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Abstract: The problem how to reduce damage to tubers when they are dug up is urgent. For the new design of a vibrating 

digging working body for root crops the mathematical model of longitudinal vibrations of a root crop in the soil is developed as 

an elastic body in an elastically damped medium. The Ostrogradsky-Hamilton variational principle is applied for the analytical 

description of the process. The Ritz method was applied to find the frequencies of natural vibrations, the amplitudes of forced 

vibrations of a root crop as a solid elastic body when it is captured by a vibrating digging body. The frequency equation for the 

discussed vibrational process was obtained. The values of the first proper frequency of longitudinal vibrations of the considered 

elastic body of the root crop with specific geometric physical parameters are found. Graphs of the dependence of the first natural 

frequency upon the elastic deformation coefficient, the damping coefficient of the soil as an elastic damping medium are obtained. 

When the soil damping coefficient changes within 0 to 10 N·s
2
·m

–3
, the first proper frequency changes within 500 to 750 s

-1
 (80 to 

119 Hz) at soil elastic deformation coefficient 2·10
5
 N·m

–3
. Dependence of the elastic body forced vibration amplitude upon the 

change in the amplitude of the disturbing force have been obtained. When the amplitude of the disturbing force changes within 

100 to 600 N, the amplitude of forced vibrations of the root crop body changes within 0.30 to 0.68 mm. 

Keywords: Root Crop, Longitudinal Vibrations, Amplitude, Damper 

 

1. Introduction 

Sugar beet growing is an important agricultural sector in 

many European countries [1-3]. Of all production operations, 

sugar beet harvesting is the most laborious costly 

technological process [4]. In order to ensure the storage of 

sugar-containing root crops for a certain period to ensure 

further high quality processing, it is necessary to separate the 

soil, tops other impurities from the root crops during 

harvesting [5-7]. 

When digging out root crops from the soil, there is a 

problem of reducing the degree of breaking of the tail parts of 

their bodies during extraction from the soil, ruptures of the 

outer surface, chips other damage [8-10]. The existing digging 

bodies for root crops, operating in a wide variety of conditions 

(different hardness moisture of the soil surrounding the root 

crops, non-straightness of the crop rows, etc.), are not always 

able to fulfil the specified requirements, which leads to 

significant losses of the grown crop [11]. 

The more advanced widely used vibratory digging tools for 



26 Volodymyr Bulgakov et al.:  Mathematical Model of Root Crop Digging with Longitudinal Vibrations  

 

root crops do not exclude the loss damage of root crops either, 

especially when they are dug from the hard soil [4]. 

However, the main disadvantages of the vibratory digging 

working bodies are low reliability (this applies, first of all, to 

the vibration drive), which occurs when working especially on 

heavy hard soils, increased metal consumption energy 

consumption of this technological process, in general [12]. 

The presence of digging working bodies of the vibratory type 

in the of design of a multi-row root harvester which have a 

significant mass perform vibratory movements with a 

frequency of 20 Hz, generally contributes to the creation of 

large loads and a decrease in the reliability of work [4, 12]. 

Therefore there is a need for further development of new 

provisions of the theory of vibrational digging of root crops, 

which can be efficiently used to substantiate the design 

parameters of more advanced digging working bodies of the 

root harvesting machines [14-16]. In particular, when 

simulating vibrational digging, a root crop in the soil (actually 

fixed in it) can, with a certain degree of accuracy, be presented 

as an elastic rod with one end fixed in an elastic damping 

medium, which is subject to vibrations, transmitted from a 

vibrating digging working body. 

Fundamental analytical studies of transverse vibrations of 

the root crop body were carried out published in [17], where 

the root crop was modelled as a cone-shaped body with one 

point fixed in the lower part, which has elastic properties. 

Besides, the transverse vibrations of the body of the root crop 

are described using a partial differential equation of the fourth 

order. The solution of this equation made it possible to 

determine the proper frequencies of the free transverse 

vibrations of the body of the root crop. The process of 

extracting a root crop from the soil in this study is directly 

investigated according to the additional equations of 

kinetostatics, which made it possible, with a certain degree of 

accuracy, to find the conditions for its complete extraction 

from the soil. 

However, from a structural technological point of view, 

high-quality efficient digging of root crops from the soil by 

creating lateral vibrations for the latter turned out to be 

practically unfeasible, which necessitated the use of devices 

that ensure the transfer of the vibration forces to the bodies of 

the root crops in the longitudinal-vertical plane. 

The theory of vibrational digging of root crops from the soil 

with the application of disturbing forces in the 

longitudinal-vertical plane in a fundamentally new 

formulation was published in [18, 19]. The case of transverse 

free forced vibrations of a root crop as an elastic body with the 

coinciding directions of the disturbing forces with the 

direction of the forward movement of the vibrating digging 

working body was published in [11, 20], it is of interest from 

both theoretical practical points of view. Therefore, there is a 

need to consider the general problem of longitudinal 

vibrations of a root crop as a solid elastic cone-shaped body, 

fixed in the soil, taking into account its elastic damping 

properties. This problem can be solved using the general 

theory of vibrations of straight rods of variable cross-section, 

presented in [17]. 

Purpose of the study – analytical determination of the 

optimal parameters of the process of the root crop vibrations 

during their vibrational digging from the soil based on the 

theory of longitudinal vibrations of an elastic cone-shaped 

body, located in an elastic damping medium. 

2. Mathematical Description 

The research was carried out using the methods of the 

theory of agricultural machines, analytical mechanics, higher 

mathematics, in particular the theory of oscillations, 

variational methods, methods for studying holonomic systems, 

as well as compiling programs carrying out numerical 

calculations of systems of differential equations, using a PC 

[21–28]. 

We have created a design of a new vibration-type digging 

working body for root crops, which is protected by the Patent 

of Ukraine [29]. The structural technological diagram of this 

digging working body and its general view is shown in Figure 

1. 

 

Figure 1. A vibrating-type digging tool for root crops: (a) – constructive 

technological scheme; (b) – general view 1 – a digging blade; 2 – an inclined 

post; 3 – a bracket for fastening the inclined posts; 4 – the drive of the 

vibratory movement; 5 – fingers for guiding the dug up roots. 

The vibration-type digging tool for the root crops creates 

longitudinal vibrations of the root crops, it consists of two 

digging blades installed at an angle to each other, which move 

at a pre-set depth of travel in the soil cover the row of root 

crops from both sides. Each digging blade is installed at the 

end of an individual inclined post, which by means of brackets 

for fixing the individual inclined posts are connected to the 

drive of the said digging blades in a vibratory movement. The 

drive has a screw mechanism that can set various frequency 

amplitude of vibratory movements of the digging blades in the 

following ranges: frequency – 8 to 30 Hz, amplitude – 8 to 24 

mm. To exclude the loss of root crops at the final stage of their 

extraction from the soil, fingers are used, which provide the 

direction of the movement of the dug root crops, which form 

two additional lattice planes are installed at the rear ends of 

each digging blade. 

The technological process of digging out root crops from 

the soil with this vibrating-type digging working body is 
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carried out in such a way that the digging blades, covering the 

root crop from both sides during the forward movement along 

the row of crops, contact them, transfer the longitudinal 

vibrations to the root crops, destroy their bonds with the soil, 

loosen, thanks to the tapering working bed during the forward 

movement, is lifted up. At the same time, the bulk of the soil is 

not captured together with the root crops but remains in the 

extraction zone. 

In order to construct a mathematical model of vibrations of 

a root crop as an elastic body during its vibrational digging, 

taking into account the elastic damping properties of the soil in 

which it is actually fixed, it is first necessary to construct an 

equivalent scheme. Figure 2 shows this equivalent scheme in 

which the root crop is presented in the form of a conical body 

with an apex angle 2γ . The root crop is actually fixed in the 

soil, its upper part is slightly above the soil surface. 

 

Figure 2. An equivalent scheme of longitudinal vibrations of a root crop as an 

elastic body in an elastic damping medium. 

Thus there is every reason to model the root crop in the soil 

as a rod of variable cross-section with a fixed lower end (point 

O is the lower anchor point). In the soil at a preset depth of 

movement of the vibrating-type digging working body is 

conditionally presented by two planes, located at an angle 

(blades 1 in Figure 1), which at the same time cover the root 

crop from its two sides, as shown in the equivalent scheme, 

contacting it. The contact of the planes of the digging working 

body of the vibration type with the body of the root crop 

occurs at a pre-set depth in the soil is carried out at two points 

1K  2K . The length of the root crop is indicated by h . 

Let us show the forces applied to the cone-shaped body of 

the root crop. At the previously indicated points of contact 1K  

2K , the disturbing forces .1dfQ  .2dfQ  are transmitted to the 

root crop from the digging working body of the vibration type, 

the vectors of which are directed upwards are parallel to each 

other. These are the forces that cause longitudinal vertical 

vibrations of the root crop. These forces are applied at distance 

1x  from the conditional point O  of anchoring the root crop 

in the soil. At the centre of mass of the root crop, which is 

indicated by point C , the force of its weight G  is applied. 

The soil surrounding the cone-shaped body of the root crop is 

presented in the form of two elastic damping models located in 

the longitudinal-vertical plane having the same elastic 

coefficients and damping coefficients c and b respectively. 

Next we denote on the equivalent scheme a coordinate 

system Ox  in which the origin is at a point O , axis Ox  

coincides with the longitudinal symmetry axis of the 

cone-shaped body of the root crop is directed vertically 

upward. In the equivalent scheme, the current coordinate (the 

distance from point O  to an arbitrary cross-section of the 

root crop body, which moves along axis Ox  during the 

longitudinal deformation of the root crop elastic body) is 

denoted by x . The direction of vibrations of both planes of 

the vibrating digging working body is shown in the equivalent 

scheme by arrows. 

It should also be remarked that the dynamic system “root 

crop – soil – working body” that we are considering is a 

system with holonomic connections since the connections do 

not depend on the velocities of the system elements. 

To study the vibrations of holonomic systems with an 

infinite number of degrees of freedom, the 

Ostrogradskiy-Hamilton principle of stationary action or, as it 

is often called, the principle of the least action, is most 

applicable (Bulgakov et al. 2015). In addition, in the theory of 

longitudinal, torsional transverse vibrations of straight rods, 

the Ostrogradsky-Hamilton equations of the following form 

are most widely used [30]: 

2

1

2 2 2

2 2
, , , , , , ,

t l

t o

y y y y y
S L t x y d x d t

t x t xt x

 ∂ ∂ ∂ ∂ ∂=   ∂ ∂ ∂ ∂∂ ∂ 
∫ ∫   (1) 

where L=T – P – the Lagrange function; T – the kinetic energy 

of the system; P – the potential energy of the system. 

The function S has dimensions of the product of work by 

time (dJ·s). It is a special kind of action called 

“Ostrogradsky-Hamilton action”. The essence of the 

Ostrogradsky-Hamilton principle is that the action of S on the 

actual movement has a stationary value compared to its values 

along any roundabout paths that transfer the system from one 

initial position to the same final position in the same time 

interval t2 – t1. In addition, on the actual movement the 

variation of action S is always equal to zero, that is 0Sδ = . 

As we see from expression (1), the subintegral function of S 

depends not only on the first-order derivatives but also on the 

second-order derivatives, although it can also depend on 

higher-order derivatives. For such function the necessary 

conditions for an extremum will be expressed by partial 

differential equations of the fourth higher orders. To study the 

longitudinal vibrations of a root crop as an elastic body in an 

elastic damping medium, using the Ostrogradsky-Hamilton 

principle, it is necessary to specify an analytical expression for 

the disturbing force. In this case, the longitudinal vibrations of 

the root crop will occur under the action of the 

above-mentioned vertical disturbing force dfQ , which can be 
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taken as varying according to the harmonic law of the 

following analytical form: 

( ) ( )sindfQ t H tω= ,             (2) 

where H – the amplitude of the disturbing force, N; ω – the 

disturbing force frequency, s
–1

, t  – the current time, s. 

Next, we will compose the Ostrogradsky-Hamilton 

function S for the considered vibration process. For this, we 

will introduce the necessary notation. So we will assume that 

F(x) is the cross-sectional area of the root crop at any point, 

located at a distance x from the lower end; (m
2
); E is Young's 

modulus for the root crop material, (N·m
–2

); у(x, t) is the 

longitudinal displacement of any cross-section of the root crop 

at time t, (m); Q(x, t) is the intensity of the longitudinal 

external load, directed along the axis of the root crop, (N·m
–1

); 

µ(x) is the running weight of the root crop, (kg·m
–1

). 

Let us first write the Ostrogradskiy-Hamilton function S 

that can be used to describe the longitudinal vibrations of a 

root crop as an elastic body, using the well-known expression 

for the case of longitudinal vibrations of straight rods, in the 

following form [17]: 

( ) ( ) ( )
2

1

2 2
1

,
2

t h

t o

y y
S x E F x Q x t y d x d t

t x
µ
     ∂ ∂
= − ⋅ +    ∂ ∂    

∫ ∫  (3) 

where 
y

t

∂
∂

 – the rate of longitudinal deformation of the 

elastic body of the root crop (the rate of longitudinal 

displacement of any cross-section of the root crop), (m·s
–1

); 

y

x

∂
∂

 – a change in the longitudinal deformation of the elastic 

body of the root crop per unit of its length (dimensionless 

value, more precisely, m·m
–1

); ( )
2

0

1

2

h
y

x dx
t

µ
 ∂⋅ ∂ 

∫  – the 

kinetic energy of longitudinal displacements of the elements 

of the root crop body (longitudinal vibrations of the root crop 

body), (dJ); ( )
2

0

1

2

h
y

E F x dx
x

 ∂⋅ ⋅ ∂ 
∫  – the potential energy of 

elastic deformation of the root crop body (work of the 

restoring elastic forces), (dJ); ( )
0

1
,

2

h

Q x t y dx⋅∫  – the 

potential energy of stretching of the root crop body from the 

longitudinal load ( ),Q x t , (dJ). 

Let us find the values of all quantities included in 

expression (3). Considering that the root crop has the shape of 

a cone, we find that the area of its cross-section F(x) at a point 

located at an arbitrary distance x from point O will be equal to: 

( ) 2 2tanF x xπ γ= ⋅ ⋅                (4) 

Clearly, the linear mass of the root crop can be determined 

using the following expression: 

( ) ( ) 2 2tanx F x хµ ρ ρ π γ= ⋅ = ⋅ ⋅ ⋅         (5) 

where ρ – the density of the root crop (kg·m
–3

). 

Since value Q(x, t) included in function (3) is the intensity 

of the distributed load which is measured in (N·m
–1

), the 

disturbing force must have the dimension of the load intensity. 

By means of the impulsive function of the first order σ1(x) (the 

Dirac function) in [30] it is possible to determine the intensity 

of the concentrated load thus to include the concentrated 

forces into the load distributed along the length. 

So, if dfQ  a is a concentrated disturbing force applied at 

the point x1 measured in Newtons, then the function: 

( ) ( ) ( )1 1,df dfQ x t Q t x xσ= ⋅ −           (6) 

has dimension (N·m
–1

) expresses the intensity of the 

concentrated load at point x1. 

The function σ1(x – x1) will be equal to zero for all x, except 

for x=x1, where it turns into infinity. 

If the disturbing force dfQ  changes according to law (2), 

then, according to (6), we can write: 

( ) ( ) ( )1 1, sindfQ x t H t x xω σ= ⋅ ⋅ −       (7) 

Since the solid elastic body of the root crop is connected to 

the soil which is an elastic damping medium, then, when a 

disturbing force (2) acts upon it, a force of resistance of the 

soil to the movement of the body of the root crop arises during 

its vibration. This force also affects the process of proper 

vibrations of the body of the root crop in the soil, especially at 

the beginning of the vibratory process, when its bonds with the 

soil have not yet been broken. 

It is obvious that the force of elastic soil resistance (for the 

entire root crop) is a distributed load over the area of its 

contact with the soil, therefore we define its intensity as the 

force of soil resistance to the displacement of a unit of root 

crop length. 

Let c be the coefficient of elastic deformation of the soil 

(the ratio of the first Winkler coefficient to the contact area, 

N·m
–3

. Then intensity P(x, t) of the soil resistance to the 

movement of the body at point x will be equal to: 

( ) ( ), 2 tan ,P x t c x y x tπ γ= ⋅ ⋅ ⋅ ⋅         (8) 

Indeed, the length of the circle covering the cross-section of 

the root crop body, located at distance x  from the conditional 

point O  of fixing the root crop in the soil, will be equal to 

2 tanxπ γ⋅ ⋅ . Then the contact area of the surface of the soil 

surrounding the root crop as a result of longitudinal 

deformation of the body of the root crop will be equal to 

( ),y x t  will be ( )2 tan ,x y x tπ γ⋅ ⋅ ⋅  then the intensity 

( ),P x t  of the soil resistance will be determined according to 

expression (8). 

Next let us take into account the damping properties of the 

soil. Let b be the soil damping coefficient, measured in 

(N·s
2
)·m

–3
. 



 Engineering Mathematics 2021; 5(2): 25-38 29 

 

Since the deformation rate of the root crop body is 

sufficiently high, hence the high deformation rate of the soil 

surrounding the root crop, we will assume that the soil 

damping force will have a quadratic dependence on the 

deformation rate 
( ),y x t

t

∂
∂

 of the root crop body itself. Then 

the damping force of the soil to the movement of the root crop 

at point x, taking into account its conical shape, will be 

determined using such an expression: 

( ) ( ) 2
,

, 2 tan
y x t

R x t b x
t

π γ
 ∂

= ⋅ ⋅ ⋅ ⋅  ∂  
      (9) 

Taking into account expressions (4), (5), (7) – (9), the 

Ostrogradsky-Hamilton functional (3) will have the following 

form: following form: 

( ) ( ) ( )

( )

2

1

2
2

2 2 2 2
1 1

2
2

1
tan tan sin ,

2

2 tan , 2 tan .

t h

t o

y y
S x E x H t x x y x t

t x

y
c x y x t b x dx d t

t

ρ π γ π γ ω σ

π γ π γ

 ∂ ∂   = ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅ ⋅ − ⋅ −    ∂ ∂   

∂  − ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅  ∂  

∫ ∫
       (10) 

Since the proper frequencies are associated with free 

vibrations of the system, it is necessary to select in function 

(10) that part which describes precisely the free vibrations of 

the system. Clearly, this will be a function 1S  of this kind: 

( )

2

1

2 2

2 2 2 2
1

2

2

1
tan tan

2

2 tan , 2 tan .

t h

t o

y y
S x E x

t x

y
c x y x t b x

t

ρ π γ π γ

π γ π γ

    ∂ ∂
= ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ −   ∂ ∂    

 ∂
− ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ∂   

∫ ∫
 (11) 

When finding the proper form frequencies of longitudinal 

vibrations of a root crop in the soil, we will rely on the general 

principle of the linear theory of vibrations – the principle of 

superposition of small vibrations, that is, we will assume that 

the small vibrations of a system with an infinite number of 

degrees of freedom represent the superposition of the main 

harmonic vibrations. Guided by this principle, we will look for 

harmonic longitudinal vibrations of the root crop in the 

following form: 

( ) ( ) ( ), siny x t x p tϕ α= ⋅ + ,         (12) 

where φ(x) – the proper form of the main vibrations; p – the 

proper frequency of the main vibrations. 

By substituting expression (12) into functional (11), we 

obtain: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

1

22 2 2 2 2 2 2 2
1

2 2 2 2 2

1
tan cos tan sin

2

2 tan sin 2 tan cos .

t h

t o

S x x p p t E x x pt

c x x p t b x x p p t d x d t

ρ π γ ϕ α π γ ϕ α

π γ ϕ α π γ ϕ α

 ′ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + − ⋅ ⋅ ⋅ ⋅ + −  


− ⋅ ⋅ ⋅ ⋅ ⋅ + − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + 


∫ ∫
      (13) 

Integrating expression (13) over t within one period T=2π · p
–1

, we will have: 

( ) ( )

( ) ( )

22 2 2 2 2 2
2

2 2 2

tan tan
2

2 tan 2 tan .

h

o

S x x p E x x
p

c x x b x x p dx

π ρ π γ ϕ π γ ϕ

π γ ϕ π γ ϕ

 ′ = ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ −  



− ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ 



∫
                   (14) 

To find the proper form frequencies of longitudinal 

vibrations of the body of a root crop in the soil, the Ritz 

method is used [30]. 

The essence of the Ritz method is to reduce the variational 

problem to the problem of finding the extremum of a function 

of many independent variables. Such a reduction is performed 

by selecting from all possible admissible functions on which 

the values of the function are considered, some special class of 

functions that depend on a finite number of initially undefined 

parameters 1 2, ,..., nα α α . Substitution of such functions in 

the expression of the function turns it into a function of these 

parameters, for which the extremum can be found by the 

known elementary methods. 

According to the Ritz method the values of function (14) are 

considered on a set of linear combinations of functions, that is, 

expressions that have the following form: 

( ) ( )
1

n

i i

i

x xϕ α ψ
=

= ⋅∑ ,          (15) 
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where iα  – parameters to be determined; ψi (x) – the basic 

functions that are specially chosen are known functions that 

satisfy the geometric boundary conditions of the problem. 

Thus, substituting expression (15) into expression (14) 

taking into account that 

( ) ( ) ( )
2

1 , 1

n n

i i i k i k

i i k

x x xα ψ ψ ψ α α
= =

 
⋅ = ⋅ ⋅ ⋅ 

  
∑ ∑ , 

( ) ( ) ( )
2

1 , 1

n n

i i i k i k

i i k

x x xα ψ ψ ψ α α
= =

 
′ ′ ′⋅ = ⋅ ⋅ ⋅ 

  
∑ ∑ , 

after the appropriate transformations we obtain: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 2 2
1

, 1 , 10

2

, 1 , 1

tan tan
2

2 tan 2 tan .

h n n

i k i k i k i k

i k i k

n n

i k i k i k i k

i k i k

S x p x x E x x x
p

c x x x b x p x x d x

π ρ π γ ψ ψ α α π γ ψ ψ α α

π γ ψ ψ α α π γ ψ ψ α α

= =

= =


 ′ ′= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −



− ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅



∑ ∑∫

∑ ∑
      (16) 

To solve the problem further, it is necessary to introduce the following designations: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 2

2 2

tan ,

tan ,

2 tan ,

2 tan ,

h

i k i k

o

h

i k i k

o

h

i k i k

o

h

i k i k

o

x x x d x T

E x x x d x U

c x x x d x C

b x x x d x R

ρ π γ ψ ψ

π γ ψ ψ

π γ ψ ψ

π γ ψ ψ

⋅ ⋅ ⋅ ⋅ ⋅ =

′ ′⋅ ⋅ ⋅ ⋅ ⋅ =

⋅ ⋅ ⋅ ⋅ ⋅ =

⋅ ⋅ ⋅ ⋅ ⋅ =

∫

∫

∫

∫

                               (17) 

( ), 1, 2,...,i k n=
. 

Substituting (17) into (16), we obtain the function as a function of the parameters α1, α2, …, αn: 

( ) 2
1 1 2

, 1 , 1

2

, 1 , 1

, , ...,
2 2

.
2 2

n n

n i k i k i k i k

i k i k

n n

i k i k i k i k

i k i k

S p T U
p p

C p R
p p

π πα α α α α α α

π πα α α α

= =

= =

= ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ −

− ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅

∑ ∑

∑ ∑
                 (18) 

Let us investigate function (18) for an extremum. For this, we differentiate expression (18) with respect to the parameters αi 

(i=1, 2, …, n) equate the resulting partial derivatives to zero. As a result, we obtain a system of linear homogeneous equations for 

the unknowns α1, α2, …, αn, from which, in turn, we find the Ritz frequency equation for longitudinal vibrations of the root crop, 

as a solid elastic body fixed in the soil: 

( ) ( ) ( )
( ) ( ) ( )

2 2 2
11 11 11 11 12 12 12 12 1 1 1 1

2 2 2
21 21 21 21 22 22 22 22 2 2 2 2

....

....

..........................................................................................

n n n n

n n n n

p T R U C p T R U C p T R U C

p T R U C p T R U C p T R U C

− − − − − − − − −

− − − − − − − − −

( ) ( ) ( )2 2 2
1 1 1 1 2 2 2 2

0
.................................................

....n n n n n n n n nn nn nn nnp T R U C p T R U C p T R U C

=

− − − − − − − − −

       (19) 

Since this technological process of vibrational digging of 

root crops from the soil practically occurs at the lowest 

vibration frequencies, in the future they must be determined. 

Therefore, to determine the first (main) frequency of the 

proper vibrations, equation (19) can be presented in such a 

form: 

( )2
1 11 11 11 11 0p T R U C− − − = .        (20) 

From expression (20) we find: 
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2 11 11
1

11 11

U C
p

T R

+
=

−
,               (21) 

where 11U , 11C , 11T  11R  can be determined from 

expressions (17) at 1n = . 

In this case, we have: 

( ) 22 2
11 1

0

tan

h

U E x x dxπ γ ψ ′ = ⋅ ⋅ ⋅ ⋅  ∫       (22) 

( )2
11 1

0

2 tan

h

C c x x dxπ γ ψ= ⋅ ⋅ ⋅ ⋅∫ ,        (23) 

( )2 2 2
11 1

0

tan

h

T x x dxρ π γ ψ= ⋅ ⋅ ⋅ ⋅∫ ,       (24) 

( )2
11 1

0

2 tan

h

R b x x dxπ γ ψ= ⋅ ⋅ ⋅ ⋅∫ .       (25) 

We select further the necessary basic functions that are 

included in expression (15). As noted [30] in many cases the 

proper forms of vibrations of a homogeneous rod of constant 

cross-section with the same fixed conditions as in the given 

problem are taken as basic functions. Such basic functions 

make it possible to find forms that satisfy not only the 

geometric boundary conditions, as required by the Ritz 

method, but also the dynamic conditions of the problem. 

Therefore, we can use in this problem as basic functions the 

proper forms of longitudinal vibrations of a uniform bar of 

constant cross-section with one fixed end. According to [30] 

such forms are as follows: 

( ) ( )2 1
sin

2
i

i x
x

h

π
ψ

− ⋅ ⋅
= , ( )1, 2, 3,...i = .    (26) 

Then: 

( ) ( ) ( )2 1 2 1
cos

2 2
i

i i x
x

h h

π π
ψ

− ⋅ − ⋅ ⋅
′ = ⋅ , ( )1, 2, 3,...i = . (27) 

Thus, taking into account expression (15), for an arbitrary n 

the proper form of longitudinal vibrations will have the 

following form: 

( ) ( )
1

2 1
sin

2

n

i

i

i x
x

h

π
ϕ α

=

− ⋅ ⋅
= ⋅∑ .        (28) 

In particular, to find the first frequency ( )1n = , we have 

the form of longitudinal vibrations of the root crop of this 

type: 

( ) ( )1 1x xϕ α ψ= ⋅ ,             (29) 

or 

( ) 1 sin
2

x
x

h

πϕ α ⋅= ⋅ ,           (30) 

that is 

( )1 sin
2

x
x

h

πψ ⋅=             (31) 

Then 

( ) cos
2 2

i

x
x

h h

π πψ ⋅′ = ⋅ .         (32) 

After substitution of (32) into expression (22), of 

expression (31) into expressions (23), (24), (25), after 

integrating the obtained expressions, we will have: 

( )2

2
11

6
tan

24

h
U E

π
π γ

− ⋅
= ⋅ ⋅ ⋅ ,        (33) 

( )
2

2
11

tan
4

2

c h
C

γ π
π

⋅ ⋅= ⋅ +
⋅

,        (34) 

( )2 3

2
11 2

6
tan

6

h
T

π
ρ π γ

π

+ ⋅
= ⋅ ⋅ ⋅

⋅
,      (35) 

( )
2

2
11

tan
4

2

b h
R

γ π
π

⋅ ⋅= ⋅ +
⋅

.       (36) 

Substituting expressions (33) – (36) into expression (21), 

we obtain an analytical expression for finding the first (main) 

frequency of proper vibrations of a root crop as an elastic body, 

located in an elastic damping medium: 

( )1

0.51 tan 2.21

0.84 tan 2.21

E c h
p

h h b

γ
ρ γ

⋅ ⋅ + ⋅ ⋅=
⋅ ⋅ ⋅ − ⋅

.      (37) 

3. Numerical Results and Discussion 

Based on expression (37), according to numerical 

calculations, is constructed graphs of the dependence of the 

first proper frequency 1p  of vibrations of the root crop as a 

solid elastic body upon the coefficient of elastic deformation 

of the soil the coefficient b  of its damping. In addition, 

according to [17], the following ranges of values of these 

coefficients were adopted: 
50...20 10c = ⋅  N·m

–3
, 0...10b =  

N·s
2
·m

–3
. In addition, according to [31], the following 

averaged statistical values of the physical mechanical 

characteristics of the root crop, included in expression (37), 

have been taken. Namely: h=0.25 m, 
o14γ = , 

618.4 10E = ⋅  

N·m
–2

, 750ρ =  kg·m
–3

. 

The results are presented in Figure 3 and Figure 4. 
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Figure 3. Dependence of the first proper frequency of longitudinal 

vibrations body of the root crop upon the coefficient of elastic deformation 

of the soil ( c ) at the soil damping coefficient ( b ): 1 – b=4.0 (N·s2)·m–3; 2 – 

b=6.5 (N·s2)·m–3; 3 – b=9.0 (N·s2)·m–3. 

There are shown the the dependence of the first (main) 

proper vibration frequency 1p  of the root crop as a solid 

elastic body upon coefficient of elastic deformation of the soil 

( c ) at different values of coefficient of its damping ( b ) 

(Figure 3). 

As it follows from the analysis of the obtained graphs, with an 

increase in coefficient c , the frequency 1p  of vibrations of the 

root crop increases practically according to a linear law; besides it 

also increases with an increase in coefficient b , namely: 

1. at b=4.0 (N·s
2
)·m

–3
1 550...670p = s

–1
 or 1 88...107p =  

Hz; 

2. at b=6.5 (N·s
2
)·m

–3
: 1 610...740p =  s

–1
 or 1 97...118p =  

Hz; 

3. at b=9.0 (N·s
2
)·m

–3 
1 690...840p =  s

–1
 or 

1 110...134p =  Hz. 

 

Figure 4. Dependence of the first proper frequency of longitudinal vibrations 

of the body of the root crop upon the damping coefficient b  of the soil, at the 

coefficient of elastic deformation of the soil: 1 – 52.0 10= ⋅c N·m–3; 2 – 

57.0 10= ⋅c N·m–3; 3 – 512.0 10= ⋅c N·m–3. 

Similarly, Figure 4 shows the graphs of the dependence of 

the first vibration frequency 1p  of the root crop as a solid 

elastic body upon the damping coefficient of the soil ( b ) at 

different values of the coefficient of its elastic deformation 

( c ). 

As these graphs show, with an increase in coefficient b , 

the frequency 1p  of vibrations of the root crop increases 

according to a curvilinear law, similar to a parabolic one, 

while it also increases with an increase in coefficient c , 

which is consistent with the graphs presented in Figure 3, 

namely: 

1. at 
5

2.0 10c = ⋅ N·m
–3

: 1 500...750p =  s
–1

 or 

1 80...119p =  Hz; 

2. at 
5

7.0 10c = ⋅ N·m
–3

: 1 525...795p =  s
–1

 or 

1 84...127p =  Hz; 

3. at 
5

12.0 10c = ⋅ N·m
–3

: 1 550...830p =  s
–1

 or 

1 88...132p =  Hz. 

The dependencies, resulting from Figure 3, Figure 4, their 

nature obtained numerical values can be explained by the 

following circumstances. With an increase in coefficient c of 

elastic deformation of the soil, the force of elastic resistance 

of the soil increases, which is transmitted to the body of the 

root crop during the vibratory process due to sufficiently 

strong bonds of the root crop with the soil. An increase in the 

elastic force of the soil means an increase in the amplitude of 

free vibrations of the soil surrounding the root crop. At the 

same time, as it is known, with an increase in the elastic 

properties of the soil, the frequency of free vibrations of the 

soil increases. Therefore, due to the connections of the root 

crop with the soil, during the longitudinal deformation of the 

body of the root crop, the elastic force of the soil of a higher 

amplitude frequency is transmitted to it from the side of the 

deformable soil, which leads to an increase in the frequency 

of proper vibrations of the body of the root crop. 

On the other hand, with an increase in the damping 

coefficient b of the soil, the dissipation of the energy of the 

soil surrounding the root crop increases. As a result, a smaller 

part of the energy is transferred to the root crop from the side 

of the soil, which does not contribute to a decrease in the 

proper frequency of free vibrations of the body of the root 

crop. 

4. Mathematical Model of Forced 

Vibrations and Its Numerical Results 

The forced vibrations of the root crop will proceed in 

accordance with the following law: 

( ) ( ) ( ), siny x t x tϕ ω= ⋅ ,            (38) 

where φ(x) – the form of forced vibrations. 

To determine the form of forced vibrations of the root crop, 

expression (38) is substituted into function (10) to obtain the 

following function: 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

2

1

2 2 2 2 2 2 2 2 2
2

2 2 2
1 1

2 2 2

1
tan cos tan sin

2

sin 2 tan sin

2 tan cos .

t h

t o

S x x t E x x t

H x x x t c x x t

b x x t d x dt

ρ π γ ω ϕ ω π γ ϕ ω

σ ϕ ω π γ ϕ ω

π γ ω ϕ ω

 ′ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ +  


+ ⋅ − ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ −

− ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 


∫ ∫
      (39) 

Integrating expression (39) over t within one period 
2

T
π

ω
= , is obtained: 

( ) ( )

( ) ( ) ( ) ( )

2 2 2 2 2 2 2
2

2 2 2
1 1

tan tan
2

2 tan 2 tan .

h

o

S x x E x x

H x x x c x x b x x d x

π ρ π γ ϕ ω π γ ϕ
ω

σ ϕ π γ ϕ π γ ϕ ω

 ′ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ +  



+ ⋅ − ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 



∫
        (40) 

According to the Ritz method, we consider the value of function (40) on a set of linear combinations of the following form: 

( ) ( )x xϕ α ψ= ⋅ ,                                        (41) 

where α is a parameter to be determined; ψ(x) is a basic function. 

Substituting expression (41) into functional (40), we obtain: 

( ) ( )

( ) ( ) ( )

( )

2 2 2 2 2 2 2 2 2
2

2 2
1 1

2 2 2

tan tan
2

2 tan

2 tan .

h

o

S x x E x x

H x x x c x x

b x x d x

π ρ π γ α ψ ω π γ α ψ
ω

σ α ψ π γ α ψ

π γ α ψ ω

 ′ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ +  


+ ⋅ − ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −

− ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 


∫

                  (42) 

Let us introduce the following notation: 

( )2 2 2

0

tan

h

x x d x Tρ π γ ψ⋅ ⋅ ⋅ ⋅ =∫ ,       (43) 

( )2 2 2

0

tan

h

E x x d x Uπ γ ψ ′ ⋅ ⋅ ⋅ ⋅ = ∫ ,     (44) 

( )2

0

2 tan

h

c x x d x Mπ γ ψ⋅ ⋅ ⋅ ⋅ ⋅ =∫ ,       (45) 

( )2

0

2 tan

h

b x x d x Nπ γ ψ⋅ ⋅ ⋅ ⋅ ⋅ =∫ ,       (46) 

( ) ( )1 1

0

h

H x x x dx Lσ ψ⋅ − ⋅ =∫ .          (47) 

Substituting expressions (43) – (47) into (42), we will have: 

( ) ( ) ( )2 2 2
2

2
S T N U M L

πα ω α α α
ω
 = ⋅ − ⋅ − + ⋅ + ⋅

. (48) 

Thus, the set of functions (41) and (42) turn into a function 

of the independent variable α, which has the form (48). 

A necessary condition for the stationarity of function (48) 

(i.e., the existence of an extremum) is the equality to zero of its 

first derivative, namely: 

2 0
S δα
α

∂
⋅ =

∂
,             (49) 

from where we obtain the following equation: 

( ) ( )2
2 2 0T N U M Lω α α⋅ − ⋅ − + ⋅ + = ,   (50) 

from which we find the required value of parameter α. It will 

be equal to: 

( )22

L

U M T N
α

ω
=

 + − ⋅ − 

.        (51) 
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Let us take as the basic function ψ(t) the form of forced 

longitudinal vibrations of a bar of constant cross-section with 

one rigidly fixed end which arise under the action of a 

longitudinal harmonic force of frequency ω applied at point 

x=x1. According to [30], the form of forced vibrations of the 

mentioned rod has the following form: 

( ) ( )1 sinx D a xψ = ⋅ ⋅  at 1x x≤ ,        (52) 

( ) ( )2 cosx D a h xψ  = ⋅ ⋅ −   at 1x x> ,     (53) 

Where 

( )
( )

1

1

cos1

cos

a h x
D

a E F a h

 ⋅ − = − ⋅
⋅ ⋅ ⋅

,      (54) 

( )
( )

1
2

sin1

cos

a x
D

a E F a h

⋅
= − ⋅

⋅ ⋅ ⋅
,       (55) 

a
E F

µω=
⋅

,             (56) 

µ – the linear mass (per unit of length) of the elastic conical 

body of the root crop; F – the cross-sectional area of the elastic 

conical body of the root crop; E – Young's modulus for the 

material of the elastic conical body of the root crop; h – the 

length of the elastic conical body of the root crop; ω – the 

frequency of forced vibrations of the elastic cone-shaped body 

of the root crop. 

It is easy to verify that the boundary conditions for the 

functions (52), (53) are satisfied, therefore the adopted 

functions satisfy the requirements of the Ritz method. To 

determine parameter α , we will calculate the parameters T, N, 

U, M, L. 

We obtain: 

( ) ( ) ( )

( ) ( ) ( )

23
1 1 1 1 12 2 1

1 2 3

233
1 1 1 1 12 1

2 2 2 3

sin 2 cos 2 sin 2
tan

6 4 4 8

sin 2 2 cos 2 2 sin 2 2
,

6 6 4 4 4 8

  ⋅ ⋅ ⋅ ⋅ ⋅= ⋅ ⋅ ⋅ − − + +  ⋅ ⋅ ⋅   

 ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ − ⋅ + − + + − − ⋅ ⋅ ⋅ ⋅ 

x a x x a x a xx
Т D

a a a

x a h a x x a h a x a h a xxh h
D

a a a a

ρ π γ

        (57) 

( ) ( )

( ) ( ) ( ) ( )

2
1 1 12 1

1 2

2
1 1 11 12

2 2

sin 2 1 cos 2
2 tan

4 4 8

1 cos 2 sin 2
2 tan ,

4 2 48

 ⋅ ⋅ − ⋅
= ⋅ ⋅ ⋅ − + + 

⋅ ⋅  

    − − ⋅ −− −    + ⋅ ⋅ ⋅ − + +
⋅⋅  

x a x a xx
N b D

a a

a h x x a h xh x h h x
b D

aa

π γ

π γ
              (58) 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 3 3 22 2 3
2 1 1 1 1 1 12 21 1

1

2
1 1 1 1 12

2

sin 2 cos 2 sin 2
tan

6 6 4 4 8

sin 2 2 cos 2 2 sin 2 2
,

4 4 4 8

 ⋅ ⋅ −  ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅= ⋅ ⋅ + + + − −  ⋅   

 ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ − ⋅ − + − − ⋅  

D a h x x a a x x a x a xD a x
U E D

a

x a a h a x x a h a x a h a xh
D

a

π γ

    (59) 

( ) ( )

( ) ( ) ( ) ( )

2
1 1 12 1

1 2

2
1 1 11 12

2 2

sin 2 1 cos 2
2 tan

4 4 8

1 cos 2 sin 2
2 tan ,

4 2 48

x a x a xx
M c D

a a

a h x x a h xh x h h x
c D

aa

π γ

π γ

 ⋅ − ⋅
= ⋅ ⋅ ⋅ ⋅ − + + 

⋅ ⋅  

    − − −− −    + ⋅ ⋅ ⋅ − + +
⋅ ⋅

 

          (60) 

( )1 1sinL H D a x= ⋅ ⋅ ⋅             (61) 

Substituting expressions (57) – (61) into expression (51), 

we obtain the required value of parameter α, at which function 

(40) has a stationary value. 

Taking into account expressions (41), (52), (53), we obtain 

expressions for the form of forced vibrations of the solid elastic 

body of the root crop, fixed in the soil. They look like this: 

( ) ( )1 sinx D a xϕ α= ⋅ ⋅ , at 1x x≤ , 

( ) ( )2 cosx D a h xϕ α  = ⋅ ⋅ ⋅ −  , at 1x x> ,   (62) 

where α is defined according to (51). 

Substituting expressions (62) into (38), we finally obtain 

the law of forced vibrations of a solid elastic body of a root 

crop, fixed in the soil: 
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( ) ( ) ( )1, sin siny x t D ax tα ω= ⋅ ⋅ ⋅ , at 1x x≤ , 

( ) ( ) ( )2, cos siny x t D a h x tα ω = ⋅ ⋅ ⋅ − ⋅  , at 1x x>  (63) 

According to the results of studies of forced vibrations of a 

root crop as a solid elastic body fixed in the soil, i.e. in an 

elastic damping medium was drawn up the amplitude of these 

vibrations. In particular, the value of the amplitude of forced 

longitudinal vibrations of the root crop were calculated 

depending on the coefficient of elastic deformation of the soil 

at the frequency of the disturbing force ν=10 Hz, 15 Hz 20 Hz, 

the amplitude of the indicated force H=500 N. The result of 

this calculation is shown in Figure 5. In this case the 

coordinate of the point of capture of the body of the root crop 

by the vibrating digging working body is equal to �� �

0.15m. The values of soil elastics deformation coefficient � 

and its dumping coefficient 	, at which the calculations were 

made, are shown in Figure 5. 

 

(a) 

 

(b) 

 

(c) 

Figure 5. Dependence of the amplitude of forced longitudinal vibrations of 
the root crop body upon coefficient c of elastic deformation of the soil (c) for 

different values of the disturbing force for the cross-section of the root crop 

(ν ): a) ν =10 Hz, b) ν =15 Hz, c) ν =20 Hz (amplitude of the disturbing 

force Н=500 N, the soil damping coefficient - 6.5=b (N·s2)·m–3, 

50...20 10= ⋅c N·m–3: 1 – at 0.15 m<x ; 2 – at 0.15 m>x . 

From Figure 5, it can be seen that with an increase in 

coefficient of the elastic deformation of the soil the amplitude 

of the forced vibrations of the root crop body decreases, with a 

change in c from 0 to 20 � 10� N·m
–3

, the indicated amplitude 

changes: 

1. at ν =10 Hz: 0.58…0.48 mm at 0.15x ≤  m, 

0.77…0.65 mm at 0.15x >  m; 

2. at ν =15 Hz: 0.60…0.49 mm at 0.15x ≤  m, 

0.78…0.66 mm at 0.15x >  m; 

3. at ν =20 Hz: 0.62…0.50 mm at 0.15x ≤  m, 

0.82…0.67 mm at 0.15x >  m. 

However, as one can see from these graphs the given 

calculation results, the amplitude of the forced longitudinal 

vibrations of the root crop practically does not depend on the 

vibration frequency of the vibrating digging working body, 

more precisely, it changes very slightly. 

 

(a) 

 

(b) 

Figure 6. Dependence of the amplitude of forced longitudinal vibrations of 

the body of the root crop upon the coefficient of elastic deformation of the soil 

c the distance x of the cross-section of the root crop from the conditional point 

O of its fixation in the soil: а – 0...0.15=x
 
m; b – 0.15...0.25=x  m; (the 

amplitude of the disturbing force Н=500 N, frequency of the disturbing force 

ν =10 Hz, the soil damping coefficient –b=6.5 (N·s2)·m–3, the coordinate of 

the point of capture of the root crop by the vibrating digging working body 

1 0.15=x  m). 

Figure 6 shows the graphs of the dependence of the 

amplitude of the forced longitudinal vibrations of the root crop 
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body upon coefficient of the elastic deformation of the soil and 

the distance of the cross-section from a conditional point of 

fixation of the root crop in the soil at the values of the 

parameters indicated. 

As can be seen from Figure 6, the dependence of the 

amplitude of the forced vibrations of the root crop body upon 

coefficient c of the elastic deformation of the soil is the same 

as shown in Figure 5. However, the point of capture of the root 

crop body by the vibrating digging working body ( 0.15x ≤  

m), with an increase in the distance x  of the root crop 

cross-section from the conditional point O  of its fixation in 

the soil, the amplitude increases from its almost zero value to 

0.48 mm; above the capture point ( 0.15x ≤  m) the amplitude 

of the distance x  of the root crop cross-section from the 

conditional point O  of fixation of the root crop in the soil is 

practically independent. 

 

(a) 

 

(b) 

Figure 7. Dependence of the amplitude of forced longitudinal vibrations of 
the body of the root crop upon the damping coefficient b of and the soil the 

distance x of the cross-section of the root crop from the conditional point O of 

its fixation in the soil: а – 0...0.15=x  m; b – 0.15...0.25=x  m; (the 

amplitude of the disturbing force Н=500 N, frequency of the disturbing force 

ν =10 Hz, coefficient of elastic deformation of the soil 52 10= ⋅c N·m–3, the 

coordinate of the capture point of the root crop by the vibrating digging 

working body 1 0.15=x  m). 

In Figure 7 there are shown the dependence of the 

amplitude of forced longitudinal vibrations of the root crop 

upon the damping coefficient b of the soil the distance x of its 

cross-section from the conditional point O of fixation in the 

soil. In this case the soil damping coefficient b  varies within 

the range b=0 to 10 (N·s
2
)·m

–3
. 

Figure 7 shows that below the point of capture of the root 

crop body by the vibrating digging working body ( 0.15x ≤  

m), the amplitude of forced vibrations of the root crop body 

practically does not depend on the change in the soil damping 

coefficient; however, with an increase in the distance x of the 

root crop section from the conditional point O of its fixation in 

the soil, it increases linearly changes within the range of 0.01 

to 0.58 mm. The amplitude of forced vibrations of the root 

crop body above the capture point ( 0.15x >  m) decreases 

insignificantly with an increase in the soil damping coefficient 

changes within 0.773 to 0.770 mm, also with an increase in the 

distance x of the root crop body cross-section from the 

conditional point O of its fixation in the soil; its increase 

according to the parabolic law is rather insignificant varies 

within 0.768 to 0.773 mm. 

Consequently, a conclusion can be made that the amplitude 

of the forced vibrations of the root crop as an elastic body 

does not practically depend upon the damping coefficient of 

the soil, at least within the range of its variation considered. 

Dependence of the amplitude of the forced longitudinal 

vibrations of the root crop body, fixed in the soil, upon the 

amplitude of the disturbing force, which varies within H=100 

to 600 N is shown in Figure 8. 

 

Figure 8. Dependence of the amplitude of forced longitudinal vibrations of 

the elastic body of the root crop upon the amplitude of the disturbing force 

( 1<x x , 10=ν Hz, 
5

2 10= ⋅c N·m–3, 6.5=b (N·s2)·m–3): 1 – 

0.05 m=x ; 2 – 0.10 m=x ; 3 – 1 0.15 m= =x x . 

As one can see from Figure 8, with an increase in the 

amplitude of the disturbing force H  the amplitude of the 

forced longitudinal vibrations of the root crop body increases 

according to a law, close to the linear one. Besides, below the 

capture point ( 0.15x <  m), increasing the distance of the 

cross-section of the root crop from the conditional fixing point 

O, the amplitude also increases. So, at 0.05x = m, the 

amplitude is within 0.03 to 0.23 mm; at 0.1x =  m – within 

0.07 to 0.46 mm; at 0.15x = m (capture point) – within 0.12 

to 0.69 mm. Since the first proper frequency of the root crop as 
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an elastic cone-shaped body has a value not lower than 75 Hz, 

the frequency of the disturbing force H  for technological 

technical reasons cannot be more than 20 Hz, the resonance 

case is actually unlikely. In addition, the calculated value of 

the amplitude of forced longitudinal vibrations of the root crop 

body, which, with an amplitude of the disturbing force equal to 

100...600 N, is within 0.03...0.69 mm, shows that the rupture 

of the specified root crop at its longitudinal deformation is 

virtually impossible. 

5. Conclusions 

1) An equations for calculating the proper frequencies of 

any order of longitudinal vibrations of the root crop body 

has been obtained, on the basis of which the the 

dependence of the first (main) frequency of the 

longitudinal vibrations of the root crop body upon the 

elastic deformation coefficients c  and the soil damping 

coefficient b  were constructed. When changing the 

coefficient of elastic deformation of the soil within 
50...20 10c = ⋅ N·m

–3
, the first proper frequency of the 

longitudinal vibrations of the body of the root crop 

increases within 610 to 740 s
–1

 (97 to 118 Hz) at a value 

of the soil damping coefficient equal to 6.5b =
(N·s

2
)·m

–3
. 

2) When the soil damping coefficient varies within 0 to 10 

(N·s
2
)·m

–3
, the first proper frequency of longitudinal 

oscillations of the root crop body changes within 500 to 

750 s
–1

 (80 to 119 Hz) at the value of coefficient of elastic 

deformation of the soil, equal to 
52 10c = ⋅  N·m

–3
. 

3) There is obtained dependence of the amplitude of these 

vibration upon the coefficient of elastic deformation c  

of and the soil the frequency ν of the disturbing force. It 

has been established that, when coefficient c  of elastic 

deformation of the soil, which is within 
50...20 10c = ⋅

N·m
–3

, changes, the amplitude of the disturbing force 

being equal to 500 NH = , its frequency being 10ν =
Hz, the damping coefficient b  of the soil being equal to 

6.5b = (N·s
2
)·m

–3
, the amplitude of the forced vibrations 

of the root crop body decreases, it varies within a range 

of 0.58 to 0.48 mm below the point of capture of the root 

crop by the vibrating digging working body, within a 

range of 0.77 to 0.65 mm above the point of capture of 

the root crop by the vibrating digging working body. The 

considered amplitude practically does not depend upon 

the change in the frequency of the disturbing force, or 

rather changes, but very insignificantly. 

4) Below the point of capture of the root crop by the 

vibrating digging working body, when the distance of the 

cross-section of the root crop from the conditional point of 

its fixation in the soil increases, the amplitude of the 

forced vibrations of the root crop increases changes within 

0.01 to 0.58 mm. Above the capture point, the amplitude 

practically does not depend on the cross-sectional distance 

to the conditional anchorage point in the soil. 

5) The amplitude of the forced longitudinal vibrations of 

the root crop body below the capture point practically 

does not depend on the change of the soil damping 

coefficient; above the capture point, when increasing the 

soil damping coefficient within the limits of 0...10b =
(N·s

2
)·m

–3
, it slightly decreases changes within 0.773 to 

0.770 mm. 

6) When the amplitude of the disturbing force from the side 

of the working body changes within the boundaries 

100...600 NH = , the amplitude of the forced 

longitudinal vibrations of the root crop body changes 

within the boundaries 0.30...0.68  mm. 

7) Since the first proper frequency of longitudinal 

vibrations of the root crop as a solid elastic body is 

within the boundaries 80 to 119 Hz, the allowed 

frequency of the disturbing force is not more than 20 Hz, 

the resonant case in the considered vibratory process is 

practically excluded. 

8) Since the calculated value of the amplitude of the forced 

longitudinal vibrations of the root crop as a solid elastic 

body is within the boundaries of 0.30...0.68  mm, it is 

obvious that the rupture of the root crop body in the 

investigated vibratory process is practically impossible. 

9) There are created a good theory for sugar beet root crops. 

However, there are many other root crops in the world - 

fodder beets, table beets, carrots, horseradish, radishes, 

etc. Readers can study this theory and them build their 

own mathematical models for other root crop. 
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