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Abstract: In this work, analysis of two-dimensional squeezing flow of a nanofluid under the influences of a uniform 

transverse magnetic field and slip boundary conditions is carried out using Chebychev spectral collocation method. The 

analytical solutions are used to investigate the effects of fluid properties, magnetic field and slip parameters on the squeezing 

flow. It is revealed from the results that the velocity of the fluid increases with increase in the magnetic parameter under the 

influence of slip condition while an opposite trend is recorded during no-slip condition. Also, the velocity of the fluid increases 

as the slip parameter increases but it decreases with increase in the magnetic field parameter and Reynold number under the 

no-slip condition. The results of the Chebychev spectral collocation method are in excellent agreement with the results of the 

convectional numerical method using Runge-Kutta coupled with shooting method. The findings in this work can be used to 

further study the squeezing flow in applications such as power transmission, polymer processing and hydraulic lifts. 

Keywords: Nanofluid, Squeezing Flow, Slip Boundary, Magnetic Field, Chebychev Collocation Method 

 

1. Introduction 

In recent times, the research interests of squeezing flow 

of fluid between two parallel plates have increased 

tremendously. This is because of the various industrial and 

biological applications of squeezing flow such as in moving 

pistons, chocolate fillers, hydraulic lifts, electric motors, 

flow inside syringes and nasogastric tubes, compression, 

injection modeling, power transmission squeezed film and 

polymers show the important of the area. Although, the 

pioneer work and the basic formulations of the squeezing 

flows under lubrication assumptions are given by Stefan [1], 

there have been improved works on the flow phenomena. 

However, the earlier studies on squeezing flow were based 

on Reynolds equation [1-3] in whichthe insufficiencies for 

some cases have been shown by Jackson [4] and Usha and 

Sridharan [5]. Consequently, in recent times, there have 

been several attempts and renewed research interests by 

different researchers to properly analyze and understand the 

squeezing flows using different analytical and numerical 

methods [5-26]. Also, effects of magnetic field, flow 

characteristics and fluid properties on the squeezing flow 

have been widely studied under no slip conditions [27–42]. 

However, in polymeric liquids, there is slip at the boundary 

when the weight of molecule is high. Indisputably, the no-

slip boundary condition is not applicable in the flow 

analysis of such liquid. Additionally, in many cases such as 

thin film problems, nanofluids, rarefied fluid problems, 

fluids containing concentrated suspensions, and flow on 

multiple interfaces, the no-slip boundary condition fails to 

work. Therefore, Navier [43] proposed the general 

boundary condition which demonstrates the fluid slip at the 

surface. The slip condition is of great importance especially 

when fluids with elastic character are under consideration 
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[44]. Ebaid [45] studied the effects of magnetic field and 

wall slip conditions on the peristaltic transport in an 

asymmetric channel. The influence of slip on the peristaltic 

motion of third-order fluid in asymmetric channel is studied 

by Hayat et al. [46]. The effects of slip condition on the 

rotating flow of a third grade fluid in a non-porous medium 

are investigated by Hayat and Abelman [47]. Abelman et al. 

[48] extended their work to a porous medium and obtained 

the numerical solutions for the steady 

magnetohydrodynamics flow of a third grade fluid in a 

rotating frame. The past efforts in analyzing the squeezing 

flow problems have been largely based on the applications 

of various approximate analytical methods such as 

differential transformation method (DTM), Adomian 

Decomposition Method (ADM), homotopy analysis method 

(HAM), homotopy perturbation method (HPM), variational 

iteration method (VIM). Numerical methods such as Euler 

and Runge–Kutta methods are limited to solving 

initialvalue problems. With the aid of shooting method, the 

methods could be carried out iteratively to solve boundary 

value problems. However, these numerical methods are 

only useful for solving ordinary differential equations. On 

the other hand, numerical methods such as finite difference 

method (FDM), finite element methods (FEM) and finite 

volume method (FVM) can be adopted to analyze nonlinear 

equations with single and multiple independent variables as 

they have been used to solve different linear and non-linear 

differential equations in literatures. On the other hand, the 

fast rate of convergence and a very large converging speed 

of spectral methods over most of the commonly used 

numerical methods have been established in the field of 

numerical simulations. The converging speed of the 

approximated numerical solution to the primitive problem is 

faster than any one expressed by any power-index of N−1. 

Numerical methods such as finite element method (FEM) 

and the finite volume method (FVM) provide linear 

convergence, while, the spectral methods provide 

exponential convergence [49, 50]. Spectral methods have 

been widely applied in computational fluid dynamics [51, 

52], electrodynamics [53] and magnetohydrodynamics [54, 

55]. From the view of approximation to the original 

equation, the spectral method can be classified as the 

collocation method which presents discretization in 

physical space, the Galerkin method which seeks solution in 

spectral space, and the pseudo-spectral method which 

provides discrete integration in physical space at first and 

then presents transformation into spectral space for seeking 

the solution. Among the three methods, the collocation 

method is much more suitable for treating with non-linear 

problems. Recent numerical work concerned with the 

solution of non-linear differential equations has also 

provided more and more evidence of the applicability and 

accuracy of the Chebyshev collocation method [56-61]. The 

main advantage of spectral methods lies in their accuracy 

for a given number of unknowns. For smooth problems in 

simple geometries, they offer exponential rates of 

convergence/spectral accuracy [62-64]. Despite the high 

accuracy and efficiency of the method, it has not been 

significantly applied to nonlinear heat transfer problems. 

Therefore, in the paper, axisymmetric 

magnetohydrodynamic squeezing flow of nanofluid in 

porous media under the influence of slip boundary 

condition is analyzed using Chebychev spectral collocation 

method. Also, the effects of the various flow parameters on 

the squeezing flow are investigated. 

2. Problem Formulation 

Consider a squeezing flow of an incompressible 

Newtonian fluid with constant density ρ and viscosity µ, 

squeezed between two large planar parallel plates separated 

by a small distance 2h  approaching each other with a low 

constant velocity v  in the presence of a magnetic field, as 

shown in Figure 1. 

 

Figure 1. Model of the squeezing flow of nanofluid under transverse uniform 

magnetic field. 

Assume that the flow is quasi steady, and the Navier-

Stokes equations governing such flow when inertial terms 

are retained, the equations of motion governing the flow 

are: 
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For axial symmetry, v  is represented by ( ),0,r zv v v= , the 

Navier-Stokes equation [1, 6, and 10] in cylindrical 

coordinates with negligible body force are given by: 
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Eliminating the pressure term from Eqs. (3) and (4), one 

arrives at 
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The compatibility Eq. (7) reduces to Eq. (9) after defining 

the stream function as ( )2 2
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And the slip boundary conditions are 
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Using the following dimensionless parameters in Eq. (11) 
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and omitting the * for the sake of conveniences, Eq. (9) and 

Eq. (10) becomes 
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And the boundary conditions are 
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F
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= =

= =
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With / hγ β= and R, m are Reynolds and Hartmann 

numbers respectively. 

3. The Procedure of Chebychev 

Collocation Spectral Method 

The nonlinearity in governing equation Eqs. (12) makes it 

very difficult to develop a closed-form solution to the non-

linear equation. Therefore, in this work, a spectral collocation 

method of the Chebyshev type is employed to solve the heat 

transfer equation. The Chebyshev collocation spectral 

method is based on the expansion by virtue of the Chebyshev 

polynomials. At first, it expands the variable at collocation 

points and seeks the variable derivatives at these points, then 

substitutes the expansions into the differential equations and 

finally seeks the approximated solution in physical space. 

This means that Chebyshev collocation spectral method is 

accomplished through, starting with Chebyshev 

approximation for the approximate solution and generating 

approximations for the higher-order derivatives through 

successive differentiation of the approximate solution. 

Looking for an approximate solution, which is a global 

Chebyshev polynomial of degree N defined on the interval 

[-1, 1], the interval is dicretized by using collocation points 

to define the Chebyshev nodes in [-1, 1], namely 
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The derivatives of the functions at the collocation points 

are given by: 
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where ( )n jT x  are the Chebyshev polynomial and 

coefficients jγ  and lc  are defined as: 
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As described above, the Chebyshev polynomials are 

defined on the finite interval [-1, 1]. Therefore, to apply 

Chebyshev spectral method to Eq. (12), we make a suitable 

linear transformation and transform the physical domain [-1, 

1] to Chebyshev computational domain [-1,1]. We sample the 

unknown function w at the Chebyshev points to obtain the 

data vector ( ) ( ) ( ) ( )1 2, , , ...
T

o Nw w x w x w x w x =   . The next step 

is to find a Chebyshev polynomial P of degree N that 

interpolates the data ( )( ). ., , 0,1,...j ji e P x w j N= =  and 

obtains the spectral derivative vector w by differentiating P 

and evaluating at the grid points

( )( )'. ., ' , 0,1,...j j ji e w P x w j N= = = . This transforms the nonlinear 

differential equation into system nonlinear algebraic 

equations, which are solved by Newton’s iterative method 

starting with a initial guess. 

Making a suitable transformation to map the physical 

domain [0, 1] to a computational domain 

[-1,1] to facilitate our computations. 

Eqs. (14) are transformed to the following equations 
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And the slip boundary conditions are 
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After applying CSCM to Eq. (15) and the boundary 

conditions in Eq. (16), the governing equation and boundary 

conditions are transformed into a system of nonlinear 

algebraic equations: 
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For k = 2, 3,...N-1 

And the boundary conditions in Eq. (13) become 
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The developed nonlinear algebraic equation form the 

analysis above for the unknown ( ) , 1, 2,3,...,ɶ
jf i Nη =  is 

solved by Newton’s method. 

4. Results and Discussion 

The above procedures show the analysis of a steady two-

dimensional axisymmetric flow of a nanofluid fluid under the 

influence of a uniform transverse magnetic field with slip 

boundary condition. Using CSCM, a closed form series 

solution was obtained as it provides excellent approximations 

to the solution of the non-linear equation with excellent 

accuracy as shown in Table 1. Also, the Table depicts the 

prediction of the fluid velocity by including the slip 

parameter in the model. From the results in the Table, there is 

an over-prediction of the flow velocity when the slip 

parameter, �	 is assumed zero or neglected i.e. when there is 

an assumption of no slip in the flow process. 

 

Table 1. Comparison of results. 

F(z) 

 Re =1, M=1, γ=1 Re=1, M=1, γ=0 

z NM CSCM NM CSCM 

0.00 0.000000 0.000000 0.000000 0.000000 

0.10 0.075739 0.075737 0.150294 0.150292 

0.20 0.152935 0.152938 0.297480 0.297483 

0.30 0.233046 0.233042 0.438466 0.438465 

0.40 0.317540 0.317538 0.570188 0.570190 

0.50 0.407893 0.407891 0.689623 0.689621 

0.60 0.505591 0.505594 0.793795 0.793796 

0.70 0.612134 0.612135 0.879779 0.879775 

0.80 0.729034 0.729037 0.944695 0.944691 

0.90 0.857813 0.857815 0.985706 0.985705 

1.00 1.000000 1.000000 1.000000 1.000000 

 

Figure 2. Effects of magnetic parameter on the flow behavior of the fluid 

under the influence of slip condition. 
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Figure 3. Effects of magnetic field parameter on the flow behavior of the 

fluid for no-slip condition. 

 

Figure 4. Effects of slip parameter on the flow behavior of the fluid. 

In order to get an insight into the problem, the effects of 

pertinent flow, magnetic field and slip parameters on the 

velocity profile of the fluid are investigated. Figure 2 shows 

the effects of magnetic field parameter, Hartmann number 

�	on the velocity of the fluid under the influence of slip 

condition, while Figure 3 depicts the influence of the 

magnetic field parameter on the velocity of the fluid under 

no-slip condition. It could be inferred from the figures that 

the velocity of the fluid increases with increase in the 

magnetic parameter under slip condition while an opposite 

trend was recorded during no-slip condition as the velocity of 

the fluid decreases with increase in the magnetic field 

parameter under the no slip condition. 

Figure 4 shows the influence of the slip parameter�		 on the 

fluid velocity. By increasing �	, it is observed that the 

velocity of the fluid increases. Figure 5 presents the effects of 

Reynold’s number on the velocity of the fluid. It is observed 

from the figure that by increasing the	 value	 R, the velocity of 

the fluid decreases. 

 

Figure 5. Effects of Reynolds number on the flow behavior of the fluid under 

the influence of slip condition. 

5. Conclusion 

In this work, Chebychev spectral collocation method has 

been applied to analyze two-dimensional squeezing flow of a 

nanofluid under the influence of a uniform transverse 

magnetic field and slip boundary condition. The approximate 

analytical solutions have been used to investigate the 

influence of pertinent model parameters on the squeezing 

flow. The results that the velocity of the fluid increases with 

increase in the magnetic parameter under the influence of slip 

condition while an opposite trend is recorded during no-slip 

condition. Also, the velocity of the fluid increases as the slip 

parameter increases but it decreases with increase in the 

magnetic field parameter and Reynold number under the no-

slip condition. The verification of the Chebychev spectral 

collocation method revealed excellent agreement and 

accuracy between the results of approximate analytical 

method and numerical method. The results in this work can 

be used to further study the squeezing flow in applications 

such as power transmission, polymer processing and 

hydraulic lifts 
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b induced magnetic fields 

B total magnetic field
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E electric field 

h half of the gap distance between the plates 

J  electric current density 
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p  pressure 
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z axis perpendicular to plates 

ρ
 
density of the fluid 

σ  electrical conductivity 

γ slip papramter 

mµ  magnetic permeability 

∇	material time derivatives, 

µ  dynamic viscosity 

 

References 

[1] M. J. Stefan. Versuch Uber die scheinbare adhesion’’, 
Sitzungsberichte der Akademie der Wissenschaften in Wien. 
Mathematik-Naturwissen 69, 713–721, 1874. 

[2] O. Reynolds. On the theory of lubrication and its application 
to Mr Beauchamp Tower’s experiments, including an 
experimental determination of the viscosity of olive oil. 
Philos. Trans. Royal Soc. London 177, 157–234, 1886. 

[3] F. R. Archibald, F. R., 1956. Load capacity and time relations 
for squeeze films. J. Lubr. Technol. 78, A231–A245. 

[4] J. D. Jackson. A study of squeezing flow. Appl. Sci. Res. A 11, 
148–152, 1962. 

[5] R. Usha and R. Sridharan, R. Arbitrary squeezing of a viscous 
fluid between elliptic plates. Fluid Dyn. Res. 18, 35–51, 1996. 

[6] Wolfe, W. A., 1965. Squeeze film pressures. Appl. Sci. Res. 
14, 77–90. Yang, K. T., 1958. Unsteady laminar boundary 
layers in an incom- pressible stagnation flow. J. Appl. Math. 
Trans. ASME 80, 421– 427. 

[7] D. C. Kuzma. Fluid inertia effects in squeeze films. Appl. Sci. 
Res. 18, 15–20, 1968. 

[8] J. A. Tichy, W. O. Winer. Inertial considerations in parallel 
circular squeeze film bearings. J. Lubr. Technol. 92, 588–592, 
1970. 

[9] R. J. Grimm. Squeezing flows of Newtonian liquid films: an 
analysis include the fluid inertia. Appl. Sci. Res. 32 (2), 149–
166, 1976. 

[10] G. Birkhoff. Hydrodynamics, a Study in Logic, Fact and 
Similitude, Revised ed. Princeton University Press, 137, 1960. 

[11] C. Y. Wang. The squeezing of fluid between two plates. J. 
Appl. Mech. 43 (4), 579–583, 1976. 

[12] C. Y. Wang, L. T. Watson. Squeezing of a viscous fluid 
between elliptic plates. Appl. Sci. Res. 35, 195–207, 1979. 

[13] M. H. Hamdan and R. M. Baron. Analysis of the squeezing 
flow of dusty fluids. Appl. Sci. Res. 49, 345–354, 1992. 

[14] P. T. Nhan. Squeeze flow of a viscoelastic solid. J. Non-
Newtonian Fluid Mech. 95, 343–362, 2000. 

[15] U. Khan, N. Ahmed, S. I. U. Khan, B. Saima, S. T. Mohyud-
din. Unsteady Squeezing flow of Casson fluid between parallel 
plates. World J. Model. Simul. 10 (4), 308–319, 2014. 

[16] M. M. Rashidi, H. Shahmohamadi and S. Dinarvand, 
“Analytic approximate solutions for unsteady two dimensional 
and axisymmetric squeezing flows between parallel plates,” 
Mathematical Problems in Engineering, Vol. (2008), pp. 1-13, 
2008. 

[17] H. M. Duwairi, B. Tashtoush and R. A. Domesh, “On heat 
transfer effects of a viscous fluid squeezed and extruded 
between parallel plates,”Heat Mass Transfer, vol. (14), pp. 
112-117, 2004. 

[18] A. Qayyum, M. Awais, A. Alsaedi and T. Hayat, “Squeezing 
flow of non-Newtonian second grade fluids and micro polar 
models, “Chinese Physics Letters, vol. (29), 034701, 2012 

[19] M. H Hamdam and R. M. Baron, “Analysis of squeezing flow 
of dusty fluids,” Applied Science Research, vol. (49), pp. 345-
354, 1992. 

[20] M. Mahmood, S. Assghar and M. A. Hossain, “Squeezed flow 
and heat transfer over a porous surface for viscous fluid,” 
Heat and mass Transfer, vol. (44), 165-173. 

[21] M. Hatami and D. Jing, “Differential Transformation Method 
for Newtonian and non-Newtonian nanofluids flow analysis: 
Compared to numerical solution, “Alexandria Engineering 
Journal, vol. (55), 731-729. 

[22] S. T. Mohyud-Din, Z. A. Zaidi, U. Khan, N. Ahmed. On heat 
and mass transfer analysis for the flow of a nanofluid between 
rotating parallel plates, Aerospace Science and Technology, 
46, 514-522, 2014. 

[23] S. T. Mohyud-Din, S. I. Khan. Nonlinear radiation effects on 
squeezing flow of a Casson fluid between parallel disks, 
Aerospace Science & Technology, Elsevier 48, 186-192, 2016 

[24] M. Qayyum, H. Khan, M. T. Rahim, I. Ullah. Modeling and 
Analysis of Unsteady Axisymmetric Squeezing Fluid Flow 
through Porous Medium Channel with Slip Boundary. PLoS 
ONE 10(3), 2015 

[25] M. Qayyum and H. Khan. Behavioral Study of Unsteady 
Squeezing Flow through Porous Medium, Journal of Porous 
Media, pp: 83-94, 2016. 

[26] M. Mustafa, Hayat and S. Obaidat “On heat and mass transfer 
in the unsteady squeezing flow between parallel plates,” 
Mechanica, vol. (47), pp. 1581-1589, 2012. 

[27] A. M. Siddiqui, S. Irum, and A. R. Ansari, “Unsteady 
squeezing flow of viscous MHD fluid between parallel 
plates,” Mathematical Modeling Analysis, vol. (2008), 565-
576, 2008. 

[28] G. Domairry and A. Aziz, “Approximate analysis of MHD 
squeeze flow between two parallel disk with suction or 
injection by homotopy perturbation method,” Mathematical 
Problem in Engineering, vol. (2009), pp. 603-616, 2009. 

[29] N. Acharya, K. Das and P. K. Kundu, “The squeezing flow of 
Cu-water and Cu-kerosene nanofluid between two parallel 
plates,” Alexandria Engineering Journal, vol. (55), 1177-1186. 

[30] N. Ahmed, U. Khan, X. J. Yang, S. I. U. Khan, Z. A. Zaidi, S. 
T. Mohyud-Din. Magneto hydrodynamic (MHD) squeezing 
flow of a Casson fluid between parallel disks. Int. J. Phys. Sci. 
8 (36), 1788–1799, 2013. 

[31] N. Ahmed, U. Khan, Z. A. Zaidi, S. U. Jan, A. Waheed, S. T. 
Mohyud-Din. MHD Flow of a Dusty Incompressible Fluid 
between Dilating and Squeezing Porous Walls, Journal of 
Porous Media, Begal House, 17 (10), 861-867, 2014. 

[32] U. Khan, N. Ahmed, S. I. U. Khan, Z. A. Zaidi, X. J. Yang, S. 
T. Mohyud-Din. On unsteady two-dimensional and 
axisymmetric squeezing flow between parallel plates. 
Alexandria Eng. J. 53, 463–468, 2014a. 



 Fluid Mechanics 2017; 3(6): 54-60 60 

 

[33] U. Khan, N. Ahmed, Z. A. Zaidi, M. Asadullah, S. T. Mohyud-
Din. MHD squeezing flow between two infinite plates. Ain 
Shams Eng. J. 5, 187–192, 2014b. 

[34] T. Hayat, A. Yousaf, M. Mustafa and S. Obadiat, “MHD 
squeezing flow of second grade fluid between parallel disks,” 
International Journal of Numerical Methods, vol. (69), pp. 
399-410, 2011. 

[35] H. Khan, M. Qayyum, O. Khan, and M. Ali. Unsteady 
Squeezing Flow of Casson Fluid with Magnetohydrodynamic 
Effect and Passing through Porous Medium," Mathematical 
Problems in Engineering, vol. 2016, Article ID 4293721, 14 
pages, 2016. 

[36] I. Ullah, M. T. Rahim, H. Khan, M. Qayyum. Analytical 
Analysis of Squeezing Flow in Porous Medium with MHD 
Effect, U. P. B. Sci. Bull., Series A, Vol. 78, Iss. 2, 2016. 

[37] R. J. Grimm, “Squeezing flows of Newtonian liquid films an 
analysis including fluid inertia,” Applied Scientific Research, 
vol. 32, no. 2, pp. 149–166, 1976. 

[38] W. F. Hughes and R. A. Elco, “Magnetohydrodynamic 
lubrication flow between parallel rotating disks,” Journal of 
Fluid Mechanics, vol. 13, pp. 21–32, 1962. 

[39] S. Kamiyama, “Inertia Effects in MHD hydrostatic thrust 
bearing,” Transacti ons ASME, vol. 91, pp. 589–596,1969. 

[40] E. A. Hamza, “Magnetohydrodynamic squeeze film,” Journal 
of Tribol ogy, vol. 110, no. 2, pp. 375–377, 1988. 

[41] S. Bhattacharyya and A. Pal, “Unsteady MHD squeezing flow 
between two parallel rotating discs,” Mechanics Research 
Communications, vol. 24, no. 6, pp. 615–623,1997. 

[42] S. Islam, H. Khan, I. A. Shah, and G. Zaman, 
“Anaxisymmetric squeezing fluid flow between the two 
infinite parallel plates in a porous medium channel,” 
Mathematical Problems in Engineer- ing, vol. 2011, Article ID 
349803, 10 pages, 2011. 

[43] C.-L.-M.-H. Navier, “Sur les lois de l’ equilibre et du 
movement des corps solides elastiques,” Bulletin des Sciences 
par la SocietePhilomatique de Paris, pp. 177–181, 1823. 

[44] C. le Roux, “Existence and uniqueness of the flow of second 
grade fluids with slip boundary conditions,” Archive for 
Rational Mechanics and Analysis, vol. 148, no. 4, pp. 309–
356,1999. 

[45] A. Ebaid, “Effects of magnetic field and wall slip conditions 
on the peristaltic transport of a Newtonian fluid in an 
asymmetric channel,” Physics Letters A, vol. 372, no. 24, pp. 
4493–4499, 2008. 

[46] T. Hayat, M. U. Qureshi, and N. Ali, “The influence of slip on 
the peristaltic motion of third order fluid in an asymmetric 
channel,” Physics Letters A, vol. 372, pp. 2653–2664, 2008. 

[47] T. Hayat and S. Abelman, “A numerical study of the influence 
of slip boundary condition on rotating flow,” International 
Journal of Computational Fluid Dynamics, vol. 21, no. 1, pp. 
21–27, 2007. 

[48] S. Abelman, E. Momoniat, and T. Hayat, “Steady MHD flow 
of a third grade fluid in a rotating frame and porous space,” 
Nonlinear Analysis: Real World Applications, vol. 10, no. 6, 
pp. 3322–3328, 2009. 

[49] E. H. Doha, A. H. Bhrawy, S. S. Ezzeldeen, Efficient 
Chebyshev spectral methods for solving multi-term fractional 
orders differential equations, Appl. Math. Model. (2011) 
doi:10.1016/j.apm.2011.05.011. 

[50] D. Gottlieb, S. A. Orszag, Numerical analysis of spectral 
methods: Theory and applications, in: Regional Conference 
Series in Applied Mathematics, vol. 28, SIAM, Philadelphia, 
1977, pp. 1–168. 

[51] C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral 
Methods inFluid Dynamics, Springer-Verlag, New York, 1988. 

[52] R. Peyret, Spectral Methods for Incompressible Viscous Flow, 
SpringerVerlag, New York, 2002. 

[53] F. B. Belgacem, M. Grundmann, Approximation of the wave 
and electromagneticdiffusion equations by spectral methods, 
SIAM Journal onScientific Computing 20 (1), (1998), 13–32. 

[54] X. W. Shan, D. Montgomery, H. D. Chen, Nonlinear 
magnetohydrodynamicsby Galerkin-method computation, 
Physical Review A 44 (10) (1991)6800–6818. 

[55] X. W. Shan, Magnetohydrodynamic stabilization through 
rotation, Physical Review Letters 73 (12) (1994) 1624–1627. 

[56] J. P. Wang, Fundamental problems in spectral methods and 
finite spectral method, Sinica Acta Aerodynamica 19 (2) 
(2001) 161–171. 

[57] E. M. E. Elbarbary, M. El-kady, Chebyshev finite difference 
approximation for theboundary value problems, Applied 
Mathematics and Computation 139 (2003)513–523. 

[58] Z. J. Huang, and Z. J. Zhu, Chebyshev spectral collocation 
method for solution ofBurgers’ equation and laminar natural 
convection in two-dimensional cavities, Bachelor Thesis, 
University of Science and Technology of China, Hefei, 2009. 

[59] N. T. Eldabe, M. E. M. Ouaf, Chebyshev finite difference 
method for heat and masstransfer in a hydromagnetic flow of a 
micropolar fluid past a stretching surfacewith Ohmic heating 
and viscous dissipation, Applied Mathematics and 
Computation 177 (2006) 561–571. 

[60] A. H. Khater, R. S. Temsah, M. M. Hassan, A Chebyshev 
spectral collocation methodfor solving Burgers'-type 
equations, Journal of Computational and Applied Mathematics 
222 (2008) 333–350. 

[61] C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral 
Methods in Fluid Dynamics, Springer, New York, 1988. 

[62] E. H. Doha, A. H. Bhrawy, Efficient spectral-Galerkin 
algorithms for direct solution of fourth-order differential 
equations using Jacobi polynomials, Appl. Numer. Math. 58 
(2008) 1224–1244. 

[63] E. H. Doha, A. H. Bhrawy, Jacobi spectral Galerkin method 
for the integrated forms of fourth-order elliptic differential 
equations, Numer. Methods Partial Differential Equations 25 
(2009) 712–739. 

[64] E. H. Doha, A. H. Bhrawy, R. M. Hafez, A Jacobi–Jacobi 
dual-Petrov–Galerkin method for third- and fifth-order 
differential equations, Math. Computer Modelling 53 (2011) 
1820–1832. 

 

 


