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Abstract: Wind energy is attractive in the presence of climate concerns and has the potential to dramatically reduce the 

dependency on nonrenewable energy resources. With the increase in wind farms there is a need to improve the efficiency in 

power allocation and power generation among wind turbines. In this paper, a hierarchical algorithm including a cooperative 

level and an individual level is developed for power coordination and planning in a wind farm. In the cooperative level, a 

constrained quadratic programming problem is formulated and solved to allocate the power to wind turbines considering the 

aerodynamic effects of wake interaction and the power generation capabilities of wind turbines. In the individual level, a 

method based on the local pursuit strategy is studied to connect the cooperative level power allocation and the individual level 

power generation using a virtual leader-follower scheme. The stability of individual wind turbine power generation is analyzed. 

Simulations are used to show the advantages of the method. 
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1. Introduction 

Wind energy is considered to be an important player in the 

renewable energy market, enabling a reduction in carbon 

pollution from conventional energy with a rapid growth at 

the rate of around 27% per year between 2005-2009 [1] [2]. 

The US government has plans to produce 20% of the 

country’s energy via wind by 2030 [3].  

Although promising in its potential, wind farms arranged 

in arrays suffer in power output due to aerodynamic 

interaction between the wind turbines. This requires wind 

farm control schemes that can improve the power production 

output and handle the aerodynamic interactions better [4]. It 

is shown that around 10% to 40% of wind energy output and 

profit is lost as a result of the interaction among wind 

turbines, particularly due to wake interactions [5] [6].  

Wind energy control research is normally focused on either 

individual wind turbine control or wind farm cooperative 

control. In individual wind turbine controls, work has been 

done on using linear/nonlinear feedback control techniques to 

track the power to be produced. An example of this can be 

seen in [7] where the researchers proposed an adaptive 

control strategy using neural network to control rotor speed 

and blade pitch angle. Another popular direction is the study 

of wind availability and the stability analysis of the system 

while switching between different operation regimes [8]. 

The approach of maximizing the power of an individual 

turbine renders suboptimal in terms of wind farm power 

production due to coupled aerodynamic effects and 

mechanical loadings [9]. This beckons a scheme of 

coordination of individual wind turbine actions to increase 

the overall efficiency of the plant and reduce fatigue and 

loads on wind turbines [10]. With an increased responsibility 

in power generation, wind farms have other tasks to perform 

such as regulation and stabilization of power plants and may 

not be required to run at a full capacity at all times [9]. Many 

researchers have tackled cooperative wind farm control 

problems. The two broad categories of approaches include (i) 

maximizing the total power output, and (ii) power 

optimization schemes to distribute the power demand in 

terms of load reduction, e. g. in [10]. In [5], wind farm output 

is maximized by finding optimal combination of yaw angles 

and induction factor using a steepest decent method. In [11], 

power demand is met by dynamically coordinating and 

varying wind turbine power such that the addition of their 

power outputs matches the total requirement. 

Although there have been many works in recent years 
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focusing on the cooperative control of wind turbines, there is 

still plenty of room for improvement in this field. For 

example, most of the recent work focuses on the use of 

linearized wind turbine models [12] for optimization 

purposes; this can lead to errors as some wind turbine 

operating modes in linearized models do not match well with 

real nonlinear phenomena. Furthermore, the work in 

coordinated wind farm control often ignores structural 

deflection constraints of individual wind turbines [13]. In 

some wind farm cooperative control work as seen in [14], the 

algorithm has a high computational cost when applied to 

larger wind farms and is not scalable with increase in the 

number of wind turbines. 

The optimal cooperative power planning in this work is 

divided into a hierarchical structure which consists of two 

levels, cooperative and individual. The cooperative level 

algorithm handles the objective of optimally allocating power 

to the wind turbines while considering the coupled constraint 

of wake interaction between wind turbines, as well as 

uncoupled constraints of power production limits of 

individual wind turbines based on wind turbine properties 

and available wind speeds.  

The individual level algorithm is to minimize the 

differences between the actual power generated and the 

allocated power demand while considering individual wind 

turbine constraints such as thrust and torque on the rotor, the 

rotor speed, and the tower deflection.  

A leader follower arrangement is used in connecting the 

cooperative and individual level algorithms. The recently 

studied cooperative control strategy [15] motivated by the 

local pursuit phenomenon seen in foraging ants [16] will be 

further enhanced to govern the relationship between the 

power generation in virtual leader power and individual wind 

turbine. 

The following aspects of algorithm are studied: (1) the 

asymptotic stability of power allocation formulation, 2) the 

equilibrium point and the stability of wind turbine rotor 

speed dynamics, 3) the ability to handle nonlinear wind 

turbine dynamics, and 5) the scalability of algorithm with 

increase in wind farm size.  

The paper presented is divided into the following parts. 

Section 2 introduces the adopted individual wind turbine 

model and the wake interaction model. In Section 3 the 

cooperative level and individual level optimization problems 

are defined. Section 4 describes the local pursuit based 

individual wind turbine optimal power control, and Section 5 

discusses the coordinated wind farm power allocation 

algorithm. Simulation results are shown in Section 6. Lastly 

conclusion is drawn in Section 7. 

2. Individual Wind Turbine Model 

The nonlinear wind turbine model adopted from [7] 

consists of the blade pitch actuator dynamics and the rotor 

dynamics as, 
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Here the state variables [ ]x ω β= T

r  are the rotor angular 

velocity and the collective blade pitch angle, and the control 

variable 
r

β  is the blade pitch angle reference input. 

( ),PC λ β  is the rotor power coefficient. /r R Vλ ω=  is the 

tip speed ratio. ρ , R ,V , gbn ,
2

eq r gb gJ J n J= + , and Tβ  are the 

air density, rotor radius, average wind speed, the equivalent 

shaft inertia, gear box ratio, and time constant of the pitch 

servo system, respectively. rJ and gJ  are the inertia of the 

rotor and generator. The data and coefficients used in this 

model are selected from a 3 blade, horizontal axis, 5 MW 

capacity offshore wind turbine [17]. The constants a  and b

are the parameters in the linearized generator torque model 

g gT a bω= +  [7], in which the generator speed is 

g gb rnω ω= . It is worth noting that the input matrix in Eq. (1) 

is non-square. 

The outputs of the model ( )h x  include the power 

extracted from the wind P , the torque experienced by the 

low speed shaft T , and the thrust experienced by the rotor F  

as follows 

( )
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In the above equation, ( ) ( ), , /Q PC Cλ β λ β λ=  and 

( ),TC λ β  are the rotor torque coefficient and the rotor thrust 

coefficient, respectively [7]. The cut-in and rated wind 

speeds for such a wind turbine are 8 m/s and 11.4 m/s [17], 

respectively. For the simulation of wind turbine dynamics, 

start up and shut down scenarios are not included. The 

limitations of rotor speed, rotor torque, and thrust force are  

, , ,0 ,0r min r r max max maxT T F Fω ω ω≤ ≤ ≤ ≤ ≤ ≤             (3) 

To make the extraction of pitch angle easy from known 

PC  and λ , an equation is adopted from [18] as  

( ) ( )
5

1 2 3 4 6, / k

c

P k kC c c c c e c
λλ β λ β λ
−

= − − +            (4) 

( ) 3

1 1 0.035

0.08 1kλ λ β β
= −

+ +                          (5) 

where 
1

0.5176c = , 
2

116c = , 
3

0.4c = , 
4

5c = ,
5

21c = , and 

6
0.0068c = . The PC value calculated using Eqs. (4) and (5) 
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matches well with the values obtained from the FAST and 

Aero Dyn packages of NREL [17]. The Jensen wake model 

[19] is used to calculate the downstream velocity between 

wind turbines in the farm, which permits fast calculations and 

is commonly used in commercial wake calculation programs. 

The wind speed at a distance x is given as follows. 

( )
( )

0 2

1 1
1

1

T

w

C
V x V

x
k

R

 
 − − = − 

   +       

                  (6) 

Here 
0

V  and k  are the incoming wind speed and the 

entrainment constant, and R  is rotor radius. 

The thrust force acting on the rotor plane of the wind 

turbine causes the oscillation of the tower, and the tower 

deflection in the fore-aft direction is depicted in the second 

order system [20] as,  

mz dz cz F+ + =ɺɺ ɺ                                 (7) 

in which z  is the displacement of tower top along the 

direction of the wind, the thrust force F  is assumed to be 

concentrated in the center of the rotor hub. In Eq. (7), 

parameter m  is the modal mass, d  is the modal damping, 

and c  is the modal stiffness of the tower. The displacement 

of the tower top is constrained by maxz z≤ . 

3. Cooperative Optimal Power Control 

Power Formulation 

3.1. Power Generation Optimization in Individual Wind 

Turbine 

The performance index to be optimized in each wind 

turbine is,  

( )2 2 2

1 , 2 3
0

, 1, ,
ft

i i i d i i wJ W P P W F W T dt i N = − + + =  ∫ …     (8) 

We assume that there are 
w

N  wind turbines in the farm, 

and , 1, 2,3
k

W k =  are user defined weights for each 

component in the performance index. 
i

P  and ,i dP  are the 

actual and allocated power of the i
th

 wind turbine in the 

planning horizon 0, ft   . iF  and iT  are the thrust force 

acting in the rotor plane and the thrust torque of the i
th

 wind 

turbine. The design variable (optimizable variable) in the 

performance index is the speed control parameter (SCP) in 

the actual power term and will be discussed in Section 4. 

The equality constraints include the nonlinear dynamics 

Eq. (1) and initial condition ( ), 0r i tω  and ( )0i tβ ; while Eq. 

(3) and the tower deflection limitations are regarded as the 

inequality constraints. 

 

3.2. Power Allocation in Wind Farms 

In the wind farm cooperative level power allocation, the 

wind speed available to upwind turbines and the distances 

between the upwind and downwind wind turbines are known. 

At a particular time, the power grid network needs a total of 

totP  from this farm, and the performance index in the 

cooperative level is 

2

1

wN

i tot

i

J P P
=

 
= − 
 
∑                                  (9) 

The power allocated to wind turbine i is limited by its 

power generation capability , ,,i min i maxP P   , which depends on 

the ranges of its incoming wind, pitch angle, and tip speed 

ratio. 

4. Local Pursuit Based Individual Wind 

Turbine Optimal Control 

4.1. Power Output Regulation 

The power output of each wind turbine is proposed to be 

driven by a modified local pursuit strategy [15], 

( ) , 1, ,i i VL i i i VL wP v P P v P i N= − + ∆ + =ɺ ɺ …              (10) 

in which VLP  is the power output of leader that can be a 

virtual wind turbine, and the value can be the average power 

generated by wN  wind turbines in the farm as 

( ) /VL tot wP t P N= . The constant term i∆  in a planning 

horizon is the power output bias of wind turbine i from VLP .  

There are different approaches to drive the power of each 

wind turbine towards its allocated value. Following Eq. (10) 

is just one approach. In this approach, the actual wind turbine 

power will follow a first order trajectory without an 

overshoot. Additionally, the speed control parameter (SCP) 

iv  determines how fast the power output iP  will converge to 

its desired value VL iP + ∆ . 

Let us define the output power tracking error of wind 

turbine i to be  

, 1, ,i i VL i wP P P i N= − − ∆ =ɶ …                       (11) 

Lemma 1: As t → ∞ , the power output of wind turbine i 

will asymptotically converge to its allocated value if 0iv > . 

Also under this guidance law, the power output is  

( ) ( )
0

0 , 1, ,

t f

iv t dt

i i VL i wP P t e P i N
−∫= + + ∆ =ɶ …          (12) 

Proof: It is proven in [15] that the error signal will 

asymptotically converge to zero as t → ∞ if ( ) 0iv t > . Thus 

the proof of this part of Lemma 1 is omitted. According to 

Eq. (10) and Eq. (11), i i iP v P= −ɺɶ ɶ . Therefore,  
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( ) ( )
0

0

t f

iv t dt

i iP P t e
−∫=ɶ ɶ                              (13) 

which leads to Eq. (12). 

4.2. Equilibrium Point and Stability of Rotor 

Lemma 2: If the power generation follows Eq. (10), the 

equilibrium points of the rotor speed ,

ss

i rω  are, 

( ) ( )2

, ,2 ,2 ,1 ,14 / 2 , 1,
ss

i r i i i VL i i wc c c P c i Nω  = − ± + + ∆ =
 

…  (14) 

in which the coefficients are defined in the following proof. 

Here a negative rotor speed represents the case that the rotor 

will spin in the opposite direction if allowed. 

Proof: The rotor dynamics from Eq. (1) can be written as, 

( ) 22 3

, , ,

,

, , , ,

,

2

i i gb i r i i gbi i P i i
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Let us define
2

,1 , 0i i i gbc a n >≜  and ,2 , 0i i i gbc b n <≜ , and 

also because ( )2 30.5 ,i i i P i iP R V Cρπ λ β= , the rotor dynamics 

can be rewritten as 
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0
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, , , ,

1

1
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i

i ii
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Therefore, the equilibrium point ,r eqω  when 0
i

ω =ɺ  gives 

( )
( ) ( )

0
2

0
, ,2 ,2 ,1

,2

1
4

2

t f

iv t dt

ss
i

i r i i i

i
VL i

P t ec c c
c P

ω
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ɶ
      (17) 

As t → ∞ , the steady state equilibrium point of the rotor 

speed is derived as Eq. (17). 

Remark 1: In reality, a wind turbine may only have one 

equilibrium point according to its wind blade pitch angle 

installation.  

Lemma 3: If the power generation for each wind turbine 

follows the modified local pursuit equation (Eq. 10), the 

equilibrium point of the rotor speed in Eq. (17) is 

asymptotically stable if the perturbation from its equilibrium 

point ,i r
ωɶ  satisfies , ,

ss

i r i rω ω<ɶ . 

Proof: Let us assume the rotor speed is perturbed to be 

, , ,

ss

i r i r i rω ω ω= + ɶ , where ,i rωɶ  is the error around the 

equilibrium point. Then Eq. (17) can be rewritten as 

( )

( ) ( ) ( )
0

,1 ,2

, , , ,

, ,

0

, , ,

1
t f

i

i iss ss
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which can be simplified as 

( )
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0

,

1
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Remove the equilibrium part in Eq. (19), the error 

dynamics is derived to be 

( )
( ) ( )

0 ,1
0

, , ,

,, , , ,

1
t f

iv t dt
i

i
i r i r i rss ss
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For any 0
i

v > , 
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If , ,

ss

i r i rω ω<ɶ , ( ), , , 0ss ss

i r i r i rω ω ω+ >ɶ . Since ,1 0ic > , the 

coefficients in both terms of the error dynamics are negative, 

which means the rotor speed error will decay to zero as 

t → ∞ , and the error is bounded by its initial error. 

Therefore, according to [21], the rotor speed equilibrium 

point is asymptotically stable.  

Lemma 4: the regions of attraction for positive and 

negative ,

ss

i rω  in Eq. (17) are ( )0,∞  and ( ,0)−∞ , 

respectively. 

Proof: Let us define  

( ) ( )
0,1 ,2

0
,

, , , ,

1
t f

iv t dt
i i

i
i i r

i eq i eq i eq i r
VL i

c c P t ef
J J J P

ω
ω

− ∫   
 = − − +            + + ∆ 

ɶ
 (22) 

There is a singular value at , 0i rω = . For the positive ,r eqω
case, if , ,

ss

i r i r ωω ω= + ∆ , Eq. (22) can be simplified as 
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( )

( ) ( ) ( )0

,1 ,2

,

, ,

0 , ,
/

t f
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i i r

i eq i eq

v t dt
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i VL i i eq i r

c c
f

J J

P t e P J

ω

ω

ω

ω
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= − + ∆ −      
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ɶ

   (23) 

Note that the equilibrium condition is applied in deriving 

Eq. (23). Therefore, if , 0ss

i r ωω− < ∆ < , 0
i

f >  and ,i rω  will 

increase until it reaches ,

ss

i rω . If 0ω∆ > , 0if >  and ,i rω  will 

decrease until it reaches ,r eqω . Thus the region of attraction 

for the positive ,r eqω  will be ( )0,∞ . Similarly, it can be 

proven that for the negative ,

ss

i rω , the region of attraction is 

( ),0−∞ . 

Remark 2: based on Lemma 3, when the power output 

generated follows the modified local pursuit equation, if the 

initial rotor angular velocity is positive (negative), it will 

converge to the positive (negative) equilibrium point. 

Remark 3: based on Lemma 1 – Lemma 3 and Remark 1, if 

the power output follows Eq. (10), the rotor speed in the 

individual wind turbine will reach its equilibrium point 

depending on its initial condition, which is asymptotically stable. 

Remark 4: Based on Eq. (13), ( ) ( ) ( )
0

0

t f

iv t dt

i f iP t P t e
−∫=ɶ ɶ . 

Thus 

( ) ( ) ( )0
0

ln /
ft

i f i iP t P t v t dt  = −  ∫ɶ ɶ                 (24) 

This equation can provide information on how fast roughly 

the power generated by wind turbine i will approach the 

allocated power. 

Remark 5: It is worth noting the asymptotically stability of the 

equilibrium rotor speed assumes that the model is perfectly 

known and there is no sensor or actuator noises or uncertainties. 

When the noise and/or uncertainties cannot be neglected or the 

wind turbine is not perfectly modeled, the planning algorithm 

proposed here can be put in a receding horizon framework and 

the power generation in individual wind turbine will be re-

planned at the beginning of each planning horizon. 

4.3. Dynamic Model Propagation 

To solve the optimization problem for individual wind 

turbine listed in Section 3.1, we need to know the state 

and control variables at each instance. Since the input 

matrix of model Eq. (1) is non-square, instead of finding 

those variables through fast collocation methods such as 

those used in [15], we will directly propagate the dynamic 

model here. Since our goal is to plan individual level wind 

turbine’s power regulation optimization, assumption is 

made that the relation between rotor speed, collective 

blade pitch angle, tip speed ratio, coefficient of power and 

allocated wind turbine power are perfectly modeled. The 

detailed steps involved are listed in the following 

algorithm. 

Table 1. Algorithm 1- Model Propagation. 

Step 1 

Based on the allocated power 
iP  for the thi  wind turbine using 

Eq. (10), the rotor power coefficient ( , )P i iC λ β  can be 

calculated using Eq. (2). 

Step 2 
The result from step 1 can be used to propagate the angular 

speed dynamics 
,i rω  using the first equation in Eq. (1). 

Step 3 The tip speed ratio is then calculated by 
, /i i r i iR Vλ ω=  

Step 4 

The tip speed ratio calculated in the previous step along with 

the known ( , )P i iC λ β can help us reversely solve for the pitch 

angle 
iβ  using Eqs. (4) and (5) 

Step 5 

The control variable (i. e. the reference pitch angle 
,i rβ ) can be 

calculated using the derivative of 
iβ  and the second equation 

in Eq. (1). The derivative of 
iβ  can be approximated using the 

Euler scheme. 

Step 6 

The output variables, i. e. the thrust and torque on the rotor, can 

be calculated using Eq. (2). The tower deflection (
iz ) is 

propagated using Eq. (7) based on the calculated thrust 
iF  on 

the rotor. 

4.4. Individual Wind Turbine Power Generation 

Optimization 

The optimization of the power generation in each wind 

turbine is shown in Algorithm 2 listed below. The “fmincon” 

solver in MATLAB is applied here. As proven in Lemma 3, 

the closed-loop system is asymptotically stable. 

Table 2. Algorithm 2 - Power Generation Optimization. 

 Step 1 

Using the known virtual leader power 
VLP  and the allocated 

power bias 
i∆ , guess the optimizable variable (i. e. the speed 

control parameter 
iv ) at each time node. 

Step 2 
The power 

iP  to be generated is propagated using the guessed 

iv . 

Step 3 
Algorithm 1 is followed and the results are used in evaluating 
the performance index as defined in Eq. (8) and the equality and 

inequality constraints as described in Section 3.1.  

Step 4 
If the performance index does not converge to the minimum or a 
feasible solution, go back to Step 1. Else, the optimization is 

accomplished.  

Wind turbines in a wind farm can be optimized using 

Algorithm 2 in a decentralized manner. 

5. Coordinated Power Allocation in Wind 

Farms 

5.1. Power Generation Allocation in Cooperative Level 

The performance index in the cooperative level is given in 

Eq. (9). Expanding this performance index, we get 

2

2

1 1

2
w wN N

i i tot tot

i i

J P P P P
= =

   
= − +   
   
∑ ∑                 (25) 

Minimizing Eq. (25) is equivalent to minimizing 
2

1 1

2
w wN N

i i tot

i i

J P P P
= =

   
= −   
   
∑ ∑ . Expanding the first term in (25), 
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2

1 1 1 1

2

1

w w w w

w

N N N N

i i j i i j

i i j i i j

N

i j i

i i j

P P P P P P

P P P

= = = = ≠

= ≠

      
= = +      

      

= +

∑ ∑ ∑ ∑ ∑

∑ ∑
      (26) 

Therefore, the performance index can be written as the 

form of a quadratic programming as 

1
min P P P

2
= +T TJ H f

P
                            (27) 

where the optimizable parameters 1 2P , , =  …
w

T

NP P P  are the 

powers to be allocated. The matrices H  and f  are defined as 

1 1

2

1 1
w wN N

H

×

 
 =  
  

…

⋮ ⋱ ⋮

⋯

 and 

1

1

2

1
w

tot

N

f P

×

 
 = −  
  

⋮         (28) 

The constraint in the optimal power allocation is [ ]P ,Pmin max . 

To know the range of the available power for each wind turbine, 

the range of possible wind speed needs to be calculated. The 

algorithm to calculate the lower and upper bounds of the 

available power [ ]P ,Pmin max  is listed next as Algorithm 3. 

Table 3. Algorithm 3 - Range of Available Power for each Wind Turbine. 

Step 1 Receive the total wind farm power demand (
totP ) 

Step 2 Follow Algorithm 3 to find 
minP  and 

maxP   

Step 3 
Solve the formulated quadratic programming problem (Eqs. 27 

and 28 and [ ]P P , P∈ min max
) 

Step 5 Compute the virtual leader power ( /VL tot wP P N=  and 0
VL

P =ɺ ) 

Step 6 

Send the allocated power (
i VL iP P= + ∆ ), virtual leader power 

(
VLP ), and bias information (

i∆ ) to Algorithm 2 for lower 

level optimization. This step is decentralized. 

The MATLAB quadratic programming solver “quadprog” 

is used to solve the formulated power allocation problem 

(Eqs. 27 and 28 and [ ]P P , P∈ min max
). The algorithm used to 

optimally allocate the power to each wind turbine is 

summarized in the following table. 

Table 4. Quadratic Programming for Coordinated Power Allocation. 

Step 1 Receive the total wind farm power demand (
totP ) 

Step 2 Follow Algorithm 3 to find 
minP  and 

maxP  

Step 3 
Solve the formulated quadratic programming problem (Eqs. 27 

and 28 and [ ]P P , P∈ min max
) 

Step 5 Compute the virtual leader power ( /VL tot wP P N=  and 0
VL

P =ɺ ) 

Step 6 

Send the allocated power (
i VL iP P= + ∆ ), virtual leader power 

(
VLP ), and bias information (

i∆ ) to Algorithm 2 for lower 

level optimization. This step is decentralized. 

5.2. Coordinating Power Allocation and Planning 

Algorithm 

Algorithms 1 through 4 are put together in Algorithm 5 as 

the overall power allocation and optimal power planning 

algorithm for a wind farm. 

Table 5. Algorithm 5 - Summary of the Algorithm. 

Step 1 
The grid sends a total desired power output (

totP ) in the 

beginning of each planning horizon. 

Step 2 

Algorithm 4 (including Algorithm 3) is used to find 
VLP , 

iP  

and 
i∆  in the cooperative level, which will be sent to 

individual wind turbine (centralized).  

Step 3 

Algorithm 2 (including Algorithm 1) is used to find the 

optimized 
i

v  and the optimal reference pitch angle 
,i rβ  

(decentralized). 

Step 4 

Send the overall operation and power production information 

back to the central computer. Individual wind turbine will 

execute the 
,i rβ  command. 

6. Simulation and Discussion 

6.1. Simulation Settings 

The simulation is carried out on a laptop, running Intel® 

Core i7-2620M with a processor speed of 2.7 GHz and a 6 

GB RAM. The constrained nonlinear programming problem 

in Algorithm 2 is solved using the MATLAB “fmincon” 

function; while the constrained linear quadratic programming 

problem in Algorithm 4 is solved by the “quadprog” function. 

The properties of the wind turbine are adopted from [13] as 

shown in Table 6. It is worth mentioning that although all the 

wind turbines in the simulated wind farm are assumed to be 

the same, non-homogenous dynamics models can be used in 

the proposed cooperative control algorithm. 

Table 6. Properties of the chosen Wind Turbine Model. 

Parameter Definition Number 

Gear box ratio ( gbn ) 97  

Generator inertia ( gJ ) 2534.12 kg m⋅  

Rotor inertia (
rJ ) 2115920  kg m⋅  

Equivalent shaft inertia (
2

eq r gb g
J J n J= + ) 6 25.14 10 /kg m×  

Air density ( ρ ) 31.2041 /kg m  

Rotor radius ( R ) 63 m   

Pitch actuator time constant ( Tβ ) 0.2 sec  

Modal mass of wind turbine tower ( m ) 587460 kg   

Modal damping of the wind turbine tower ( d ) ( )1903.37 / /N m s  

Modal stiffness of the wind turbine tower ( c ) 61669.20 /N m   

Tower height ( h ) 87.6 m  

The tolerances for both the constraints and function 

evaluations are set to 110− . The upper and lower bounds of 

the optimizable parameter (i. e. the speed control parameter) 

are set to be between 4 and 8. The constraints on the rotor 

speed, torque, and force are limited by 1 15
r

rpm rpmω≤ ≤ , 

60 4.6 10T N m≤ ≤ × ⋅ , and 60 10F N≤ ≤ , respectively [13]. 

The maximum tower deflection (
max

z ) constraint is kept at 

5% of the tower height. As one case, the weights in 
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performance index Eq. (8) are set to 
1

1W = , 
2

0W = , and 

3
0W = . All the quantities in the optimization are 

nondimensionalized to help the optimization convergence. 

It is worth mentioning that for brevity only the plots of the 

state and control variables in Case A are shown since all the 

other cases have similar state and control variable 

performance. 

6.2. Individual Wind Turbine Optimization 

Three scenarios are simulated to test the robustness of 

Algorithm 2, i. e. the power planning optimization of 

individual wind turbine: A) varying wind speed, B) varying 

allocated power, and C) varying initial power condition. 

During the planning horizon, it is presumed that the wind 

speed remains constant. 

6.1.2. Varying Wind Speeds (Case A) 

The table below summarizes the optimization results of 

varying wind speeds for a fixed set of allocated and initial 

wind turbine power, as well as an invariant virtual leader 

power.  

The obtained steady state values for rotor speed, pitch 

angle, rotor torque, and rotor thrust are in agreement with 

those in similar scenarios on a 5 MW NREL wind turbine 

[17]. The minor differences in those performances are due to 

fact that the generator torque values (i. e. the values of a and 

b) chosen for the simulation are different from the data in 

NREL. Our strategy is to tune the generator torque to keep 

the tip speed ratio between 7 and 8 near the optimal tip speed 

ratio of 7.55 [17] 

Optimum solutions are able to be attained in reasonable 

time as shown in Table VII, ranging between 1.8 and 2.8 

seconds. 

Table 7. Case A - Varying Wind Speed. 

Case V  (m/s) 
CPU time 

(sec) 

ssβ  

(deg) 

ssω  

(rpm) 

ss
T   

(MN-m) 

ss
F  

(MN) 

A1 11.40 2.81 17.92 13.28 1.20 0.19 
A2 10.00 1.84 16.07 11.71 0.90 0.14 

A3 9.00 1.80 13.76 10.66 0.68 0.11 

A4 8.00 1.83 9.93 9.59 0.51 0.08 
A5 7.00 1.82 3.00 8.88 1.21 0.23 

The following figure shows the time history of the wind 

turbine state and output variables for those five varying wind 

speed cases. In Figure 1(a) – Figure 1(b), the torque and 

thrust force are within the limit. The rotor speed (Figure 1(c)) 

is stabilized at its equilibrium point based on its power output 

and blade pitch angle. In all the cases, the power generation 

reaches its allocated number 1 MW (Figure 1(d)). The pitch 

angle (Figure 1(e)) follows well with the commanded 

reference pitch angle (Figure 1(f)). It is worth noting that all 

five cases have different initial pitch angle due to the fact that 

there are only two independent variables among the initial 

power, initial blade pitch angle, and initial rotor speed 

settings. 

 

1(a) Torque 

 

1(b) Thrust 

 

1(c) Rotor Speed 

 

1(d) Power 

 

1(e) Pitch Angle 

Figure 1. Results of Case A. 
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6.2.2. Varying Allocated Power (Case B) 

For the cases in Table VIII, the allocated power is 

changing and the wind speed is kept constant. As expected 

with an increase in power demand, the pitch angle decreases. 

The maximum tower deflection, force, and thrust 

experienced by the turbine are increasing in a general trend. 

The CPU time is between 1.79 and 2.82 seconds. The rotor 

speed is maintained at its equilibrium point according to its 

power output, wind speed, and blade pitch angle. 

Table 8. Case B - Varying Allocated Power. 

V  (m/s) 
P  

(MW) 

CPU time 

(sec) 

ssβ  

(deg) 

ssω  

(rpm) 

ss
T  

(MN-m) 

ss
F  

(MN) 

11.40 1.00 2.82 17.92 13.28 1.20 0.19 

11.40 2.00 1.83 13.70 13.73 1.00 0.17 
11.40 3.00 1.82 9.32 14.16 0.82 0.15 

11.40 4.00 1.79 4.67 14.57 2.72 0.49 

11.40 5.00 1.83 1.24 14.95 3.37 0.74 

6.2.3. Varying Initial Power (Case C) 

For all five C cases, the initial power condition is varied, 

while the wind speed and the allocated power are kept at the 

rated value. For the same commanded power at the same 

(rated) wind speed, the steady state values for all 5 cases 

achieve the same value as expected. The maximum tower 

deflection is different due to its different initial power output, 

which affects the transient stage of the power generation; 

however it is within the limit. 

Table 9. Case C - Varying Initial Power Condition. 

0P  

(MW) 

CPU time 

(sec) 

ssβ  

(deg) 

ssω  

(rpm) 

ss
T  (MN-

m) 

ss
F  

(MN) 

0.00 2.99 1.25 14.95 3.37 0.74 
1.00 1.86 1.25 14.95 3.37 0.74 

2.00 1.82 1.24 14.95 3.37 0.74 

3.00 1.80 1.24 14.95 3.37 0.74 
4.00 1.78 1.24 14.95 3.37 0.74 

6.3. Coordinated Wind Turbine Optimization 

The overall cooperative optimal power planning algorithm 

(Algorithm 5) is tested on three offshore wind farms with 

different sizes. 

6.3.1. A 2 by 2 Wind Farm Array 

In this case, an array consisting of 4 wind turbine array is 

selected (Figure 2). The distance between each row of wind 

turbines is 504 m. A total power demand of 10 MW is 

requested from the farm. A rated wind speed of 11.4 m/s is 

available at the first row of wind turbines. Following 

Algorithm 5 and subsequent algorithms within it, the 

downwind wind speed at the second row is 10.13 m/s and the 

CPU time used in allocating the power to the wind turbines is 

0.33 sec. The individual level algorithm is then minimizing 

the performance index in Eq. (8) and determines the pitch 

angle references for the individual wind turbines. 

 

Figure 2. A 2x2 wind farm configuration. 

6.3.2. A 4 by 4 Wind Farm Array 

In the second case a bigger array is used (Figure 3). Here 

again a rated wind speed of 11.4 m/s is available in the first 

row of wind turbines. For a total power demand of 30 MW, 

the cooperative level algorithm could rapidly allocate power 

to each wind turbines. The calculated velocities at the 2nd, 

3rd and 4th rows are 9.83 m/s, 8.74 m/s, 7.54 m/s. The CPU 

time of the cooperative power allocation is 0.35 sec. 

 

Figure 3. A 4x4 wind farm configuration. 

6.3.3. A 5 by 5 Wind Farm Array 

For similar upwind conditions, in this case with 25 wind 

turbines (Figure 4), the total power demand from the wind 

farm is 45 MW. The calculated wind speeds based on the 

cooperative level algorithm at the downwind rows 2, 3, 4 and 

5 are 9.84 m/s, 8.75 m/s, 7.55 m/s, and 5.91 m/s, respectively. 

The CPU time of the cooperative power allocation is 0.36 

sec. 

 

Figure 4. A 5x5 Wind Farm Array. 
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The table below demonstrates the scalability of the 

cooperative power planning algorithm proposed in this paper. 

For an increase in the farm size, the computational cost 

remains at a similar level. The CPU time for the cooperative 

level only increases slightly from 0.33 seconds to 0.36 

seconds. The CPU time increase for the individual level is 

relatively very low. The power allocation and planning 

optimization in a typical wind farm is at most 0.1 Hz [7]; 

therefore the CPU time achieved here meets the need. 

Furthermore, with a more efficient C programming solver, 

the CPU time is expected to be much lower. 

Table 10. CPU Time for 3 Wind Turbines with Different Size. 

Wind farm configuration 2x2 array 4x4 array 5x5 array 

Cooperative level 

CPU time (sec) 0.33 0.35 0.36 

Performance index 0 0 0 

Individual level 

Minimum CPU time (sec) 0.94 2.02 2.02 

Maximum CPU time (sec) 1.94 2.98 2.98 

Overall 

CPU time (sec) 2.27 3.33 3.34 

7. Conclusion 

In this paper, a new, hierarchical method for cooperative 

control of wind turbines in a wind farm is presented. The 

power allocation among wind turbines is obtained by solving 

a formulated quadratic constrained programming problem 

taking into account coupled and uncoupled constraints. The 

local pursuit strategy is customized for each wind turbine to 

optimally track the allocated power command taking into 

account realistic wind turbine constraints. Some benefits of 

the algorithms are: the wind turbine rotor dynamics under the 

planned power generation strategy is guaranteed to be 

asymptotically stable; the computational cost is low; and the 

algorithm is scalable in terms of the CPU time. 
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