to meet in practice where data is usually 

collected over a certain period of time, the number of 

instances is limited as an access to the entire data population is 

often impossible, data can have hidden dependencies, or there 

may be an unconscious bias when selecting data due to the 

nature of business processes. Furthermore, it has been shown 

that machine learning algorithms can be easily mistaken by 

hidden states and patterns in the data [37]. These problems 

become more critical if learning approaches are applied to 

data where no reliable test oracles exist or when unsupervised 

learning methods are put into practice. In a nutshell, all that 

the validation methods can provide so far is a statement that a 

learner produces a result with some confidence (which is 

usually below 100%) on a given set of specific test data. For 

example, an algorithm that is tested as being 99% correct on 

the test data, will produce an incorrect result in 1 out of 100 

cases. What does this error mean for the business process? For 

example, will it incorrectly assess the creditworthiness of a 

customer and what will this imply? Will it incorrectly classify 

a credit card transaction as a fraud or miss a fraud? Can we 

quantify this impact? 

The risk associated with the learner is hidden in the 

confidence percentages and its (often unknown) dependency 

on the data, independently on how well the learning algorithm 

was trained. 

As we discussed earlier, unpredictable data changes are 

likely to result from predictions and actions applied across the 

universe of businesses processes, but we have in fact no 

information on how a learning algorithm will behave on 

changed data, i.e., if the confidence will be different and what 

data changes will have critical effects on the confidence. In 

addition, learning algorithms seem to perform well on ’narrow’ 

domains where all information is explicit in the data 

representation, but ’wider’ domains where data contains 

hidden states, which are typically occurring in big data 

applications, seem to pose problems. Recently, the term out of 

range behavior has been introduced to capture the impact of 

changing data, see e.g., [3] as its challenges go far beyond the 

previously studied problems of noise and concept drift [51]. 
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Recent results for deep neural networks illustrate in 

impressive ways how these learners can be mistaken by slight 

changes in data [37, 35]. Business users should therefore pay 

attention to the following questions: 

1. Is it possible to quantify the data context on which a 

learned model depends? 

2. Can one anticipate and describe potential changes of 

data and systematically generate test and training data 

that exhibit the change? 

3. What impact on the business process can a data change 

have given the learned model? 

4. Are there data properties that ensure that the confidence 

remains within given boundaries under data change? 

5. Can one translate the confidence value returned by an 

evaluation method into a quantifiable risk for an 

application domain? 

6. On highly variable data, should one integrate online 

testing of learned models to monitor whether the 

confidence of a model is changing? 

3.3. Limits in Decision Theory 

AI has developed decision and utility theory to represent 

and compute preferences of rational agents and determine the 

actions than an agent should perform when maximizing its 

utility function. A core concept of these theories is the reward 

that an agent tries to achieve. The risk of decision and utility 

theory can be found in the delta between the reward that the 

agent thinks it will receive and the reward it actually receives 

(reward delta). The case of Custom DU illustrated that the 

reward in terms of growing the loan volume was successfully 

maximized over a certain horizon. However, in the longer run, 

the agent not only lost all of its reward, but the agent also 

ceased to exist when the bank went out of business. 

The source of the risks lies in the decision horizons 

considered by agents and underestimated decision 

consequences which cause a delta between the expected and 

received reward. 

Any utility and decision model can only capture 

preferences, possible actions and their effect outcomes in a 

limited way and not map the full complexity of the business 

context, in which an agent operates. It is thus critical what 

content is built into the decision and utility models used by 

autonomous intelligent  agents. It seems that when agents 

take a narrow and ’selfish’ approach when considering the 

utility of their actions, they also tend to ignore long-term 

effects that may occur outside their immediate context of 

activity. Furthermore, the utility functions used by agents 

might not well represent how an agent should deal with sparse 

events that occur rarely. In addition, the computation of 

decisions over long horizons is computationally very 

expensive and may be impossible under accelerated change. 

The decision models used by commercial applications are 

often confidential and it is thus not possible that these models 

could be inspected for accuracy or risk by the research 

community or any other independent agency. Although risk 

assessment and management is a very active research area in 

many industries, in particular in finance [4], we are not aware 

of established standards of risk assessment for AI-based 

decision making. In addition, it has been observed several 

times that human decision making often deviates from the 

mechanisms applied by AI-based theories. Here are some 

questions for further consideration: 

1. Should a business open-source its decision and utility 

models for transparency and allow customers to opt in 

or out when having reviewed links between pref- 

erences and action outcomes and the resulting rewards? 

2. How can a business process use methods that allow 

intelligent agents to monitor their reward delta and to 

change (learn new) utility models when the delta 

increases for long-term effects? 

3. How to systematically apply a risk-based comparison of 

different utility- and decision models for a particular 

business process? 

4. What are systematic stress tests to explore the boundary 

conditions for a given business process using AI? 

5. How do mixed models of human and AI-based decision 

making play together in a business context? 

3.4. Limits in Search Algorithms 

To derive an action from a decision, search and 

optimization algorithms are used that for example solve 

planning and scheduling problems. Soundness of these 

algorithms is established by mathematical proofs and we can 

usually assume that algorithms are correctly implemented, 

although practical soundness may constitute a problem as the 

correct engineering of algorithmic implementations is a 

challenge by itself [30]. 

It is not too difficult for users to validate whether a solution 

returned by an algorithm is correct. Thus, theoretical 

soundness does not seem to be a major issue and adding 

efficient validation is possible unless a domain requires 

solutions of huge size with non-polynomial bounded solution 

length. 

However as for optimality, the picture is completely 

different. When systematic search algorithms are used, 

optimality can again be established by mathematical proof. 

Unfortunately, most practical problems incur search spaces 

that are prohibitive for systematic search, for example that 

involve 10
100

 or more states. In this case, non-systematic, local 

search algorithms using heuristics come into the picture. 

Proving optimality of these algorithms usually comes in the 

form of a conditional statement. For example, simulated 

annealing [24] converges to the optimum if the schedule low- 

ers the temperature slowly enough, i.e., an optimal solution is 

returned with a certain probabilistic confidence. In practical 

applications, it is often impossible to validate optimality of a 

solution unless for very small instances and search spaces. If a 

suboptimal solution is returned, the user does not know how 

far this solution is from the optimum unless an approximation 

algorithm with a quality guarantee is used. 

Uncertain solution quality can be a source of risks when 

solving very large and intractable optimization problems. 

Similarly to the other AI technologies studied in this 

paper, a change in the data (search instances) can have an 
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unknown impact on the (confidence in the) solution quality. 

Although structural investigations of search spaces have 

revealed interesting insights such as phase transition 

regions [14], the structure of search spaces resulting from 

practical applications, including those that result from 

combining heterogeneous data, is usually unknown and 

only few automated methods exist for the structural 

analysis of state and solution spaces, e.g., [62]. 

Furthermore, it is still an art to model a problem such that it 

becomes solvable by a specific algorithm. Practitioners 

often spend a long time to select an algorithm and fine-tune 

their model. Small changes in the model often lead to 

dramatic and unpredictable differences in the performance 

of an algorithm and again, the model and algorithm can 

only be tested on some instances of a domain. In addition, 

commercial applications rarely publish insights into the 

modeling or reveal details of their algorithms such that little 

scientific exchange on algorithm engineering for 

commercial applications can take place. Here are some 

starting points for further questions when dealing with large 

search problems in case that non-optimality can induce 

risks: 

1. Does a non-optimal solution induce risks? Which risks? 

2. Should one explore the search-space structure to 

understand the distribution of solutions in the search 

space and how often such a risk can occur? 

3. Do different instances of a search problem yield search 

spaces with dynamically changing structure? 

4. Can the model and encoding of an application be further 

improved to scale up an algorithm? 

5. Should one look at automated methods to learn/generate 

heuristics? 

6. How can different application encodings and search 

algorithms be compared with each other, in particular 

with respect to the ability of finding (near)-optimal 

solutions? 

7. Is it possible to apply an approximation algorithm that 

provides bounds for solution quality? 

4. Controlling Risks Across Contexts 

In the previous section, we identified three sources of 

operational risk in the AI technologies under consideration: 

1. Confidence expressing the accuracy of a machine 

learning algorithm. 

2. Reward expressing the expectations of a decision theory 

model. 

3. Suboptimality expressing the unknown or reduced 

solution quality returned by a search algorithm when 

failing to find an optimal solution in a very large search 

space. 

Each risk can potentially occur even when the application 

was very well engineered as the data used by a business 

process and its boundary conditions can change over time in 

sometimes unpredictable ways. We proposed some questions 

as starting points for understanding how change can influence 

the risk sensitivity of an AI technology and to arrive at a 

quantification of operational risk. 

One possible way how businesses can address these risks is 

to investigate ideas and solutions from control theory. In 

Figure 3, we introduce a blueprint for operational risk 

management. It shows how AI technology-related risks occur 

in each transition and how these risks potentially accumulate 

in a business process. The risks finally materialize in the 

actions executed by agents that act in the business process 

under consideration. 

As the figure illustrates, the goal is not to avoid, but to control 

the risks at each step as well as over the entire process. One key 

insight of the previous discussion is that there could be inherent 

bias when data is selected to validate AI technology and that 

this bias must be made explicit and controlled, see also [52]. 

Furthermore, each technology comes with an inherent error and 

(similarly to humans) can make mistakes. Consequently, 

control loops over each technology as well as the combined 

technology mix need to be established. An example 

implementation of this blueprint using communicating 

automata for the control loop is described in [29]. 

 

Figure 3. Operational Risk Management Blueprint for AI. 

Practitioners who develop AI-based applications usually 

establish specific control solutions for their context of 

deployment, but these are individually tailored solutions, 

about which little gets published. General methods and 

frameworks for quantifying and controlling risk have not been 

widely researched so far. Control theory can help in this 

endeavor as we will briefly discuss next. Furthermore, 

approximate computing [18] is a new research paradigm that 
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combines imprecise hardware and software to compute 

high-quality results at lower costs, which could also be 

promising to study. 

Feedback control theory [16] provides the essential 

elements to embed AI systems into control loops and vice 

versa. Given some reference, a controller supervises the 

output of the system and provides input based on the measured 

error to bring the system back to the reference behavior. This 

means that providing references and being able to measure 

errors (deviations from the reference) for predictions, 

decisions, and actions is the key to risk management of AI 

technologies. However, this is not straightforward at all and 

may be even impossible in some applications due to the lack 

of references. In such cases, one can argue that human insight 

and responsibility must provide the reference and humans 

should not be taken out of critical loops, see also [49]. For 

such application scenarios, more discussion is needed to 

determine where the border should be drawn between full 

automation and control and human supervision in business 

processes. 

At a minimum, a control loop must establish boundaries for 

certain state variables of the system and recognize when the 

system behavior begins to move outside these boundaries, 

which also demands that AI systems are able to explain their 

behavior, recall the explanation components of early expert 

systems. Control theory has introduced the concept of system 

stability in case that some of the state variables cannot be 

controlled. Stability is an important property of human 

societies and needs to be ensured for mixed human-artificial 

and purely artificial scenarios. Stability and quantifiable 

notions of operational risk could help to refine the concept of 

robustness as for example discussed in [48]. 

One way to achieve stability is to establish rules that 

conduct behavior and normative bodies that observe and 

control behavior. This means that in order to control pre- 

dictions and decisions we need to model the actions that they 

imply, assess the potential impact (effect) of actions, and 

establish rules that govern action effects. Assessing the impact 

of actions is easy for agents that act in narrow (technical) 

domains, but becomes harder when agents operate in open and 

complex environments. In multi-agent scenarios, effects can 

be amplified as in the case of our introductory example, or 

they can be altered and completely modified. A key question 

seems to be what regulations and rules should be established 

and how these can be put effectively into practice to detect 

(and prevent) un-anticipated effects that are considered as 

harmful, see also [44]. An early example are Asimov’s three 

Laws of Robotics, but the discussion about their usefulness 

has been rather controversial, see [34]. Machine ethics [12] 

investigates these questions further. 

Controlling risks becomes even more challenging when we 

consider the wider business context. Modern service networks 

integrate many players and bring together different services. 

In such a network, one service provides the prediction, another 

takes a decision, finally a third one selects and executes an 

action. Each service itself can be a conglomeration of many 

agents contributing to the service. The consequences of the 

prediction can thus lie completely outside consideration when 

the prediction service is designed and similarly, for all other 

services. The horizontal and vertical integration of AI 

technology within service networks and across many players 

and industries takes the technology out of its narrow context, 

in which it was usually developed by the community, into an 

open and unknown space with its own dynamics. Businesses 

can thus impact each other in unforeseeable ways. Assessing, 

quantifying, and controlling this impact and its associated 

risks is key to a successful and beneficial application of AI 

technologies. 

Figure 4 summarizes levels of risks one could distinguish 

for further and deeper investigations. 

 

Figure 4. Layers of Context for AI Applications. 

We started with technology-related risks and identified their 

responsible sources. These can accumulate to process-specific 

risks. Within a business, the risks of single processes can sum 

up to business risks. Business risks can also result when 

several players within the same industry accumulate 

technology and process risks. For example in the financial 

sector, process acceleration of online trading systems can 

magnify and speed up unforeseeable impacts. For example, 
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the increased volatility of the stock market can lead to events 

such as for example Black Monday on August, 24 2015. 

Finally, systemic risk can result, which express the possibility 

that an event at the enterprise level could trigger severe 

instability or collapse an entire industry or economy. 

Consequently, control loops over many processes, i.e., entire 

business contexts or economic systems may be required. 

Today, we can find such control loops for example in the 

forms of regulations, e.g., in the financial industry. The 

effectiveness of such regulations is, however, not completely 

known. 

These wider context risks can result even when each player 

is carefully addressing risks in its own processes or business 

contexts as they may completely lie outside the horizon of 

imagination and investigation. Massive applications could 

lead to systemic effects that cannot be dealt with at the level of 

single processes, businesses, or industries. Table 1 lists some 

potential systemic risks that seem to be worth a further study, 

requiring to engage in interdisciplinary research between 

BPM, AI, and other fields. When applying control loops and 

reference behavior we may still miss to identify behaviorial 

deviations that occur, but that are not monitored. In some way, 

any solution is closed-loop, but there are always risks beyond 

that loop. What are the control mechanisms that we need in 

such situations? 

Table 1. Potential Systemic Risks For Selected Businesses. 

Application Area Type of Risks 

Finance financial, economic, political 

Medicine/Health care biological, ethical, societal 

Industry 4.0 environmental, social 

Social Media psychological, societal 

To conclude, here are a few suggestions of questions one 

could address in wider business contexts: 

1. How can we model risks, study the impact of mixed AI 

technology solutions, and investigate effects of scale in 

wider business contexts? 

2. What are notions of stability, including critical state 

variables and their boundaries for specific types of 

business processes or business models? 

3. Could powerful explanation components used by AI 

systems be helpful within a control loop? 

4. How can we improve the systematic and unbiased 

testing of combined AI technology - are there effective 

and scalable validation methods that go beyond test- 

ing? 

5. Which mechanisms for human, artificial, and mixed 

responsibility should be established for a given context? 

6. How can we investigate and develop risk monitoring 

and escalation mechanisms for combined AI technology 

mixes? 

7. How should the fundamental principles of machine 

ethics be formulated and translated into rules and 

boundary conditions for AI-based business process so- 

lutions? 

To illustrate the first point in the above list, let us return to 

business rules as an application area of AI, which lied also at 

the heart of the Custom DU process solution. The recent 

Decision Model and Notation (DMN) standard of the OMG 

[40] defines a notation and exchange format for decisions, 

captured by business rules and represented in decision tables. 

The OMG standard allows users to override the logical 

reasoning over decision tables by a hit policy, which is applied 

in the case of overlapping rules, i.e., when several business 

rules match the input data. Hit policies are based on assigned 

rule priorities or on the position of the business rule in the 

decision table and provide a procedural conflict resolution that 

is used in practice, although overlapping rules often hint 

towards inconsistent business policies. By using mechanisms 

like hit policies, the result of the decision computation 

depends on the physical order of the rules in tables, which is 

not in line with the formal logical reasoning applied by the 

underlying AI-based rule engines. The OMG standard is 

aware of the problematic side of this approach, because a table 

containing such procedural definitions “is hard to validate 

manually and therefore has to be used with care” [40, p. 68], 

but it still admits such an approach as it is also common 

practice by business users. Should one systematically 

investigate and demonstrate the potential risks of such 

approaches and provide better solutions? What are valid 

combinations of logical and procedural reasoning? How can 

we automatically validate and quantify the risks of such 

combinations? 

5. Conclusion 

The optimization and increased flexibility of business 

processes drives three key technologies of artificial 

intelligence research into numerous application domains 

where these technologies are combined and applied at a larger 

scale: machine learning, decision and utility theory, and search 

algorithms. Each technology is very powerful and can provide 

many benefits, which we briefly discuss. Furthermore, for 

each technology we also examine its limits and sources of 

operational risk, and we discuss how we can further evolve 

our understanding of operational risks of AI in BPM. 

We introduce a blueprint for the quantification of 

operational risk for combined AI technology mixes based on a 

forecast-conclude-behave cycle and discuss how the notion of 

risk is exhibited by each technology: confidence level, delta in 

rewards, and sub-optimality of solutions. We discuss 

questions that practitioners can ask to further study the 

quantification and management of risk for each technology as 

well as AI-based technology mixes within their business 

context. In addition, we propose to link AI-based process 

solutions stronger to control theory and approximate 

computing to provide control loops for each technology in the 

cycle as well as over larger business contexts. A key element 

seems to provide references of desirable behavior and to 

develop a systematic notion of stability for AI systems. 
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