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Abstract: Plant biomass allocation is a central issue in ecology. Plant ontogeny, as biotic influencing factors, spurs allocation 

shift among plant different organs. The difficulty is separating the obscure and mixed effect of ontogeny and environmental stress 

on biomass allocation because of lacking specific information during plant whole life history. In combination with theory in 

population dynamics and metabolic theory of ecology, we developed a theoretical framework in biomass allocation to investigate 

the quantitative relationship of leaf biomass fraction vs. plant age, leaf primary productivity fraction vs. plant age. These models fit 

well with the analysis results from empirical forest dataset. The results show that plant photosynthetic efficiency in accumulation 

decrease with plant ontogeny, but the annual growth photosynthetic efficiency has no regression relationship with plant age. In 

addition, plant taxon plays an important role in the relationship of leaf biomass fraction and plant age, and evergreen plants have a 

higher leaf biomass fraction than deciduous ones. The research here will provide a foundation for further understanding the effect of 

both plant “true plasticity” and “apparent plasticity” on plant biomass allocation patterns, respectively. 
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1. Introduction 

Plant biomass partitioning pattern plays an important role in 

ecological research [1-3]. A clear understanding in the 

relationship between plant above- and belowground biomass 

can provide significant directions to global carbon sink 

estimation caused by the fact that plant root system (difficult to 

measure directly) is often estimated through plant aboveground 

biomass indirectly [4]. The plasticity of allocating energy to 

different plant organ parts strongly affect the decision farmers 

make to harvest maximum agricultural products they want [5], 

and the allocation patterns between plant photosynthetic and 

non-photosynthetic organs have strong links to improve 

ecosystem net primary productivity (NPP) [6, 7]. Therefore, 

large number of investigations try to find how biotic and abiotic 

factors influence plant biomass allocation patterns both 

theoretically and empirically [1, 3, 8-12]. 

One of the most important theories in biomass allocation is 

isometric and allometric theory derived from metabolic theory 

of ecology, which believes that there is an isometric 

relationship between plant above- and belowground biomass, 

while leaf biomass scales as 3/4 power of plant total biomass 

[1, 13-15]. These allocation patterns, derived through 

mathematical approaches, turns out to be general and is 

demonstrated by large quantity of empirical data worldwide 

along different precipitation and temperature gradients [1, 2], 

which suggests that the scaling exponents used in allometric 

approach is highly insensitive to environmental factors. 

Another important theory is optimal allocation theory 

which believes that plants allocate more biomass to the parts 

that is subjected to more environmental stress [16, 17]. For 

example, more photosynthetic product will be allocated to 

plant belowground part when plant is subjected to water stress, 

which explains the phenomenon that shrubs living in deserts 

have very developed root systems, while plants living in dark 

have smaller root shoot ratio because of lacking light [3, 18, 



 Ecology and Evolutionary Biology 2022; 7(2): 23-29 24 

 

19]. In comparison with isometric theory, optimal allocation 

theory indicates that plant biomass allocation pattern is 

strongly influenced by environmental factors such as 

precipitation and temperature [3, 11]. This contradictory 

paradox partly owes to the fact that the index of root shoot 

ratio mathematically is much more sensitive to variables than 

scaling exponents. 

However, one of the problems is that plant plasticity among 

different organs predicted by optimal allocation theory is 

much easy to be obscured by the phenomenon of ontogenetic 

drift [3, 11]. Defined by Evans (1972), ontogenetic drift is 

applied into plasticity of biomass allocation to describe the 

phenomenon that plant biomass allocation pattern changes 

with plant ontogeny [20]. For example, previous research 

indicates that root shoot ratio for trees is much higher initially 

when plant is seedlings for establishment, and then it becomes 

smaller with plant ontogeny [21-23]. To distinguish the 

"apparent" and "true" plasticity in biomass allocation, 

empirical data analyses indicate that optimal allocation theory 

can only partly tested by the plasticity of biomass allocation 

patterns [11]. Some researches even found that plant ontogeny 

plays a much more important role in biomass allocation 

pattern than environmental factors such as resource 

availability emphasized by optimal allocation theory [17]. 

Therefore, it cannot be ignored to investigate how plant age 

regulates plant photosynthetic allocation pattern. 

Most researchers who study age-dependent biomass 

allocation pattern pay much attention to leaf traits such as leaf 

dry biomass per unit leaf area, fraction of total plant dry 

biomass in leaves and leaf area ratio because the 

photosynthetic organ leaf has strong links to plant potential for 

light harvesting and, accordingly, species status in vegetation 

community [24, 25]. Empirical data from both herbaceous and 

woody plants demonstrates that plant leaf biomass fraction 

declines with plant ontogeny [25-27]. Much biological 

mechanisms have been proposed to explain this phenomenon. 

For example, woody plants accumulated much biomass in 

stem so that to resist gravity and support the whole plant 

establishment [28]. However, large gap still exists in our 

understanding of photosynthetic product allocating to plant 

leaf in response to ontogeny because much attention has been 

paid to the general variation trend, while the specific dynamics 

as well as the intrinsic mechanism is still not clear. 

The main goal in this study is to investigate the ecological 

dynamics of leaf biomass allocation traits (leaf biomass 

fraction and leaf net primary productivity fraction) with plant 

age based on the classical theory in population dynamics. We 

use the mathematical models to theoretically predict the 

variation dynamics, and then global forest data set is used to 

empirically demonstrate the prediction from both individual 

and community level, respectively. Further, global forest data 

set is separated into different subsets to study the different leaf 

photosynthetic product allocation patterns in response to plant 

age between natural and planted forests as well as among 

different plant families. Specifically, we make a comparison 

between evergreen gymnosperm and deciduous angiosperm 

for the relationship of leaf biomass fraction vs. plant age. 

2. Materials and Methods 

2.1. Theoretical Model 

Metabolic theory of ecology indicates that plant leaf biomass 

scales as 3/4 power of plant total biomass [13-15, 29]. Therefore, 

leaf biomass fraction (LMF, i.e. the quotient of leaf biomass and 

total biomass) scales as -1/4 power of plant total biomass. That is: 
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Where ML and MT represent plant leaf biomass and plant 

total biomass respectively. The logistic equation model has 

been widely used to describe population dynamics for both 

plants and animals as well as to describe individual plant 

growth process [30, 31]. This derives from the fact that 

environment or plant biophysical traits impose limitations to 

population or individual plant growth so that plants cannot 

have a constant growth rate. It contains much ecological 

implications although the model is simply [32, 33]. Here, we 

use the integral form of logistic equation model: 
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Where t, mt, Mmat and g represent plant growth time (i.e. 

plant age), individual plant total biomass at time t, plant 

maximum total biomass and plant intrinsic growth rate 

respectively, while a represents normal constant. Assuming 

studying equation (1) and (2) at the same plant growth time, 

the variables of MT and mt are the same. Thus, the relationship 

between plant leaf biomass fraction and plant growth time can 

be expressed as the following: 
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Where α is another normal constant. According to equation (3), 

plant leaf biomass fraction decreases with plant ontogeny, which 

indicate that plant photosynthetic capacity or efficiency become 

weak during plant whole life history although the amount of net 

primary productivity (NPP) increase before plants come to 

mature. However, this does not mean that plant leaf NPP fraction 

(LPF, i.e. the quotient of leaf NPP and plant total NPP) has the 

same or similar variation tendency. In order to investigate this 

point, we study the relationship between plant leaf productivity 

(PL) and plant total productivity (PT). Assuming that L TP Pβ∝ , 

then LPF
1

TPβ −∝ . Thus, leaf NPP fraction will be independent of 

plant total NPP on condition that the scaling exponent β equals 1, 

and it will not be subject to plant ontogeny. 

2.2. Empirical Test 

To evaluate the theoretical framework proposed, we 

collected the directly measured forest data from both 

individual and community level. Assuming that there is a 

consistent data analysis result between individual and 

community level, the hypothesis which is appropriate to 
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individual plant may also be applied to plants in community 

level. This assumption is based on the truth that both LMF and 

LPF are fractions which canceled the effect of plant density 

between denominator and numerator. Moreover, the 

conclusions derived from empirical data may be affected by 

environmental and other biotic factors. Therefore, we 

analyzed the natural and planted forest data separately to 

observe the effect of artificial treatment on the relationship 

between biomass allocation pattern and plant ontogeny, and 

the effect from biophysical traits were reviewed based on the 

comparisons among several main families contained in the 

dataset. Leaf biomass fraction which represents the 

accumulation of photosynthetic carbohydrate may response 

differently to plant age in comparison with leaf NPP fraction 

which represents the new obtained assimilation production 

each year, and the scaling relationship between leaf net 

primary productivity and total net primary productivity was 

inspected before studying the relationship between leaf NPP 

fraction and plant age. 

2.3. Data Collection 

Two forest data sets were used to examine the theoretical 

framework predictions. The two data sets are (1) the forest 

biomass and primary production compendium for Eurasian 

species compiled by Usoltsev (2001) [34], and (2) the biomass 

and allometry database for individual woody plants [35]. We 

used the first data set [34] to study the relationship of leaf 

biomass fraction vs. plant age at community level as well as to 

study the relationships of leaf NPP fraction vs. plant age and 

leaf NPP vs. total NPP. We used the second data set [35] to 

study the relationship of leaf biomass fraction vs. plant age at 

individual level. 

The following several criterions were used to cull the two 

compilations: i) the data reported for each forest individual or 

community must contain all the variables we need to test our 

theoretical frameworks. In other words, they must contain 

photosynthetic functional traits (leaf and total biomass or leaf 

and total NPP) and plant age. ii) All the variables we selected 

must be directly measured rather than estimated from other 

variables. This can make sure our models are tested reasonably. 

iii) For the analysis among different plant families, the 

minimum sample size is 30 for each family selected so that it 

is suitable to do regression analysis. 

2.4. Statistical Analysis 

We used non-linear regression method to study the 

relationships of leaf biomass fraction vs. plant age, leaf NPP 

fraction vs. plant age with software Origin Pro 8. RMA 

regression method is a widely used approach to study the 

allometric and isometric scaling relationships [10, 31, 

36-42], and we use RMA method to calculate the scaling 

relationship between plant leaf productivity and plant total 

productivity. 

3. Results 

The analysis results indicate that the regression relationship 

between leaf biomass fraction and plant age can be tested by 

the theoretical models we developed from both individual and 

community level (Figure 1). The nonlinear regression analysis 

shows that the regression equation used for the relationship 

between leaf biomass fraction and plant age at individual level 

(r
2
=0.46) is much similar to that at community level (r

2
=0.42) 

(Figure 1). 

 
Figure 1. Non-linear regression relationship between leaf biomass fraction and plant age in (A) individual level and (B) community level with empirical forest 

dataset. All datasets used here are obtained through directly measured method without deriving from allometric relationships. 

The leaf biomass fraction is higher for planted forests than 

for natural forests in individual level through the whole life 

history, while planted forests in community level have a faster 

decreasing speed with plant ontogeny which makes the leaf 

biomass fraction higher at the beginning and lower in the end 

for planted forests than for natural forests (Figure 2, A and B). 

The regression r
2
 is higher for most of the families than that 

for the pooled data analysis results both in individual and 

community level (Figure 2, C and D), which suggest that plant 

taxon plays a role in the interested relationships. 
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Although there is a strong relationship between leaf biomass 

fraction and plant age, data analysis results show that there is no 

relationship between leaf NPP fraction and plant age (Figure 3, 

A). In addition, the log-log transformed regression analysis 

shows that the scaling exponent between leaf productivity and 

total productivity approximates to 1 (r
2
=0.66) (Figure 3B). The 

comparison between evergreen gymnosperm and deciduous 

angiosperm shows that leaf biomass fraction is higher for 

evergreen gymnosperm than that for deciduous angiosperm 

throughout all age stages (Figure 4). 

 
Figure 2. The effect of different taxons on the relationship of leaf biomass fraction and plant age. (A) Comparisons between natural and planted forest in 

individual level, (B) comparisons between natural and planted forest in community level, (C) comparisons among different plant families in forest individual level, 

(D) comparisons among different plant families in forest community level. 

 
Figure 3. Effects of plant age on leaf net primary productivity fraction (LPF) and mechanism in it. (A) Regression result shows that there is no relationship 

between LPF and plant age. (B) Scaling relationship between plant leaf and total primary productivity. The scaling exponent approximates to 1, which predict the 

weak relationship between LPF and plant age based on the theoretical or hypothesis proposed in the main text. 
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Figure 4. Comparison between evergreen gymnosperm and deciduous 

angiosperm for the relationship between leaf biomass fraction and plant age. 

4. Discussion 

This study focus on the effects of influencing factors on 

plant biomass allocation, which is a classic issue [5, 6, 19, 23, 

27]. The relationship in Eq. (3) is well-supported by the 

available data. Our investigation about the relationship 

between leaf biomass fraction and plant age from both 

empirical and theoretical perspectives provides a method to 

study how plant photosynthetic product allocation varies with 

plant ontogeny through “apparent plasticity” rather than “true 

plasticity”. Apparent plasticity suggests that plant biomass 

allocation is subject to biotic influence such as plant ontogeny, 

while true plasticity indicates that environmental factors such 

as precipitation and temperature play an important role in 

plant biomass allocation pattern [11]. However, in most cases, 

the intrinsic truth in biomass allocation are confused by 

optimality or ontogeny because optimal allocation theory 

indicate that plant allocate more biomass to the parts that are 

subject to more environmental stress, which usually have a 

similar trend in comparison with the variation of biomass 

allocation in response to plant ontogeny [11, 23]. The 

quantitative relationship between leaf biomass fraction and 

plant age provide a theoretical method to separate the two 

effects (ontogeny and optimality) on biomass allocation. With 

the mathematical model we developed, an age-dependent leaf 

biomass fraction (i.e. leaf biomass fraction weighed by plant 

age) can be calculated to study the net effect of environmental 

stress on plant leaf biomass fraction. 

Contrary to the relationship between leaf biomass fraction 

and plant age, data analysis results indicate that there is no 

regression relationship between leaf NPP fraction and plant 

age. This amazing fact is possibly explained by the following 

two points: i) this demonstrate the hypothesis proposed in 

our theoretical framework as it turns out to approximate to 1 

for the scaling relationship between leaf and total net 

primary productivity based on the investigation of empirical 

forest data analysis (Figure 3, B). Therefore, the quotient 

between leaf and total net primary productivity is a constant 

and does not vary with plant total net primary productivity. 

Further, according to our theoretical models, leaf NPP 

fraction does not vary with plant age. ii) Primary 

productivity is measured by the new obtained part of plant, 

which means that both leaf and total primary productivity 

just include the alive and activated plant organs, while plant 

total biomass contain large amount of non-active tissues for 

studying the allometric relationship of leaf vs. total biomass 

derived from metabolic theory of ecology [13-15, 28]. The 

difference between leaf biomass fraction and leaf NPP 

fraction in response to plant age suggests that plant leaf and 

total biomass cannot be regarded as the simple sum or the 

accumulation of annual new obtained photosynthetic product 

although leaf primary productivity varies proportionally with 

plant total primary productivity. 

The differences between plantation managed and field wild 

forests in terms of the relationship between leaf 

photosynthetic production allocation and plant ontogeny 

indicate that planted treatment affects the variation of leaf 

biomass fraction with plant age. Plants acquire relatively more 

water or nutrients under human managed condition, which 

result in less photosynthetic production allocated to plant root 

based on optimal allocation theory [3, 11, 23]. Therefore, the 

higher leaf biomass fraction suggests that more photosynthetic 

production is allocated to leaf for planted forests than for 

natural ones. However, this rule cannot apply to vegetation in 

community level (Figure 2, B), which suggests that 

community structure and interactions can change the effect of 

plant ontogeny on plant biomass allocation pattern although 

the effect of density is canceled between denominator and 

numerator for leaf biomass and productivity fractions. In 

addition, plantation managed forests have faster decreasing 

speed of leaf biomass fraction with plant age, and it suggests 

that more and more photosynthetic production is allocated to 

plant non-photosynthetic organ parts such as plant stem which 

is one of the main intentions for plantation management and 

application. The different variation curves for different plant 

families attribute to plant traits in tree physiology. For 

instance, Taxodiaceae has a much higher leaf biomass 

fraction than Betulaceae. This derives from the fact that most 

Taxodiaceae plants are evergreen while Betulaceae belongs 

to deciduous angiosperm, and leaf biomass fraction is much 

higher for evergreen than for deciduous (Figure 4). 

Evergreen plants can have leaves all the time during plant 

ontogeny and development because not all leaves dropping 

down each year, and new leaves will generate next year. This 

leads to the accumulation of leaf amount for evergreen plants 

year after year, while deciduous plants have no leaves left 

after growing season every year and their survival depends 

on the leaves new generated in the current year [2]. As a 

result, consistent with previous research [12, 19, 27, 43], 

evergreen plants have a higher leaf biomass fraction than 

deciduous plants (Figure 4). 

With the relationship between leaf biomass fraction and 

plant age, we make a bridge to integrate plant individual 

biomass allocation pattern into population dynamic, which lay 
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a foundation for further understanding the role plant biomass 

partitioning played in the process of population self-regulation. 

Moreover, the famous logistic equation is the basis for many 

important ecological theories such as metapopulation, which 

suggest the possibility to apply biomass allocation theory into 

metapopulation theory [44-46]. Previous research indicates 

that the persistence of a metapopulation comes true on 

condition that per-patch colonization rate is greater than the 

inverse of mean patch age [47]. Assuming each patch in a 

metapopulation is a population or community, and the 

succession or mean patch age is regarded as the process of 

plant ontogeny, the theoretical framework developed here will 

make the future extension work clear: under certain specific 

plant photosynthetic efficiency, what per-patch colonization 

rate should be required in order to make a metapopulation 

persistence. 

The logistic equation we used here is the simplest one, and 

it does not contain many other influencing factors such as time 

lag which will make the dynamics a little complex. Base on 

the simplest logistic equation, there will be an equilibrium at 

the end of plant ontogeny and leaf biomass fraction turn out to 

be a stable value. However, things will change when time lag 

is considered especially under the circumstances that the 

product of population growth rate and time lag is greater than 

0.35 according to the theory in population dynamics [32, 48, 

49]. If population time lag is so long that Hopf’s bifurcation 

occur [50, 51], a stable system will be unstable [49, 52], and 

plant leaf biomass fraction will vary. More empirical data 

analyses are worthy to demonstrate this prediction. The 

theoretical predictions make a caution that more attention 

should be paid to population dynamics when evaluating forest 

belowground carbon storage. 

5. Conclusion 

How plant photosynthetic production allocated to plant leaf 

organ parts plays an important role in both theoretical 

predictions and empirical test of ecological systems. Our 

results suggest that plant leaf biomass fractions decrease 

during plant ontogeny from both community level and 

individual level. Moreover, this relationship is regulated by 

plant taxon, and evergreen plants have a higher leaf biomass 

fraction than deciduous ones. However, plant ontogeny has no 

effect on the annual growth photosynthetic efficiency. Our 

work provides theoretical foundation in studying the effect of 

both plant “true plasticity” and “apparent plasticity” on the 

allocation patterns among different plant organ parts, 

respectively. 
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