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Abstract: Wheelset hunting is a motion with two degrees of freedom. The second degree of freedom of hunting is 

investigated in this paper. Rolling radius difference is commonly understood as the root cause of wheelset hunting. Normally, 

hunting will begin as soon as the truck begins to move. Rolling radius difference will initiate the hunting and can only be used 

to determine the configuration of the first quarter of a hunting cycle. Then a mechanism will come into exist to determine the 

configuration of the second quarter of the hunting cycle, which is exactly the same as the one of first quarter but in the opposite 

direction. The second half of the hunting cycle is a mirror of the first half. The information from wheelset hunting is too large 

and too complicated for people to understand and analyze. However, the radius of curvature of wheelset circular motion can be 

calculated exactly, especially at some special configurations, even though the radius of curvature of wheelset circular motion 

keeps changing in both magnitude and direction. Furthermore, comparison of the radii of curvature between hunting curve and 

a cosine curve shows that the curve for the wheelset in hunting motion is sinusoidal. This is proven mathematically in the 

paper. The limits in Klingel’s results were discussed. Due to the fact that Klingel’s results are unable to provide a strong 

theoretical base for further understanding the complicated dynamic characteristics caused by hunting, misleading in hunting is 

overwhelmed. After understanding the principles of wheelset hunting, three critical speeds in hunting and dynamic loading for 

truck design in three directions were calculated; wheelset hunting curve while curving was generated; wheelset dynamic 

interaction was analyzed and the question “Why trains stay on tracks” was answered correctly, just to name a few. Thus, a total 

solution to the hunting problems can be expected and was discussed in the paper. 

Keywords: Wheelset Hunting Curve, Sinusoidal, Truck Hunting, Two Degrees of Freedom, Radius of Curvature,  

Rolling Radius Difference, Comparison, Total Solution to Hunting 

 

1. Introduction 

Truck hunting is referred as to the lateral oscillation of a 

truck. The subject has been researched for a long time in the 

railroad industry. Klingel (1883) realized that the conicity 

caused the hinting and created a formula to calculate the 

wave length of the lateral oscillation [2], 

Lk=2π(ro*Ɩ /λ)
½
                                  (1) 

In deriving Equation 1, the equation (d
2
y/d

2
x=1/R) is used 

to begin with. This equation is used to calculate the radius of 

curvature for a small bending curve is the general practice in 

engineering, for example, the bending problem of a beam. 

However, the equation (d
2
y/d

2
x=-1/R) was used to derive 

Klingel’s formula [2]. That is, a minus sign has to be added 

to the equation for a sinusoidal solution. The next step is to 

find the relationship between y and R. This was derived from 

the Retenbacher’s formula [2], y=(roƖ)/(λR), as shown in the 

copy below, Figure 1 (from reference 2). 

The problem in Redtenbacher’s formula is that the lateral 

deflection y is ignored in the derivation. If y is ignored, it 

means that center of wheelset and center of rail are 

coincident. Then there will be no hunting occurred. So the 

lateral deflection y must be included in the derivation. 

Redtenbacher’s formula should begin with (ro-λy)/(R- Ɩ -

y)=(ro+λy)/(R+Ɩ-y), then one will obtain y=(roƖ)/(λR) + y
2
/R. 

Another way to find the relationship between y and R is to 

use the calculation of R (see Eq. 3). To use the relationship 

between R and the major and minor radii, we have (R-Ɩ-y)=2	Ɩ 

*r1/(r2-r1), with r1=ro-λy and r2=ro+λy. After some 

mathematical operations, we have y=(roƖ)/(λR) + y
2
/R. 
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It is clear that Redtenbacher’s formula [y=(ro	Ɩ)/(λR)] was 

extracted from the correct formula (y=(roƖ)/(λR) + y
2
/R) by 

ignoring a term (y
2
/R) in it. Thus, a sinusoidal solution can 

be obtained for the Klingel’s formula. If y is very small and 

R is very large, can the elimination of the term, y
2
/R, be 

justified? Elimination of y
2
/R is equivalent to ignoring lateral 

deflection y in the beginning of the derivation. As just stated, 

there will be no hunting if y is ignored. Nevertheless, 

Klingel’s formula can only viewed as an engineering 

approximation not the exact solution. Furthermore, Klingel’s 

formula cannot explain why the hunting motion going from 

side to side, and Klingel’s formula can only have one 

wheelset configuration to start the hunting motion. It can be 

seen from this research that there are many wheelset 

configurations that can initiate the hunting motion. 

 

Figure 1. Wheelset position on track. 

This further research on wheelset hunting is an expanding 

of a previous research [1] to deal with the 2
nd

 degree of 

freedom (DOF) of hunting. The previous research analyzed 

the 1
st
 degree of freedom, while wheelset hunting due to 

rolling radius difference (RRD) was simulated as a 

centrifugal pendulum with a fixed radius for the centrifugal 

motion (Figure 2). The frequency of hunting oscillation for 

the 1
st
 degree of freedom was given as: 

Ωn=2V [2r1(r1-r2)]
(0.5)

 /[G(r1+r2)]                  (2) 

An exact hunting curve for the second degree of freedom 

will be created in this research, which is totally different than 

the Klingel’s derivation in many ways. Wheelset hunting was 

further proven to be as a centrifugal pendulum which would 

switch to the other side of the rail [1]. The repeating of side-

switching as the train going forward forms the motion of 

hunting. There are two reasons that side-switching happens to 

the centrifugal pendulum: 1). The radius of the centrifugal 

motion increases from R to ∞, and 2). A mechanism at the 

neutral state (r2=r1=r) causes the switching and determines how 

far the reversal can go. Thus, first quarter part of hunting is 

determined by the rolling radius difference while second 

quarter of hunting is mandated by this mechanism. The first 

half of the hunting curve is then created and the second half of 

the hunting curve is just a mirror of the first half. The hunting 

curve for a wheelset is found to be sinusoidal: y=C*cosωx. 

 

Figure 2. Wheelset Centrifugal Pendulum. 

Historically, hunting has been connected to creepage. So 

the creepage problem will be discussed briefly. The creep 

mechanism is believed to be crucial important in identifying 

the root cause of hunting by many researchers [2, 3], and is 

viewed as the guide to hold the wheelset hunting. After 

understanding the motion states of the wheelset, we can see 

how and what things go wrong in the originating of the 

creepage theory [1, 4, 5, 7-11]. In a book [6] (Chapter 2) by 

Bosso et al., it is illustrated that wheelset motion on the rail is 

not “pure rolling” and that there is a small sliding occurring 

at the contact. “The forces arising from this (sliding) motion 

are therefore indicated as creep forces.” However, the sliding 

on the contact is caused by the oscillation of the 1
st
 DOF of 

the centrifugal pendulum (as just shown in this paper). The 

sliding rubbing forces should be and can be calculated by 

ordinary engineering applications. Furthermore, Bosso 

presented “The first experiments performed on steam 

locomotives by Carter in the 1930’s”, in which it was found 

that “the sliding condition gradually increased depending on 

the applied torque”. Thus, it is believed that “this was the 

first observation of creepage”. However, what observed is 

not creepage (or anything it may be called), because the 

sliding condition will increase with the frequency of the 1
st
 

DOF of the oscillation, and the frequency will increase with 

the velocity or the pulling power. 

A key problem for truck hunting is to prove that hunting 

motion is sinusoidal, because hunting motion is always 

assumed to be sinusoidal in railroad research and practices. 

This problem is solved in this further research. That is, the 

center of the wheelset is in a sinusoidal motion and a 

mathematical analysis has performed on the motion curve to 

show that it has the same characteristics as a sinusoidal 

curve, y=C*cosωx. Unlike the Klingel’s formula, y=C*cosωx 

provides a complete set of information to determine exactly 

the hunting curve. Thus, more and deeper hunting analyses 

can be done based on this exact hunting curve, such as the 

hunting interaction between wheelsets in a truck, and the 

truck hunting dynamic forces and critical speeds in three 

directions, etc. 
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2. Wheelset Centrifugal Motion 

The idealized model for a wheelset on rail is shown in 

Figure 3, with weight denoting by W. The wheel treads have 

a taped angle α, with the center of wheelset not coincident 

with the center of rail. Thus, the rolling radii would be r1and 

r2 respectively. By observation, we can see that the wheelset 

will do a circular motion. 

 

Figure 3. State of Maximum Potential Energy for the Lateral Motion (α: taper angle of the wheel tread, C. L.: center line).  

Due to there is a difference in the rolling radius (r1&r2) 

between two wheels, theoretically, the wheelset will do a 

circular motion because r2 wheel will cover longer distances 

than r1 wheel in the same time. This circular motion is the 

motion of the second degree of freedom and will be studied 

in the following. The radius of the centrifugal motion can be 

calculated as 

R=G*r1/(r2-r1)                               (3) 

where G denotes the gauge and r1 and r2 represent 

respectively the rolling radii on two wheels. For the 

convenience of illustration, r1 and r2 are also referred to as 

minor and major radii respectively. 

However, this circular motion is not a simple circular 

motion. Firstly, the radius of the centrifugal motion, R, will 

keep changing continuously while the wheelset rolling on the 

rail. Secondly, the forward direction of wheelset movement 

will be alternated also. Thirdly, the center of the centrifugal 

motion of the wheelset will switch side. That is to say, while 

moving forwards the wheelset will change its moving 

direction at the same time. 

At this stage, it is important to study the change of the 

wheel/rail contact points A and B. For the purpose of 

discussion, let’s call them the wheel tread contact points also. 

It can be easily seen that wheel/rail contact points A and B 

will move forwards on both the wheel and rail. However, it 

must realize that wheel/rail contact points A and B are 

always along a straight line on the rail head regardless of the 

position of the wheelset on the rail. This is due to the fact that 

the wheel tread rotates and the rail is straight and stable. 

Distance between wheel tread contact points A and B will 

keep changed (becomes longer or shorter) because the 

wheelset will not be perpendicular to the rail due to the 

centrifugal motion of the wheelset, as will be demonstrated 

later. 

 

Figure 4. Change of wheel tread radius in the motion of hunting. 

It is worthwhile to further examine how the wheel tread 

contact point changes on the surface of the tapered wheel 

tread. As contact points change, rolling radius of the wheel 

will change. That is the root cause of the continuous 

centrifugal motion for the wheelset. At the same time, it is 

the centrifugal motion that will change the rolling radius of 

the wheel during its motion, which can be seen from Figure 

4. When the centrifugal motion is towards the left of the 
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wheel, rolling radius r will decrease to r
-
. This will happen to 

the wheel on the right in Figure 3. By the same token, when 

the centrifugal motion is towards the right, rolling radius r 

will increase to r
+
. This will happen to the wheel on the left 

in Figure 3. Furthermore, the demonstration shows that the 

change of the rolling radius depends on the horizontal 

distance that the wheel tread moves. 

3. Analysis of Wheelset Locations in 

Circular Motions 

It is a very tedious task to calculate the exact lateral distance 

that the wheel tread moves. But that is key to show how and 

why the rolling radius of the wheel keeps changing. It is found 

that the wheelset lateral movement is related to the position of 

the wheelset on the rail after the centrifugal motion. 

 

Figure 5. Wheel Tread/Rail Contact Points in Hunting (Circular Motion Magnified). 

Referring to Figure 5, let’s examine the rolling motion for 

a wheelset with rolling radii r1 and r2. The wheelset is the one 

shown in Figure 3 previously and only the contact points A 

and B are shown in Figure 5. From the energy point of view, 

this is the state with maximum potential energy to the 

circular motion because the center of gravity of the wheelset 

is at its highest. At the beginning of hunting, the lateral 

distance between wheel tread contact points A and B is 

denoted by G. Thus, as demonstrated previously, the 

wheelset will begin a circular motion. The circular path of 

the wheelset’s motion is depicted in Figure 5. The two 

straight rails are also represented by the straight lines on 

which the wheel/rail contact points lie. For the outer wheel, 

contact points changing from A to point A' corresponds to a 

circular motion of angle Ω, while for the inner wheel, the 

wheel/rail contact point will change from B to point B' after 

angle Ω. In other words, wheel/rail contact points A and B 

are always along a straight line on the rail. That further 

proves the previous proclamation about the movement of 

contact points. 

Consequently, lateral distance between contact points A and 

B, representing by the gauge length G at the beginning of 

hunting, is replaced by the new distance between contact 

points A' and B'. For the new wheelset position, the new lateral 

distance between wheel tread contact points for the wheelset 

can be calculated as (G/cosΩ). It is becoming longer as stated 

previously, its center, however, is not on the center line of the 

gauge unless r'1=r'2=r is reached. It should be pointed out that 

the center of hunting (of the wheelset) is not coincident with 

the center of the gauge to begin with. 

The radius of the centrifugal motion is a function of G. As 

the lateral distance between wheelset contact points becomes 

longer, the radius of the centrifugal motion needs to be 

updated with (G/cosΩ). That is, replacing G with (G/cosΩ) in 

the calculation of new R, the radius of circular motions. Note 

that the wheelset motion will still be a centrifugal motion 

with the new R until a condition of zero RRD is reached. 

However, to update R, one needs to realize that both r1 and 

r2 also keep changing in the circular motion. This is because 

the lateral distance between wheel tread contact points keeps 

changing in the process of hunting, or in the circular motion. 

Therefore, we should compute the lateral displacements 

for the wheel tread contact points to begin with. It should be 

noted that, in one way, the wheel/rail contact points are 

always on the rail and along a straight line, and in the other 

way, the rail is fixed and the wheelset is in a circular motion. 

Thus, the lateral movement of wheelset relative to the 

corresponding rail is exactly the horizontal lateral wheel 

tread movement, denoting by ∆1 and ∆2. 

Nevertheless, referring to Figure 5 and assuming R 

constant, the distances ∆1 and ∆2 can be calculated as 
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∆1=R(1/cosΩ - 1)                               (4) 

∆2=(R+G)(1/cosΩ - 1)                           (5) 

where ∆1 and ∆2 represent the distances between points A' 

and A'', and points B' and B'' respectively. It can be seen that 

∆1 ≠ ∆2. That is to say, wheel tread movements in the two 

wheels are different (slightly) even though they are 

connected rigidly by an axel, because the wheelset is in a 

circular motion. 

After the circular motion of angle Ω, the rolling radii of 

the wheelset become (See Figure 6). 

 

Figure 6. Calculation for New Rolling Radii. 

r'1=r1 + ∆1*tanα                               (6) 

r'2=r2 – ∆2*tanα                               (7) 

It can be seen that this is a process in which radius r2 is 

decreased while r1 is increased, resulting in decreasing in the 

potential energy for the wheelset. However, as the process 

continues to go, there will come to an instance of identical 

rolling radius in both wheels. This is a state that the kinetic 

energy is at its maximum while the potential energy is zero 

for the wheelset lateral motion. That is to say, rolling radii of 

the wheelset will come to be exactly the same, i.e., r'1=r'2. 

Thus, we have 

r1 + ∆1*tanα=r2 – ∆2*tanα                      (8) 

Rearranging and plugging in ∆1 and ∆2, the equation 

becomes 

r2 - r1=tanα (2R+G)(1/cosΩ - 1)               (9) 

Eliminating R, we get 

1/cosΩ - 1=1/(G*tanα)*(r2 - r1)
2
/(r2 + r1) 

Or 

1/cosΩ=1+ 1/(G*tanα)*(r2 - r1)
2
/(r2 + r1)         (10) 

There is a solution mathematically to Ω in the above 

equation. The solution can further be obtained by engineering 

calculations, as shown in Table 1, for some practical 

engineering examples. As expected, the wheel tread 

movement (∆1 and ∆2) is about half the ∆ (=0.3 inch). Note 

[∆=(1/tanα)*(r2- r1)]. 

Table 1. Typical Values for Angles of the Circular Motion. 

 
tan α=1/20 ∆=0.3in Gauge=56.4961 in 

  
Angle=degree Length=inch  

  
r2= 38/2 in. 36/2 in. 34/2in. 32/2in. 30/2in. 28/2in. 

r1= 18.985 17.985 16.985 15.985 14.985 13.985 

Ω= 0.117394723 0.1206129 0.1241112 0.127933 0.13213 0.13677 

∆2= 0.149940766 0.1499375 0.1499338 0.14993 0.149925 0.14992 

∆1= 0.150059234 0.1500625 0.1500662 0.15007 0.150075 0.15008 

cosΩ= 0.999997903 0.9999978 0.9999977 0.999998 0.999997 0.999997 

Table 2. Multi-step Approximation for only r2=19 in, r1=18.985 in Unit: Degree, Inch. 

Step 1 2 3 4 5 6 7 8 

∆Ω 0 0.02 0.02 0.03 0.03 0.03 0.03 0.02 

r'2 19 18.9997 18.9995 18.9990 18.9984 18.9978 18.9971 18.9968 

r'1 18.985 18.9852 18.9854 18.9859 18.9865 18.9871 18.9878 18.9881 

R' 71505.1 73643.4 75983.5 82034.6 89750.6 100044. 114709. 123968. 

 

Step 9 10 11 12 13 14 15 

∆Ω 0.02 0.02 0.02 0.02 0.02 0.02 0.0163 

r'2 18.99645 18.99603 18.99557 18.99504 18.9944 18.99354 18.9925 

r'1 18.98855 18.98896 18.98942 18.98996 18.9906 18.99146 18.9925 

R' 135815.2 151696.1 174482.6 210921.8 282144.4 514529.4 2.09E+08 

 

The calculation proves that there exists a state in which 

there is no rolling radius difference for a given r1 and r2. Note 

that the calculation is carried out approximately because R 

and G are not updated (but they are not constant in the 

process). This calculation is called one-step approximation 

for the obvious reason. In the following, a multi-step 

approximation (see Table 2) will be performed in which R is 

updated in every step. In order to make the results converge 
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to the exact solution, the increment in angle Ω is taken to be 

very small. G is not updated in the process because conΩ ≈ 1. 

Radius R' of the circular motion is calculated as 

R'=G*r'1/(r'2-r'1)                            (11) 

With r'1=r1 + ∆1*tanα, r'2=r2 – ∆2*tanα, ∆1=R(1/cos∆Ω - 1)  

and ∆2=(R+G)(1/cos∆Ω - 1). 

where r1, r2 and R are taken their values from the previous 

step (i.e. r'1 and r'2). 

It can be seen that, after 15 steps, rolling radius difference 

becomes zero (r'1=r'2=18.9925 in.) and radius of circular 

motion becomes ∞ (Due to numerical errors, 2.09E+8 can be 

viewed as ∞). That further proves that there exists a state of 

zero RRD. 

4. Determination of the Curve of Motion 

for the Wheelset 

We have demonstrated the motion of wheelset from the 

beginning (r1- r2 system) to a state of zero RRD. For the 

wheelset, this is also a state of maximum kinetic energy, see 

Figure 7. 

 

Figure 7. State of Maximum Kinetic Energy (Zero Potential Energy). 

The change in the radius of the circular motion has been 

studied. However, the purpose of this study is to determine 

the curve of the wheelset motion. The question is that what is 

the curve that the wheelset has gone through so for. What we 

are going to do next is to compare curve of the wheelset 

motion to a cosine curve. If they are exactly the same, then 

the motion curve can be determined to sinusoidal---cosine 

curve. What to compare is the radii of curvature from two 

curves. 

So far, we have made three findings about the curve of the 

wheelset motion. 

1). Radius of curvature of the curve at the beginning (x=0) 

is R=G*r1/(r2-r1) same as Eq. 3 

2). Radius of curvature of the curve at the state of zero 

RRD (r'1=r'2) is 

R=∞                                       (12) 

3). Radius of curvature of the curve for the whole process 

is approximately R'=G*r'1/(r'2-r'1), same as Eq. 11. 

For comparison, R' is calculated (Table 3) and sketched in 

Figure 8. For simplicity, G/2 is not added to R'. 

Table 3. One Step Approximation (Ω=0.11739 radian) for only r2=19 in, r1=18.985 in. 

Ω= 0 0.01467 0.02934 0.04402 0.05869 0.07337 0.08804 0.1027 0.11739 

R'= 71505.184 72640.63 76274.07 83210.63 95349.62 117359.9 163476.6 305180.6 3.64E+15 

 

Figure 8. Radius of Curvature R' for ¼ Cycle of Hunting. 
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That is to say, the radius of curvature is R (R=71,505.1in.) 

at the beginning, will increase as the wheelset rolling 

forwards, and reaches ∞ when r2=r1=r is reached. 

The radius of curvature R is believed to match with a 

sinusoidal curve. Let’s examine a cosine curve y. 

y=Ccos(ωx)                                (13) 

where C is the amplitude of oscillation and is half of the 

distance from the top to the bottom of the oscillation, ω is 

referred to as the circular frequency measured in radians per 

length and x is the horizontal distance. Note that wave length 

L=(2π)/ω. 

From analytical geometrics, radius of curvature for the 

cosine curve y can be expressed as 

Rcos=| (1+ y'
2
)

3/2
/y''|                            (14) 

Plugging in y' and y'', we have 

Rcos=| [1+(Cωsinωx)
2
]

3/2
/(Cω

2
cosωx)|           (15) 

By the same token, three observations can be made on the 

radius of curvature for the cosine curve. 

1). at the beginning x=0, 

Rcos=1/(Cω
2
)                             (16) 

The purpose is to make R=Rcos at x=0. If we make 

R=1/(Cω
2
), then we have R=Rcos. R is computed by Eq. (3). 

As will be shown later, C=½ (r2 - r1)/tanα (Eq. 17), and ω can 

be determined after R and C are computed from a given state 

of a r1- r2 system. Thus, R=Rcos at x=0, can be satisfied. 

2). at ωx=±π/2, Rcos=∞, same as Eq. 12. 

3). Radius of curvature of the cosine curve for the whole 

process is Rcos=| [1+(Cωsinωx)
2
]
3/2

/(Cω
2
cosωx)|, same as Eq. 15. 

For comparison, Rcos is calculated (Table 4) and sketched 

in Figure 9. 

Table 4. Radius of curvature for cosine curve from 0 to π/2. 

Angle 0 0.1963 0.3926 0.5890 0.7853 0.9817 1.1780 1.3744 1.1.5707 

Rcos in. 71506.184 72906.062 77396.68 85998.63 101123.7 128706.21 186852.5 366524.5 2.669E+12 

 

Compared Table 3 with Table 4, we can see 

Rcos=R'=71,506.184 in. at the beginning, and Rcos=R'=∞ at 

the end. However, values at the intermediate steps are not 

exactly the same but in the same pattern. They cannot be the 

same because values in Table 3 are approximate while those 

in Table 4 are exact. The only way to calculate R' can be seen 

so far is a step-by-step solution, and step-by-step solution is 

approximate. 

 

Figure 9. Radius of Curvature Rcos for ¼ Cycle---0 to π/2 (1.57). 

That is to say, the radius of curvature is Rcos 

(Rcos=71,505.1in.) at the beginning, will increase as the angle 

becomes larger in velocity direction, and reaches ∞ when 

ωx=π/2. 

It has been shown that there are three common grounds 

between the wheelset hunting curve and a cosine curve. That 

is, 1) two radii of curvature are the same at the beginning, 2) 

two radii of curvature increase in exact the same pattern and 

3) two radii of curvature reach ∞ at the end of the section. 

Conclusion can be drawn: wheelset hunting motion curve is 

the same as a cosine curve. See Figure 10. 

 

Figure 10. Two Radii of Curvature and One-Quarter Cycle of Two Curves. 

5. Movement of Wheelset After the State 

of Zero RRD 

The curve of wheelset motion has been proven to be 

sinusoidal from beginning to a state of zero RRD. What will 

happen to the wheelset after this state? That will be discussed 

in this section. 

The configuration at Ω, r'1=r'2. That is, rolling radius is 

identical. According to the equation to calculate R, the radius 

of the centrifugal motion goes to ∞ due to r'1 - r'2=0. Therefore, 

the wheelset will go straight under this condition. That is to say, 

the wheelset is not in a circular motion at Ω (Note that only at 

Ω, the wheelset goes straight). However, the wheelset is not 

perpendicular to the rail; instead with angle Ω to the rail, as 

shown in Figure 11. This angle is very important in 

determining the configuration of the wheelset motion. 

As stated previously the rail is straight and the wheel rail 

contact points on the rail are along a straight line. But this 
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straight line is at an angle Ω with the wheelset. Therefore, 

wheel rail contact points on the wheel tread must be along a 

straight line but at an angle Ω with the wheelset, as shown in 

Figure 12. 

 

Figure 11. Direction, Wheelset Motion at Configuration Ω [R=G*r1/(r2-r1), R=∞ if r2=r1]. 

 

Figure 12. Switch of Major-Minor Radii at the Configuration at Ω. 

Referring to Figure 12, one can see that rolling radius on 

wheel B is always larger than that on wheel A as soon as the 

wheelset begins to move, and that rolling radius on wheel B 

increases while rolling radius on wheel A decreases. (Recall 

that wheel A used to have the major radius while wheel B used 

to have the minor one in the previous process) Consequently, 

the wheel tread originally with r1 now becomes the one with 

the major radius, and the wheel tread originally with r2 is now 

the one with the minor radius. This is the switching of major-

minor radii on the two wheel treads. Thus, the center (or the 

radius) of the centrifugal motion will switch to the other side, 

as shown in Figure 11. That means the curve of the wheelset 

circular motion will change sign, from concave to convex in 

this process, as shown in Figure 13. 

This process will produce a new r1 - r2 system which is 

recovered from the previous r1 - r2 system, because of the 

angle Ω which is determined by the previous r1 - r2 system. 

So the curve of wheelset motion in this section is obtained by 

recovering the previous section, as shown in Figure 13. That 

is, another one-quarter of curve is added to Figure 10 to 

finish one half cycle of wheelset motion curve. 
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Figure 13. Directions, Curve of Wheelset Motion of Half Cycle. 

This process will be finished when the major radius is 

reached r2 and the minor radius is reached r1, because the 

final stage of this process is controlled by the direction of the 

wheelset contact points shown in Figure 12. Furthermore, by 

the rule of conservation of energy, the potential energy at this 

stage must be same as that at the beginning state, as shown in 

Figure 14. Actually, conservation of energy is also the 

principle which will be used to determine the amplitude of 

the wheelset oscillation. 

 

Figure 14. State of Maximum Potential Energy (Zero Kinetic Energy 

Laterally). 

6. Determining the Configuration for the 

Curve of Wheelset Motion for One 

Cycle 

So far, a half cycle of wheelset motion (Figure 13) has been 

demonstrated. The other half part of the motion is an exact 

repeat of this first half. The only diffference is that radius of 

curve R is in opposite direction to begin with. Thus, the pattern 

of the motion will be the same but in the opposite direction. 

That is to say, for the new r1 - r2 system, as the circular motion 

continues to go, rolling radius r2 will decrease while r1 will 

increase. Thus, R will increase and become infinite (∞) when 

r2=r1. Then the major and minor radii will switch to the other 

wheel tread as the motion going on. Finally, another r2 - r1 

system will be established, which is exactly the same as the 

one in the beginning of the hunting. Therefore, one cycle of 

hunting oscillation can be produced by mirroring the half cycle 

motion curve in Figure 13, as shown in Figure 15. 

 

Figure 15. Cosine Curve for One Cycle of Wheelset Hunting. 

Thus we have produced the whole curve for wheelset hunting 

motion because the rest of hunting is just a repeat of this cycle. 

Wheelset configurations in one cycle of hunting oscillation is 

sketched in Figure 16. After the derivation of the hunting curve, 

one important observation can be made. All the wheelset 

configurations in Figure 16 will start a hunting motion, and the 

hunting curve can be described by the same cosine curve. That is 

to say, wheelset configurations can be at1, 2 and 3, or anywhere 

between the hunting cycle, wheelset hunting will be initiated. So 

there are many wheelset configurations can start a hunting 

motion not just one as described in Klingel’s formula. 

 

Figure 16. Wheelset Hunting Motion in One Cycle. 
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7. Wave Length and Vibration 

Frequency of Hunting for the 

Wheelset 

We have determined that wheelset hunting motion is 

sinusoidal [y=Ccos(ωx)] and constructed one cycle of the 

curve. However, C and ω (amplitude and frequency of the 

oscillation) of the curve have not been determined yet. C is 

the lateral displacement of the wheelset and can be 

determined as follows: 

C=½ (r2 - r1)/tanα                            (17) 

1). At x=0, as shown previously, the radius of curvature for 

y=Ccos(ω x)=Ccos(2πx/L) is Rcos=1/(Cω
2
), same as Eq. 16. 

2). At the beginning of hunting, the radius of curvature 

determined by r1 and r2 is again R=G*r1/(r2-r1), same as Eq. 3. 

Make Rcos=R+G/2. Therefore, ω
2
=1/(C*Rcos). Plugging in 

C and Rcos, we have 

ω
2
=4*tanα/[G(r2+r1)]                         (18) 

With ω=2π/L, the exact wave length (L) can be obtained 

theoretically, 

L=π*{[G(r1 + r2)]/tanα}
1/2

                   (19) 

Note that Eq. 19 is the same as Eq. 1. For the purpose of 

proving the theoretical values and comparison, the wave length 

will be calculated by numerical operations. From Figures 4 & 

5, as the major radius decreases while the minor radius 

increases there will come to a point that two radii are the same, 

such that ¼ of wave length has passed. It can be seen that the 

¼ of wave length is finished after a certain number of wheelset 

rotations. So the wave length depends only on the number of 

wheel rotations and the number depends on r1 and r2. Therefore, 

the wave length is independent on the train velocity. That 

means the truck will have the same wave length of hunting 

even though the truck moving with different velocities. The 

faster the truck goes, the quicker the truck will go over the 

distance of the wave length. 

It is important to realize that the center line of hunting is 

coincident with the center line of the gauge. With referring to 

Figure 5, we can see that the length of line CcC'c represents ¼ 

of the wave length of wheelset hunting. Therefore, we can 

calculate the wave length approximately, 

La=4*(R+G/2)*tan Ω 

=2G* tan Ω*(r2 + r1)/(r2 - r1)                    (20) 

Table 5. Typical Values for La and L of the Hunting Motion. 

 
tan α=1/20 ∆=0.3in Gauge=56.4961 in 

  
Angle=degree Length=inch 

   
r2= 38/2 in. 36/2 in. 34/2in. 32/2in. 30/2in. 28/2in. 

r1= 18.985 17.985 16.985 15.985 14.985 13.985 

Ω= 0.117394723 0.1206129 0.1241112 0.127933 0.13213 0.13677 

La 828.8508154 806.7442 784.01449 760.6058 736.4535 711.4818 

L 650.8486 633.48263 615.62691 597.2376 578.2638 558.6459 

 

It can be seen from the calculation (Table 5.) that the wave 

lengths La (approximate) and L (theory) of hunting 

oscillation are decreased as the radius of the wheel is 

decreased. It is reasonable that the estimated wave length La 

is larger than the exact theoretical one, because the radius R 

and the orientation of the wheelset do not change in the 

estimation. A step-by-step solution will produce an estimated 

La closer to the theoretical wave length L, but La is always an 

approximate. 

8. Conclusions and Construction of a 

Total Solution to Hunting 

Wheelset hunting can begin with a circular motion. 

However, the radius of the centrifugal motion will be altered 

continuously during the motion, from R to ∞ in magnitude 

and from lateral to longitudinal in direction. During this 

process, the major rolling radius continuously decreases 

while the minor rolling radius increases until the major and 

minor are equal (r2=r1). Then the major and minor rolling 

radii will switch to the other wheel tread as the motion 

continues. Thus, the same centrifugal motion will be reversed 

to the other side of the rail. That the switching can occur is 

because both the changing of radius R and a mechanism at 

r2=r1. The mechanism also guarantees the reversed 

centrifugal motion is exactly the same as the previous one but 

in the opposite direction. 

The radii of curvature at two end points of the hunting (one 

cycle) curve are calculated exactly and found to be the same as 

those of a cosine curve. Meanwhile, for the points in between 

(the end points), the radii of curvature of the hunting curve are 

expected to have a small difference with those of a cosine 

curve due to the exact values not being the same as the 

estimated (calculated) values. Note that the curve patterns 

(Figures 7&8) are the same. So the radii of curvature for the 

two curves are the same. The motion of the wheelset in 

hunting is therefore a cosine curve. One cycle of hunting curve 

is constructed and parameters for the sinusoidal curve are 

determined in the paper. From the derivation of the hunting 

curve, Figure 16, one observation can be made---Any wheelset 

configurations on the rail can start a hunting motion not just 

one as described in Klingel’s formula. Thus, hunting of the 

wheelset begins as soon as the wheelset begins to move. 
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More interestingly, without wheelset conicity, it has found 

that the high speed trains will hunt in service operations also. 

Theoretically, there always exists the rolling radius difference 

even if the wheel coinicity does not exist. That is why truck 

lateral motion will always occur no matter how good the 

equipment is because unevenness always exists. 

This research lays the foundation for the continuous 

research on truck/wheelset hunting in the future. Thus, a total 

solution to the hunting problems can be created, which is 

impossible with Klingel’s theory. The following major 

hunting problems have been solved. 

1) Even though millions of trucks have been 

manufactured, theoretical calculation of dynamic 

loading for truck design has never been established. 

There is no theoretical base found for people to do the 

calculation. However, the train/truck critical speed in 

hunting was calculated by many researchers [16], but 

only one critical speed for one load case. Actually, there 

are three critical speeds in one load case. Both dynamic 

loading and critical speeds in three directions for a truck 

can be calculated to use in truck design [10]. 

2) Wheelset hunting motion curve while curving can be 

analyzed and generated [8], which is impossible before. 

That is, Klingel’s theory cannot do anything about that. 

3) There are usually two or more wheelsets in a truck. 

Wheelsets in a truck will fight against each other to 

reduce hunting. That is why a single-wheelset-truck will 

have a severe hunting problem. We can now analyze and 

evaluate the interaction between wheelsets in a truck [9]. 

4) A common question asked in the railroad is “Why trains 

stay on tracks?” [15]. Wheelset balance velocity [1] can 

explain why. Testing finds that a tapered wheelset will 

derail at its balance velocity [13]. 

5) Wheelset balance velocity can be used to analyze the 

root cause of rail corrugations, and to do inspections for 

a worn wheelset scientifically and mathematically. 

Wheelset hunting can be eliminated by a hunting 

eliminator [13]. 

6) Coefficients of friction---static versus dynamic [14], 

Sliding friction and rolling friction [11], Derailment 

modes [4, 5] and Braking distance calculation (a 

thousand year old problem) [12], all these have been 

solved, with more to come. 
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