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Abstract: The Euler and Navier-Stokes equations, which describe flow of fluids and gases, possess solutions of two types, 

namely, the solutions that are not functions (they depends not only on the variables) and the solutions that are discrete 

functions. The solutions of the first type describe a non-equilibrium state of a gas dynamic system. And the solutions of the 

second type describe a locally-equilibrium state of a gas dynamic system. The transition from the solutions of the first type to 

ones of the second type describe a transition of gas dynamic system from a non-equilibrium state to a locally-equilibrium state, 

and this process is accompanied by emergence of vorticity or turbulence. 
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1. Introduction 

As it is known, the Euler and Navier-Stokes equations 

describe a flow of a fluid or a gas. They are comprised of the 

conservation law equations for energy, angular momentum 

and mass. 

It turns out that the solutions to the Euler and Navier-

Stokes equations possess some specific properties that enable 

to describe not only the change of physical quantities but also 

processes such as a nonequilibrium, transitions to the state of 

locally equilibrium, origination of various structures and 

formations such as waves, vortices, turbulent pulsations and 

so on. 

From the Euler and Navier-Stokes equations one can get a 

relation for entropy as a state functional, from which it 

follows the fact that the Euler and Navier-Stokes equations 

have double solutions, namely, the solutions that are not 

functions (they depends not only on the variables, their 

derivatives do not made up a differential) and the solutions 

that are discrete functions. The solutions of the first type are 

defined on initial coordinate space and describe the non-

equilibrium state of a flow. And the solutions of the second 

type are defined on integrable structures and describe the 

locally-equilibrium state of a flow. The transition from the 

solutions of the first type to ones of the second type describes 

the process of origination of the vorticity and turbulence. 

Such properties of the solution were revealed when 

studying the problem of consistency the conservation law 

equations involved into the set of the Euler and Navier-

Stokes equations. 

[The peculiar properties of the solutions to the Euler and 

Navier-Stokes equations are properties that are typical for the 

solutions to the mathematical physics equations that describe 

such material systems (media) like the thermodynamical, 

gas-dynamical and cosmologic systems, the system of 

charged particles, and others. Such equations consist of the 

conservation law equations for energy, linear momentum, 

angular momentum, and mass (which made up the set of 

equations of mathematical physics). When studying the 

consistency of the conservation law equations, from the 

mathematical physics equations one obtains the evolutionary 

relations in skew-symmetrical differential forms for state 

functionals (such as the action functional, entropy, Pointing's 

vector, Einstein's tensor, wave function, and others). From 

the evolutionary relation it follows that the equations of 

mathematical physics have double solutions, which enable 

one to describe the processes of emerging various structures 

and formations (waves, vortices and so on).] 

When studying the consistency of conservation law 

equations involved into the set of the Euler and Navier-

Stokes equations the properties of physical quantities of gas-



7 L. I. Petrova:  Double Solutions of the Euler and Navier-Stokes Equations Process of Origination the Vorticity and Turbulence  

 

dynamical system (which commonly do not accounted when 

solving the Euler and Navier-Stokes equations) are taken into 

account. Since the physical quantities (like temperature, 

energy, pressure or density) relates to a single material 

medium (gas-dynamical system), a connection between them 

should exist. Such a connection is described by the state 

functional. For gas-dynamical system the entropy is such 

state functional. The evolutionary relation obtained from the 

Euler and Navier-Stokes equations is a relation for entropy as 

a state functional. 

These results are obtained due to the skew-symmetric 

forms. In this case, the skew-symmetric forms the basis of 

which are nonintegrable manifolds were used in addition to 

the closed exterior forms [1]. 

2. Peculiar Properties of the Solution to 

the Euler and Navier-Stokes Equations 

It is known that the Euler and Navier-Stokes equations are 

a set of the conservation laws equations for energy, linear 

momentum and mass [2]. 

Peculiar properties of the solution to the Euler and Navier-

Stokes equations are revealed when studying the problem of 

consistency of the conservation law equations. 

2.1. Analysis of a Consistency of the Conservation Law 

Equations 

Evolutionary Relation 

The peculiar properties of solutions to the Euler and 

Navier-Stokes equations will be investigated for the case of 

gas-dynamic system, namely, a flow of ideal (nonviscous) 

gas described by the Euler equations and a flow of a viscid 

heat-conducting gas described by the Navier-Stokes 

equations. [The solutions of the Euler equations and those of 

the Navier-Stokes equations possess common specific 

features, however, flows of the gas (or fluid) described by the 

Euler equations and the Navier-Stokes equations are 

distinguished. This fact relates to the properties of a gas (or 

fluid).] 

Assume that the gas is a thermodynamic system in the 

state of local equilibrium (whenever the gas -dynamic system 

itself may be in nonequilibrium state), that is, it is satisfied 

the relation [3] 

T ds de pdV= +                                    (1) 

where T , p  and V  are the temperature, the pressure and the 

gas volume, and s , e  are the entropy and the internal energy 

per unit volume. 

[Relation (1) determines the entropy s  as a 

thermodynamical state function. For a gas-dynamical system 

the thermodynamical state function describes only the state 

of the gas-dynamical element (a gas particle). For a gas-

dynamical system the entropy is also a state function. But in 

this case the entropy is a function of space-time coordinates 

rather then that of thermodynamic variables.] 

Let us now analyze the consistency of the conservation 

laws equations for energy and linear momentum. 

The problem of consistency of the equations can be 

investigated only by introducing two nonequivalent frames of 

reference. 

We introduce two frames of reference: the first is an 

inertial system and the second is an accompanying one that is 

connected with the manifold made up by the trajectories of 

elements of a gas-dynamic system. (The Euler and 

Lagrangian coordinate systems can be regarded as examples 

of such frames of reference.) 

In the inertial frame of reference the energy equation can 

be reduced to the form: 

1

1Dh Dp
A

Dt dtρ
− =                            (2) 

where 1/Vρ =  is the total derivativewith respect to time,

1/Vρ = , h  are respectively the density and enthalpy of the 

gas. 
1

A  is an expression that depends on the flow 

characteristic and energetic actions. In the case of ideal gas 

described by the Euler equations we have 
1

0A = . In the case 

of viscous heat-conducting gas described by the Navier-

Stokes equations the expression 
1

A  can be written as (see 

[2], Chapter 6, formula (6.2.4)) 

1

1 i i ki i

i i k

q q uT
A

x T T x x

τ
ρ ρ ρ

∂∂ ∂ = − − + ∂ ∂ ∂ 
                      (3) 

Here 
i

q  is the heat flux and 
ki

τ  is the viscous stress tensor. 

Expressing the enthalpy in terms of internal energy e  with 

the help of formula /h e p ρ= +  and using the 

thermodynamic relation (1), equation (2) of the conservation 

law for energy can be reduced to the form 

1A
Dt

Ds =                                       (4) 

Here s  is the entropy. 

Since the total derivative with respect to time is that along 

the trajectory, in the accompanying frame of reference the 

equation of the conservation law for energy takes the form: 

11

s
A

ξ
∂ =

∂
                                     (5) 

where 1ξ  is the coordinate along the trajectory. 

In the accompanying frame of reference the equation of 

conservation law for linear momentum can be presented as 

s
Aννξ

∂ =
∂

                                  (6) 

where νξ  is the coordinate in the direction normal to the 

trajectory. In the case of two-dimensional flow of ideal gas 

one can obtain the following expression for the coefficient 
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Aν  (see [2], Chapter 6, formula (6.7.12)): 

2 2 1/20

1 2( )
h U

A u u F
t

ν
ν νν ς

ξ
∂ ∂

= + + − +
∂∂

                  (7) 

where 
2 1

/ /u x u yς = ∂ ∂ − ∂ ∂ . In the case of viscous gas the 

expression Aν  includes additional terms related to viscosity. 

One can see that in the accompanying frame of reference 

the equations for energy and linear momentum are reduced to 

the equations for derivatives of entropy s. In this case 

equation (5) obtained from the energy equation defines the 

derivative of entropy along the trajectory, and equation (6), 

assigned to the equation for linear momentum, defines the 

derivatives of entropy in the direction normal to trajectory. 

[Here the attention should be attracted to the fact that the 

entropy has to obey two equations simultaneously. Such a 

peculiarity of the entropy just discloses the hidden properties 

of the Euler and Navier-Stokes equations.]. 

Equations (5) and (6) can be convoluted into the relation 

ds ω=                                     (8) 

where A d µ
µω ξ=  is the first degree skew-symmetric 

differential form and 1,µ ν= . (A summing over repeated 

indices is carried out.) 

Since the conservation law equations are evolutionary 

ones, the relation obtained is also an evolutionary relation. In 

this case the skew-symmetric form ω  is evolutionary one as 

well. 

Relation (8) has been obtained from the conservation law 

equation for energy and linear momentum. In this relation the 

form ω  is that of the first degree. Taking into account the 

conservation law equations for angular momentum and mass, 

the evolutionary relation may be written as 

pds ω=                                (9) 

where the degree of form p  takes the values 1, 2, 3p = . 

[Skew-symmetric forms (such as ω , for example), which are 

obtained from differential equations, are defined on 

nonintegrable (accompanying) manifolds as opposed to exterior 

forms, which are defined on integrable manifolds or structures. 

Such skew-symmetric forms which are evolutionary ones, 

possess the properties that enable one to investigate differential 

equations. From those one can obtain closed inexact exterior 

forms, which are invariants and describe physical structures. 

This gives a possibility to understand the mechanism of 

origination of various physical structures]. 

Peculiarities of the evolutionary relation 

Evolutionary relation (8) (as well as relation (9)) has a 

certain peculiarity. This relation appears to be nonidentical. 

This relates to the fact that this relation involves the skew-

symmetric differential form ω , which is unclosed and cannot 

be a differential like the left-hand side of this relation. The 

evolutionary form ω  is not closed since the differential of 

evolutionary form ω  and its commutator are nonzero. 

The differential of evolutionary form ω  is expressed as 

1

1d K d d ν
νω ξ ξ=∑ , where 

1
K ν  are components of the form 

commutator. Without accounting for terms that are connected 

with the deformation of the manifold made up by the 

trajectories, the commutator can be written as 

1

1 1

A A
K ν

ν νξ ξ
∂ ∂

= −
∂ ∂

                                     (10) 

The coefficients Aµ  of the form ω  have been obtained 

either from the equation of the conservation law for energy or 

from that for linear momentum. This means that in the first 

case the coefficients depend on the energetic action and in 

the second case they depend on the force action. In actual 

processes energetic and force actions have different nature 

and appear to be inconsistent. The commutator of the form 

ω  constructed of the derivatives of such coefficients is 

nonzero. Since the commutator of the form ω  is nonzero, 

this means that the differential of the form ω  is nonzero as 

well. Thus, the form ω  proves to be unclosed and is not a 

differential. In the left-hand side of relation (8) it stands a 

differential, whereas in the right-hand side it stands an 

unclosed form that is not a differential. Such a relation 

cannot be an identical one. [The form ω  is not a closed form 

due to the fact that it is defined on deforming (nonintegrable) 

manifold made up by the trajectories of the elements of the 

described material system. The commutator of such a system 

will include an additional term, namely, a commutator of 

metric form which is nonzero. This emphasizes once more 

that the differential of the form ω  is nonzero, that is, the form

ω  cannot be a closed one and therefore the evolutionary 

relation cannot be identical.] 

It is evident that the nonidentity of the evolutionary 

relation relates to inconsistence of the conservation law 

equations followed from the noncommutativity of the 

conservation law equations. 

The evolutionary relation possesses one more peculiarity, 

namely, this relation is a selfvarying relation. The 

nonidentical evolutionary relation is a selfvarying one, 

because, firstly, it is a nonidentical, namely, it contains two 

objects one of which appears to be unmeasurable (since it is 

not differential), and, secondly, it is an evolutionary relation, 

that is, the variation of any object of the relation in some 

process leads to a variation of another object; and, in turn, the 

variation of the latter leads to variation of the former. Since 

one of the objects is an unmeasurable quantity, the other 

cannot be compared with the first one, and hence, the process 

of mutual variation cannot stop. 

2.2. Double Solutions of Euler and Navier-Stokes 

Equations 

Since from the Euler and Navier-Stokes equations it 

follows the evolutionary relation which is not integrated 

directly because the second term of the evolutionary relation 

is not a differential, this points out to the fact that the Euler 

and Navier-Stokes equations turn out to be nonintegrable. 

This means that the solutions to equations are not 

functions, i.e. they depend not only on variables. They will 
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depend on the commutator of the form ω  that enters into the 

evolutionary relation. (If the commutator be equal to zero, 

the evolutionary relation would be identical and the 

equations would be integrated directly). [Hereafter these 

solutions will be referred to as the solutions of the first type 

or "inexact solutions". However, one has to keep in mind that 

these solutions are not approximate ones. Inexactness is 

related to the fact that they cannot be represented analytically 

because they are not functions. Inexact solutions describe the 

quantities that are not the inherent quantities of a gas-

dynamic system. The inconsistency of these quantities, as it 

will be said below, brings a system into a non-equilibrium 

state.] 

Nonidentical evolutionary relation possesses a certain 

peculiarity. From this relation it follows that, under 

additional conditions the Euler and Navier-Stokes equations 

can have discrete solutions that are exact ones, i.e. they are 

functions. 

The Euler and Navier-Stokes equations can have exact 

solutions only in the case if from the evolutionary skew-

symmetric form ω  in the right-hand side of nonidentical 

evolutionary relation it is realized a closed skew-symmetric 

form, which is a differential. (In this case the identical 

relation is obtained from the nonidentical relation, and this 

will point out to a consistency of the conservation law 

equations and an integrability of the Euler and Navier-Stokes 

equations.) 

But here there is some delicate point. 

From the evolutionary unclosed skew-symmetric form, 

whose differential is nonzero, one can obtain a closed 

exterior form with a differential being equal to zero only 

under degenerate transformation, namely, under a 

transformation that does not conserve differential. (The 

Legendre transformation is an example of such a 

transformation.) 

Degenerate transformations can take place under 

additional conditions, which are associated with degrees of 

freedom. 

The vanishing of such functional expressions as 

determinants, Jacobians, Poisson's brackets, residues and 

others corresponds to the additional conditions. 

These conditions specify the integral surfaces 

(pseudostructures): the characteristics (the determinant of 

coefficients at the normal derivatives vanishes), the singular 

points (Jacobian is equal to zero), the envelopes of 

characteristics of Euler's equations and so on. 

The conditions of degenerate transformation can be 

realized (if there are degrees of freedom) under change of 

nonidentical evolutionary relation, which, as it was noted, 

appears to be a selfvarying relation. 

If the conditions of degenerate transformation are realized, 

from the unclosed evolutionary form ω  (see evolutionary 

relation (8)) with nonvanishing differential 0dω ≠ , one can 

obtain the differential form closed on pseudostructure. The 

differential of this form equals zero. That is, it is realized the 

transition 

0dω ≠ → (degenerate transformation) →
0, 0d dπ πω ω∗= =  

The realization of the conditions 0dπ ω∗ = and 0dπ ω =  

means that it is realized a closed dual form ω∗ , which 

describes some integrable structure π , and it is obtained the 

closed exterior form πω  with an integrable structure as a 

basis. (It should be noted that the integrable structure is a 

pseudostructure with respect to its metric properties.) In the 

present case closed exterior forms πω  will be inexact 

exterior forms since they are defined only on integrable 

structures. 

Thus, it appears that under degenerate transformation the 

closed inexact (defined only on pseudostructure) exterior 

form (with the differential being equal to zero) is realized. 

Such a form is a differential. (It should be emphasized that 

such a differential is an interior one: it asserts only on 

pseudostructure, which is defined by the condition of 

degenerate transformation). 

On the pseudostructureπ , which is an integrable structure, 

from nonidentical evolutionary relation (8) it is obtained the 

relation 

( )d sπ πω=                                     (11) 

which occurs to be an identical one, since the form πω  is a 

differential. 

Thus, on the pseudostructure, which is an integrable 

structure, from the evolutionary relation ωds =  it is 

obtained the identical relation ω( )d sπ π= . 

The identity of the relation obtained from the evolutionary 

relation, firstly, means that on the realized integrable 

structure the equations of conservation laws become 

consistent (this points out that the conservation laws for 

energy and momentum become to be locally commutative 

ones). And, secondly, the identical relation composed of 

differentials can be directly integrated. This means that the 

Euler or Navier-Stokes equations considered become locally 

integrable (only on integrable structure). 

Thus it appears that on integrable structures the desired 

quantities of gas-dynamic system (such as the temperature, 

pressure, density) become functions, that is, they depend only 

on variables and do not depend on the commutator (and on 

the path of integrating). These are generalized solutions, 

which are the discrete functions, since they are realized only 

under additional conditions (on the integrable structures). 

Such solutions may be found by means of integrating the 

Euler equations or the Navier-Stokes equations on integrable 

structures. Since generalized solutions are defined only on 

realized integrable structures, the gas-dynamic functions or 

their derivatives have discontinuities in the direction normal 

to integrable structure. When going through integral surfaces 

the gas-dynamic functions or their derivatives suffer breaks 

(contact breaks). (In the paper [4] the expressions for 

calculation of such brakes of derivatives in the direction 

normal to characteristics and to trajectories are presented.) 



 Fluid Mechanics 2017; 3(2): 6-12 10 

 

Thus, one can see that the Euler and Navier-Stokes 

equations can have the solutions of two types: 

(1) the inexact solutions that are not functions, i.e., they 

depend on not only variables (such solutions are obtained on 

initial coordinate space) 

and 

(2) the generalized solutions, which are the discrete 

functions (such solutions are obtained on integral structures). 

The specific feature is the fact that the solutions to the 

Euler and Navier-Stokes equations are defined on different 

spatial objects. The degenerate transformations, under which 

the discrete solutions are obtained (that is, under which 

closed exterior forms are obtained from evolutionary form), 

are realized as a transition from nonintegrable accompanying 

manifold (on which the evolutionary form is defined) to the 

integrable structures with a closed forms. Mathematically, it 

is a transition from one frame of reference to another 

nonequivalent frame of reference (from accompanying frame 

of reference to a locally-inertial on obtained integrable 

structures). 

3. Process of Originating Vorticity and 

Turbulence 

Below it will be shown that inexact solutions describe a 

non-equilibrium state of a gas-dynamic system, whereas the 

generalized solutions describe a locally-equilibrium state of a 

gas-dynamic system. Process of originating vorticity and 

turbulence is connected with a transition of a gas-dynamic 

system from non-equilibrium state into a locally-equilibrium 

one and is described by a transition of inexact solutions to 

discrete generalized solutions. 

3.1. Physical Meaning of Solutions to the Euler and 

Navier-Stokes Equations 

Physical meaning of inexact solutions. Non-equilibrium 

state of a gas-dynamic system 

Inexact solutions have a physical meaning. They describe 

a nonequilibrium state of gas-dynamic system. This follows 

from the evolutionary relation. Evolutionary relation (8) has 

an unique physical meaning because this relation includes a 

differential of entropy s , which is a state functional. The 

entropy entered into the evolutionary relation is the 

functional, which characterizes the state of gas-dynamic 

system. [Here, it should be called attention to the fact that the 

entropy, which enters into the evolutionary relation for a gas-

dynamic system, depends on space-time coordinates rather 

then on thermodynamical variables like the entropy entered 

into the thermodynamical relation (1). The state of gas-

dynamic system is characterized by the entropy, which 

depends on space-time variables. And the entropy that 

depends on thermodynamical variables characterizes a state 

of thermodynamic system (a gas particles). In the gas-

dynamic system the entropy depended on thermodynamical 

variables characterizes only the state of a gas rather then the 

state of gas-dynamic system itself.] 

If from relation (8) the differential of entropy could be 

obtained, this would point to the fact that entropy is a state 

function. And this would mean that the state of a gas-

dynamic system is an equilibrium one. 

But, since relation (8) is a nonidentical relation, from that 

one cannot obtain the differential of entropy and find the 

state function. This means that the gas-dynamic system is in 

a non-equilibrium state. 

One can see that the solutions of the Euler and Navier-

Stokes equations, which are not functions, describe a 

nonequilibrium state of gas-dynamic system. 

The nonequilibrium means that in a gas-dynamic system 

an internal force acts. It is evident that the internal force is 

described by the commutator of skew-symmetric form ω , on 

which the inexact solutions of the Euler and Navier-Stokes 

equations depend. (If the evolutionary form commutator be 

zero, the evolutionary relation would be identical, and this 

would point out to the equilibrium state, i.e. the absence of 

internal forces.) Everything that gives a contribution into the 

commutator of the evolutionary form ω  leads to emergence 

of internal force that causes the non-equilibrium state of a 

gas-dynamic system. 

From the analysis of the expression Aµ  in formulas (3) 

and (7) one can see that the terms, which are related to the 

multiple connectedness of the flow domain, the 

nonpotentiality of the external forces and the nonstationarity 

of the flow contribute into the commutator (see, formula (7)). 

In the case of a viscous, non-heat-conducting gas described 

by the Navier-Stokes equations, the terms related to the 

transport processes will contribute into the commutator (see, 

formula (3)). (In a general case the term related to physical-

chemical processes will make a contribution into the 

commutator.) 

All these factors lead to emergence of internal forces, that 

is, to nonequilibrium, and to development of various types of 

instability. And yet for every type of instability one can find 

an appropriate term giving contribution into the evolutionary 

form commutator, which is responsible for this type of 

instability. Thus, there is an unambiguous connection 

between the type of instability and the terms that contribute 

into the evolutionary form commutator in the evolutionary 

relation. (It can be noted that, for the case of ideal gas 

described by the Euler equations, Lagrange derived a 

condition of the eddy-free stable flow. This condition is as 

follows: the domain must be simple connected one, forces 

must be potential and the flow must be stationary. One can 

see that under fulfillment of these conditions, there are no 

terms that contribute into the commutator). 

Here it can be noted that the nonidentity of the 

evolutionary relation is connected with a noncommutativity 

of conservation laws. And this points out to the fact that the 

noncommutativity of conservation laws is a cause of 

nonequilibrium state of a gas-dynamic system. 

Evolutionary relation also describes a variation of non-

equilibrium state. This is due to another peculiarity of 

nonidentical evolutionary relation, namely, this relation is a 

selfvarying relation. 
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The process of the evolutionary relation selfvariation 

describes the process of selfvariation of the gas-dynamic 

system state. This process proceeds under the internal force 

action and is described by inexact solutions. 

Physical meaning of generalized solutions (discrete 

functions). Locally-equilibrium state of a gas-dynamic system 

As it has been shown above, under degenerate 

transformation the identical relation is obtained from 

nonidentical one. 

From identical relation one can obtain the differential of 

entropy ds  and find entropy s as a function of space-time 

coordinates. It is precisely the entropy that will be a gas-

dynamic function of state. The availability of gas-dynamic 

function of state would point out to equilibrium state of a 

gas-dynamic system. However, since the identical relation is 

satisfied only under additional conditions, such a state of gas-

dynamic system will be a locally-equilibrium one. 

The generalized solutions, which are discrete functions, 

describe such locally-equilibrium state of gas-dynamic 

system. Below it will be shown to what discrete function 

correspond. 

3.2. Transition of Gas-Dynamic System from 

Nonequilibrium State to Locally-Equilibrium State 

Origination of Vorticity and Turbulence 

One can see that the transition from inexact solutions to 

exact (generalized) solutions is assigned to the transition of 

gas-dynamic system from non-equilibrium state to locally-

equilibrium state. 

Since the non-equilibrium state has been induced by an 

availability of internal force and in the case of locally-

equilibrium state there is no internal force (in local domain of 

gas-dynamic system), it is evident that under transition of 

gas-dynamic system from non-equilibrium state into locally-

equilibrium state the nonmeasurable quantity, which acts as 

internal force, converts into a measurable quantity. This 

manifests itself in the form of arising a certain observable 

measurable formation. Waves, vortices, turbulent pulsations 

and so on are examples of such formations. 

Exact generalized solutions to the Euler and Navier-Stokes 

equations, which are discrete functions, describe such 

observable formations. 

One can see that only with the help of double solutions 

such processes like the emergency of vorticity and the 

development of turbulence can be described. (If there were 

existed only smooth solution, the description of the 

turbulence origination would be impossible.) [It should be 

noted that closed dual forms and closed inexact exterior 

forms, which are realized under degenerate transformations, 

made up a differential-geometric structure, i.e. a 

pseudostructure (integrable structure) with conservative 

quantity (closed exterior form describes a conservative 

quantity because its differential equals zero). Realization of 

such differential-geometric structure (under degenerate 

transformation) points out to emergence of physical 

structure. The characteristics, the singular points, the 

envelopes of characteristics, and other structures with 

conserved quantities are examples of such physical 

structures. The origination of physical structure reveals as a 

new measurable and observable formation (waves, vertices, 

turbulent pulsations) that spontaneously arises in a gas-

dynamic systems.] 

Thus, one can see that the transition from inexact solutions 

to exact (generalized) solutions is assigned to the transition 

of gas-dynamic system from a non-equilibrium state to a 

locally-equilibrium state, which is accompanied by the 

emergence of observable formations. Such observable 

formations are described by generalized solutions of the 

Euler and Navier-Stoles equations. In this case the 

discontinuities of a function, which corresponds to 

generalized solutions, or their derivatives are defined by a 

quantity that is described by the commutator of unclosed 

form ω  and acts as an internal force. Such a quantity defines 

the intensity of formations arisen (if the commutator be equal 

to zero, the intensity of formation would be equal to zero, i.e. 

the formation could't arise). 

The process of arising observable formations discloses a 

mechanism of emergence waves, vortices, turbulent 

pulsations and such phenomena as an emergence of vorticity 

and turbulence. 

[Here it should be emphasized that the conservation laws 

for energy, linear momentum, and mass, which are 

noncommutative ones, play a controlling role in these 

processes.] 

3.3. Some Examples of Instability Development and 

Appearing Observable Formations. 

Let as analyze which types of instability and what gas-

dynamic formations can originate under given external 

action. 

1) Flow of ideal (inviscous, heat nonconductive) gas 

around bodies, described by the Euler equations. Action 

of nonpotential forces. 

The instability develops because of the multiple 

connectedness of the flow domain and a nonpotentiality of the 

body forces. The contribution into the commutator comes from 

the second and third terms in formula (7). Since the gas is ideal 

one and 1

1
/ 0s Aξ∂ ∂ = = , that is, there is no contribution 

into each fluid particle, an instability of convective type 

develops. For U a> (U  is the velocity of the gas particle, a  

is the speed of sound) a set of equations of the balance 

conservation laws belongs to the hyperbolic type and hence the 

transition to the locally equilibrium state is possible on the 

characteristics and on the envelopes of characteristics as well, 

and weak shocks and shock waves are the structures of the 

system. If U a< , when the equations are of elliptic type, such 

a transition is possible only at singular points. The formations 

emerged due to a convection are of the vortex type. Under long 

acting the large-scale structures can be produced. 

One can see that in gas-dynamic system, even in the case 

of ideal gas, it can originate the physical structures and 

relevant formations that lead to emergence of vorticity. 

2) Flow of a viscous, heat-conducting gas around bodies, 

described by the Navier-Stokes equations. Boundary layer. 
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In the case of a viscous gas the term 
1

A  (see, formula (3)) 

connected with transport phenomena will contribute into the 

evolutionary form commutator. The instability originates due 

to the multiple connectedness of the domain and the transport 

phenomena (an effect of viscosity and thermal conductivity). 

Contributions into the commutator produce the second term 

in formula (3) and the second and third terms in formula (7). 

The transition to the locally equilibrium state is allowed at 

singular points. because in this case 1

1
/ 0s Aξ∂ ∂ = ≠ , that 

is, the external exposure acts onto the gas particle separately, 

the development of instability and the transitions to the 

locally equilibrium state are allowed only in an individual 

fluid particle. Hence, the formations emerged behave as 

pulsations. These are turbulent pulsations. 

[Studying the instability on the basis of the analysis of 

entropy behavior was carried out in the works by Prigogine 

and co-authors [5]. In that works entropy was considered as 

the thermodynamic function of state (though its behavior 

along the trajectory was analyzed). By means of such state 

function one can trace the development (in gas fluxes) of the 

thermodynamic instability only. To investigate the gas 

dynamic instability it is necessary to consider entropy as a 

gas dynamic state function, i.e. as a function of the space-

time coordinates. Whereas for studying the thermodynamic 

instability one has to analyze the commutator constructed by 

the mixed derivatives of entropy with respect to the 

thermodynamic variables, for studying the gas-dynamic 

instability it is necessary to analyze the commutators 

constructed by the mixed derivatives of entropy with respect 

to the space-time coordinates.] 

3.4. On the Problem of Numerical Solving the Euler and 

Navier-Stokes Equations 

Problems of numerical solving the Euler and Navier-

Stokes equations relate to the fact that these solutions are 

defined on distinct spatial objects. The solutions of one type 

are defined on initial coordinate space whereas the solutions 

of another type are defined on integrable structures. Since the 

solutions are defined on distinct spatial objects, they cannot 

be obtained by a continuous numerical simulation of 

derivatives. So, it turns out to be impossible to describe the 

origination of vorticity and turbulence by this way. 

The solutions of first type can be obtained only by 

numerical modeling the equations on the original 

nonintegrable manifold (it is impossible to find such a solution 

by analytical method). 

The solutions of the second type (generalized solution) 

cannot be obtained by modeling the equations on initial 

coordinate space, since they are obtained on integrable 

structures. 

To obtain the generalized solutions by numerical simulation, 

one must use second systems of reference (on integrable 

structure). The generalized solutions can be obtained by 

analytical methods if the integrability conditions are imposed 

on the equations. The methods of characteristics, symmetries, 

eigen-functions and others are examples of such methods. 

Therefore, to describe the origination of vorticity and 

turbulence by numerical simulation, one must use two 

systems of reference. 

That is, a description of evolutionary processes is possible 

only either by numerical methods, but with two frames of 

reference, or by using simultaneously numerical and 

analytical methods. 

4. Conclusion 

The application of the mathematical apparatus of skew-

symmetric differential forms enables to disclose peculiarities 

of the solutions to the Euler and Navier-Stokes equations, 

their mathematical and physical meaning. 

From the Euler and Navier-Stokes equations one obtains 

the evolutionary relation, from which it follows that, firstly, 

the Euler and Navier-Stokes equations have double solutions 

(this enables to describe discrete transitions) and, secondly, 

this property discloses a physical meaning of these solutions 

(the ability to describe a state of gas-dynamic system). Such 

properties of the solutions to the Euler and Navier-Stokes 

equations disclose a mechanism of the processes of emerging 

the vorticity and turbulence [6-10].  

 

References 

[1] Petrova L. I., Role of skew-symmetric differential forms in 
mathematics, (2010), http://arxiv.org/pdf/1007.4757vl.pdf. 

[2] Clark J. F., Machesney M., “The Dynamics of Real Gases”, 
Butterworths, London, 1964. 

[3] Haywood R. W., “Equilibrium Thermodynamics”, Wiley Inc. 
1980. 

[4] Petrova L. I., Relationships between discontinuities of 
derivatives on characteristics and trajectorie., J. 
Computational Mathematics and Modeling, Vol. 20, N. 4, 
2009, pp. 367-372. 

[5] Glansdorff P., Prigogine I. “Thermodynamic Theory of 
Structure, Stability and Fluctuations”, Wiley, N. Y., 1971. 

[6] Petrova L. I., Exterior and evolutionary differential forms in 
mathematical physics: Theory and Applications, -Lulu.com, 
(2008), 157. 

[7] Petrova L. I., The mechanism of generation of physical 
structures. // Nonlinear Acoustics - Fundamentals and 
Applications (18th International Symposium on Nonlinear 
Acoustics, Stockholm, Sweden, 2008) - New York, American 
Institute of Physics (AIP), 2008, pp. 151-154. 

[8] Petrova L. I., Integrability and the properties of solutions to 
Euler and Navier-Stokes equations, Journal of Mathematics 
Research, Vol. 4, No. 3, (2012), 19-28. 

[9] Petrova L., The Peculiarity of Numerical Solving the Euler 
and Navier-Stokes Equations, American Journal of 
Computational Mathematics, Vol. 4, No. 4, (2014), 305-310. 

[10] Petrova L. I. The noncommutativity of the conservation laws: 
Mechanism of origination of vorticity and turbulence, 
International Journal of Theoretical and Mathematical 
Physics, Vol. 2, No.4, 2012, pp. 84-90. 


