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Abstract: In this paper, we have presented the axisymmetric stagnation flow of a micropolar fluid in a moving cylinder. The 

governing equations of motion, microrotation and energy are simplified with the help of suitable similarity transformations. 

System of six nonlinear coupled differential equations has been solved analytically with the help of strong analytical tool known 

as homotopy analysis method. The physical features of various parameters have been discussed through graphs. 
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1. Introduction 

Numerous applications of stagnation flows in engineering 

and scientific interest have attracted the attention of number of 

researchers [1-5]. In some situations flow is stagnated by a 

solid wall, while in others a free stagnation point or line exist 

interior to the fluid domain [6]. The stagnation point flows can 

be viscous or inviscid, steady or unsteady, two dimensional or 

three dimensional, normal or oblique and forward or reverse. 

The stagnation flows were initiated by Hiemenz [7] and 

Homann [8]. Recently, Hong and Wang [9] have discussed the 

annular axisymmetric stagnation flow on a moving cylinder. 

According to Hong and Wang [9], in the previous literature the 

researchers have considered a stagnation flow originated from 

infinity. But there are certain situations in which finite 

geometry is more realistic and attractive for high speed and 

miniature rotating systems [10, 11]. 

In the situations like polymeric fluids or certain naturally 

occurring fluids such as blood, the classical Navier Stokes 

theory does not hold [22]. Therefore, Erigen [23] has given the 

idea of micropolar fluid which describes both the effect of 

couple stresses and the microscopic effects arising from local 

structure and microrotation of the fluid elements. Also, the 

micropolar fluids consist of a suspension of small, rigid, 

cylindrical elements such as large dumbbell shaped molecules. 

Erigen [24] has also developed the theory of 

thermomicropolar fluids by extending the theory of 

micropolar fluids. Because of importance of this theory a large 

amount of literature on micropolar fluids with different 

geometries are now available. Few of them are cited in the Ref 

[25-27]. 

Motivated from the above highlights, the purpose of the 

present work is to extend the idea of Hong and Wang [9] for 

micropolar fluid. To the best of author's knowledge, not a 

single article is available in literature which discusses the 

axisymmetric stagnation flow of non-Newtonian fluid with a 

finite geometry. The problem has been first simplified with the 

help of suitable similarity transformations and then solved 

with the analytical technique known as homotopy analysis 

method (HAM), some relevant work on HAM are given in the 

Ref [28-34]. The convergence of the HAM solution has been 

discussed through ℏ -curves. A comparison of our HAM 

solution and previous numerical solutions for viscous fluid is 

also presented. At the end, the physical behavior of pertinent 

parameters is discussed through graphs. Few important works 

concerning fluid flow through cylindrical geometry are cited 

in [36-40]. 

2. Formulation 

Let us consider an incompressible flow of a micropolar 

fluid between two cylinders. We are considering cylindrical 
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geometry assuming that the flow is axisymmetric about z - 

axis. The inner cylinder is of radius R  rotating with angular 

velocity Ω  and moving with velocity W  in the axial z - 

direction. The inner cylinder is enclosed by an outer cylinder 

of radius bR . The fluid is injected radially with velocity U  

from the outer cylinder towards the inner cylinder. The 

equations for micropolar fluid in the presence of heat transfer 

analysis are stated as 

( ) 0,z rrw ru+ =                 (1) 

( )
2

2

1
( ) ( ) ,r z r rr r zz z

v u
uu wu p k u u u kN
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where ( ), ,u v w  are the velocity components along the 

( ), ,r zθ  directions, N∗  is the angular microrotation 

momentum, µ  is the dynamic viscosity, k  is the vertex 

viscosity, ρ  is the density, j  is the microrotation density, 

γ  is the micropolar constant, pc  is the specific heat at 

constant pressure, T  is the temperature, v  is the kinematic 

viscosity, k∗  is the thermal conductivity and p  is the 

pressure. 

Defining the following similarity transformations and 

non-dimensional variables 

( ) ( ) ( )( )
, , 2 ,
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η η η ξ η
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With the help of these above transformations, ( ). 1Eq  is 

identically satisfied and ( ). 2Eqs  to ( )6  take the following 

form 
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in which Re / 2UR ν=  is the cross-flow Reynolds number, 

/K k µ=  is the micropolar parameter, / jγ µΛ =  and 

2 /R jδ =  are the micropolar coefficients and Pr =  

/pv c kρ ∗
 is the Prandtl number. 

The boundary conditions in nondimentional form are 

defined as 

( ) ( ) ( ) ( ) ( )1 0, 1 0, , 0, 1 0,f f f b b f b θ′ ′= = = = =   (16) 

( ) ( ) ( ) ( ) ( )1 1,   0,   1 1,   0,   1,g g b h h b bθ= = = = =   (17) 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 ,   0,   1 2 1 ,   0M nf M b N ng N b′′ ′= − = = − =  (18) 

3. Solution of the Problem 

The solution of the above boundary value problem is 

obtained with the help of HAM. For HAM solution, we choose 

the initial guesses as 

( ) ( ) 2 3
0 ((3 1) 6 3 1 2 ,

1

b
f b b b

b
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with the corresponding auxiliary linear operators 
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satisfying 

2 3
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9 10 11 12 13 14[ ] 0,   [ ] 0,   [ ] 0,M NL c c L c c L c cθη η η+ = + = + =  (26) 

where ( )1,...,14ic i =  are arbitrary constants. The 

zeroth-order deformation equations are defined as 

( ) ( ) ( ) ( )0 1
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( ) ˆˆ ˆ ˆ ˆ[ ; ] PrRe .N p fθ θ η ηθ θ θ′′ ′ ′= + +          (38) 

The boundary conditions for the zeroth order system are 

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆˆ1; 0,  (1; ) 0,  1; 1,  1; 1,  1; 0,f p f p g p h p pθ′= = = = =  (39) 
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The thm  order deformation equations can be obtained by 

differentiating the zeroth-order deformation equations 

( )27 32−  and the boundary conditions (39 41)− , m - times 

with respect to ,p  then dividing by !,m  and finally setting 

0,p =  we get 

( ) ( ) ( )1 1[ ] ,  f m m m mfL f f Rη χ η η−− = ℏ      (42) 

( ) ( ) ( )1 2 [ ] ,g m m m mgL g g Rη χ η η−− = ℏ      (43) 

( ) ( ) ( )1 3[ ] ,  h m m m mhL h h Rη χ η η−− = ℏ      (44) 

( ) ( ) ( )1 4[ ] ,M m m m mML M M Rη χ η η−− = ℏ      (45) 
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Further details of the HAM solution are presented in the 

next section. 

4. Results and Discussion 

The HAM solutions for the differential system are heavily 

dependent upon the selection of involved auxiliary parameters 

for the respective profiles. Figures 1 and 2  contain ℏ  

curves for the convergence regions of different velocity 

profiles at the surface of the inner cylinder. Figure 1  shows 

the ℏ  curves for the linear velocity profiles f  and h  for 

specified values of the involved parameters. It is noticed from 

Figure 1  that the convergence region for f ′  is the least. 

Figure 2  shows the convergence region for linear velocity 

profile g  and angular velocity profiles M  and N  for 

presented values of the other parameters. From Figure 2  it is 

noted that the convergence region for angular velocity profiles 

is much larger than that for linear velocity profiles. From 

Figure 2  it is also observed that the suitable choice of 

auxiliary convergence parameter 2ℏ  for the nondimensional 

linear velocity profile g  is 20.9 0.2.− ≤ ≤ −ℏ  Figure 3  

tweets the influence of Reynolds numbers Re  over the linear 
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velocity and acceleration profiles ,f g  and f ′  for specified 

values of the involved parameters. Figure 3  dictates that 

with increase in Reynolds numbers Re,  the nondimensional 

linear velocity profile f  increases, while g  decreases, 

whereas the nondimensional acceleration profile f ′  has 

shown dual behavior that is near the surface of inner cylinder 

the acceleration profile f ′  increases, f ′  has a turning point 

somewhere 2η =  and in the neighborhood of outer 

cylinder the acceleration profile decreases. Figure 4  predicts 

the influence of the micropolar parameter K  over the 

velocity and acceleration profiles ,f h  and .f ′  It is 

observed from Figure 4  that with increase in ,K  the 

nondimensional velocity profile f  increases while h  

decreases, whereas the nondimensional acceleration profile 

has dual behavior that is f ′  decreases near the surface of the 

inner cylinder while near the surface of the outer cylinder the 

nondimensional acceleration profile f ′  increases. Figures 

5a  and 5b  gives the behavior of linear velocity profiles g  

and h  for different values of the micropolar parameter K  

and the Reynolds numbers Re  respectively. From these 

sketches it is evident that both velocity profiles g  and h  

exhibits decreasing behavior with respect to the specified 

parameters. The influence of micropolar parameter K  and 

micropolar coefficient Λ  over the angular velocity profile 

M  are presented in Figures 6a  and 6b  for the case of 

weak concentration with 1/ 2.n =  From these plates it is 

observed that with respect to both micropolar parameter K  

and micropolar coefficient Λ  the micropolar velocity profile 

M  decreases. The effects of micropolar parameter K  and 

micropolar coefficient Λ  over the microrotation profile N  

are portrayed in Figures 7a  and 7b  respectively. It is seen 

from Figures 7a  and 7b  that with increase in micropolar 

parameter ,K  the microrotaion profile N  increases, while 

with increase in micropolar coefficient ,Λ  the microrotaion 

profile N  decreases. The influence of micropolar parameter 

K  over micropolar velocites M  and N  for the case of 

strong concentration with 0n =  is presented in Figures 8a  

and 8b  respectively. The observed behavior indicates that the 

micropolar velocity M  has a sinusoidal behavior while N  

exhibits increasing influence. The influence of Prandtl 

numbers Pr  and Reynolds numbers Re  over the 

temperature profile θ  is presented in Figures 9a  and 9 .b  

From these figures it is observed that with increase in both 

Prandtl numbers Pr  and Reynolds numbers Re  the 

temperature profile increases. 

A comparison of our HAM solutions with the available 

numerical solutions in [9] without microrotation effects are 

shown in Table 1. It is seen that both solutions are almost 

identical. The value of skinfriction coefficient is presented in 

Table. 2. It is seen that with the increase in Re, the skinfriction 

coefficient decreases, however the magnitude of skinfriction 

increases with the increase in α. 

 

Figure 1. ℏ  curves for velocity profiles f  and h . 

 

Figure 2. ℏ  curves for velocity profile g  and microrotation profiles M  

and N . 

 

Figure 3. Influence of Re  over the velocity profiles ,f  f ′  and g . 

 

Figure 4. Influence of K  over the velocity profiles ,f  f ′  and h . 
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Figure 5a. Influence of K  over g .
 

 

Figure 5b. Influence of Re  over h . 

 

Figure 6a. Influence of K  over M . 

 

Figure 6b. Influence of Λ  over M . 

 

Figure 7a. Influence of K  over N . 

 

Figure 7b. Influence of Λ  over N . 

 

Figure 8a. Influence of K  over M  for 0n = . 

 

Figure 8b. Influence of K  over N  for 0n = . 
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Figure 9a. Influence of Pr  over the temperature profile θ . 

 

Figure 9b. Influence of Re  over the temperature profile θ . 

Table 1. Comparison of boundary derivatives of present results with the available work of [9]. 

Re\b 1.1 2 10 

 [9] Present [9] Present [9] Present 

f´´(1) 

0.1 650.3526 650.3526 11.0010 11.0010 0.667 0.667 

1 654.7679 654.7679 11.6772 11.6772 0.863 0.863 

10 698.6176 698.6176 17.5348 17.5348 1.867 1.867 

-f´´´(1) 

0.1 13883 13883 36.1443 36.1443 0.9172 0.9172 

1 14117 14117 41.0797 41.0797 1.3924 1.3924 

10 16507 16507 93.5670 93.5670 5.2400 5.2400 

-g´(1) 

0.1 10.5382 10.5382 1.4963 1.4963 0.5082 0.5082 

1 10.9489 10.9489 1.9309 1.9309 0.9040 0.9040 

10 14.6586 14.6586 4.3856 4.3856 2.2168 2.2168 

-h´(1) 

0.1 10.5151 10.5151 1.5151 1.5151 0.6235 0.6235 

1 10.6511 10.6511 1.6554 1.6554 0.7570 0.7570 

10 12.0407 12.0407 3.0517 3.0517 1.5941 1.5941 

Table 2. Variation of skin friction coefficient for different values of Re/α. 

 K = 0, n = 0, ξ = 1 K = 1, n = 1/2, ξ = 1 K = 3, n = 1/2, ξ = 1 

Re\α 0 1 2 0 1 2 0 1 2 

0.1 353.767 412.605 389.131 432.517 -806.22 -2027.39 438.586 -2241.65 -2257.97 

1 35.7919 43.1997 39.2168 44.6699 -1754.12 -3550.89 44.7221 -3167.30 -3154.96 

5 7.52430 10.0520 9.37830 10.1557 -5764.42 -11538.4 9.70790 -6364.88 -6328.78 

10 3.98710 8.35250 5.52620 5.77890 -13304.9 -26615.1 5.20750 -11903.3 -11820.3 
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