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Abstract: In this work we will apply the three-dimensional mathematical modelling of fluid flow and heat transfer inside the 

furnaces based on the cylindrical coordinate system to describe the behavior of the transport phenomena. This modelling is 

constructed by using the mass, momentum, and energy conservation laws to achieve the continuity equation, the Navier-Stokes 

equations, and the energy conservation equation. Due to the moving boundary between the solid and melted materials inside of 

the furnaces we will impose the Stefan condition to describe the behavior of the free boundary between two phases. We will 

derive the variational formulation of the system of transport phenomena, then we will discrete the domain to complete the 

finite element method stages and we will obtain the system of nonlinear equations in 256 equations in 256 unknowns. To get 

the numerical solution of the large-scale system we will prepare a convenient mathematical work and gain some diagrams 

where they would be applicable in the design process of the furnaces shapes. 
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1. Introduction 

Mathematical modeling of heat transfer is applied to 

investigate the environment of the furnaces and transport 

phenomena inside them, because it has the advantages of low 

cost and acceptable exactness. Quan-Sheng and You-Lan 

consider the two-dimensional Stefan problem in (1985) and 

they used the singularity-separating method to prepare the 

numerical solution. Ungan and Viskanta in (1986), (1987) 

investigated modeling of circulation and heat transfer in a 

glass melting tank in three-dimension. Henry and Stavros in 

(1996) prepared the convenient work about the mathematical 

modelling of solidification and melting process. Vuik, Segal, 

and Vermolen in (2000) studied about the discretization 

approach for a Stefan problem where they focused on 

interface reaction at the free boundary. 

Pilon, Zhao, and Viskanta in (2002), (2006) in their papers 

considered three-dimensional flow and researched about the 

behavior of thermal structures in glass melting furnaces by 

using the three-dimensional mathematical modeling. Their 

works were included theoretical and numerical sections 

where they applied sufficient boundary conditions. Sadov, 

Shivakumar, Firsov, Lui, and Thulasiram, provided an article 

about the mathematical model of ice melting on transmission 

lines in (2007). Choudhary, Venuturumilli, and Matthew in 

(2010) in their common paper introduce the mathematical 

modeling of flow and heat transfer phenomena in glass 

melting where it consists of delivery and forming processes, 

especially the turbulent conditions has been discussed in the 

paper for Newtonian and non-Newtonian fluids. 

Kambourova, and Zheleva had modelized and described 

temperature distributions ina tank of glass melting furnace in 

(2002). 

The author studied the mathematical modeling of heat 

transfer and transport phenomena in (2016) in two-dimension 

with Stefan free boundary based on stream functions. due to 

the advantages of stream functions mathematical modeling 

has prepared and by invoking the finite element method the 

numerical solution of the transport phenomena derived, also 

we did the same work in three-dimension. In the current 

work we will apply the mathematical modeling in three-

dimension for the especial furnaces with cylindrical shapes, 

that they are called Garnissage tank. Due to their shapes we 

will illustrate the mathematical equations of transport 
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phenomena in the cylindrical coordinate system in three-

dimension to use its symmetric properties. 

The melting process in the Garnissage furnace starts when 

we impose the heat to the solid material by electrical boosters 

inside it, but the heat transferring by electrical boosters 

couldn’t melt the whole materials and whenever the central 

parts are melted the parts far from the boosters is solid. In 

this case the boundary between the solid and liquid materials 

are moving during the process, then we will have free 

boundary problem. The Stefan condition is sufficient tool to 

describe the behavior of the free boundary and we will 

handle three-dimensional version of the Stefan condition in 

the mathematical modeling process. 

We state the conservation equations in the cylindrical 

coordinate, so the Stefan condition, then we convert the 

system of equations into the weak formulation. For 

expressing the system in the variational formulation we will 

use convenient test functions with small support and then we 

will discrete the domain to follow the finite element method. 

The approximate values of the variables would be applied 

instead of the variables, and finally we will get the system of 

equations that they are combination of linear and nonlinear 

equations, thus to solve the system numerically the Newton’s 

method would be recommended. 

2. Mathematical Modeling 

We start the paper by reviewing the mathematical 

modeling of fluid flow in three-dimension. Cylindrical 

coordinate is applied for modeling because it provides the 

convenient environment to express the modeling, hence we 

can use the symmetric properties to introduce the equations. 

There are three different parts in the modeling process which 

we will introduce them. 

2.1. Continuity Equation 

�� ��� ������ + ��
����
 = 0                         (1) 

2.2. Navier-Stokes Equations 

� ������ + �� ����� + �
 ����
 � = − ���� + � ��� ��� �� ����� � + �����
� − ����� + ���                                         (2) 

� ������ + �� ����� + �
 ����
 � = − ���
 + � ��� ��� �� ����� � + �����
� � + ��
                                                 (3) 

2.3. Energy Equation 

���� + �� ���� + �
 ���
 = �
� ��� ��� �� ����� + ����
�� + �
� �                                                               (4) 

Deriving the weak formulation is second stage of the work after the mathematical modeling, then the variational version of 

the modeling has been obtained by imposing the convenient smooth test function �with small support and using the integration 

by parts technique. Like the classical modeling the variational formulation has three sections: 

2.4. Continuity Equation (Weak Formulation) 

� �� ��� − ����� − � �
 ���
 = 0                                                                             (5) 

2.5. Navier-Stokes Equations (Weak Formulation) 

� �� ����� + ��! �� + ��� ���� + �
 ���
 + � ����
 − ������ − ����
�� = − �
 � " ���� − � ���                                      (6) 

� �
 ����� + �� ���� + � ����� + �! �
 ���
 + ������
 + ����
�� = − �
 � " ���
 − � �
�                                       (7) 

2.6. Energy Equation (Weak Formulation) 

� # $����� � + �� ���� + ����
 � + �
 ���
 + �
� ������� + ����
��% + � �# + �&
�� ���� = − �
� � � �                          (8) 

3. Discretization of Domain 

After weak formulation we discrete the domain Ω , and 

replace the approximate variables ��(, �
(, "(, and #( in the 

variational formulation to obtain the algebraic system of 

equations. Assume that *( ⊂ ,-��Ω�, which consists of test 

functions that they are piecewise continuous with the fix 

degree, and also suppose that 

dim*( = 2�ℎ�, 
*( = 4"5678�, 8!, 89, … , 8;�(�<, 

where the basis functions 8=��, >, ?, @�, A = 1,2, … , 2�ℎ� , 

have small support. If we choose the finite dimensional 

subspace *(, and also the correspond variables in *(, then we 

redefine the heat transfer problem as the problem of finding ��(, �
(, "( , and #(  such that there satisfy in the equations 
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(5), (6), (7), and (8). Now we define the approximate 

solutions ��(, �
( , "(, and #( in terms of the basis functions 8=��, >, ?, @� 
��(��, >, ?, @� = ∑ E�=8=��, >, ?, @�;�(�=F� ,               (9) 

�
(��, >, ?, @� = ∑ E
=8=��, >, ?, @�;�(�=F� ,              (10) 

"(��, >, ?, @� = ∑ G=8=��, >, ?, @�;�(�=F� ,                (11) 

#(��, >, ?, @� = ∑ #=8=��, >, ?, @�;�(�=F� ,                (12) 

where E�= , E
= , G= , #= , A = 1,2,3, … , 2�ℎ� , must be 

determined. We insert the values of ��(, �
( , "( , #( ∈ *( 

instead of �� , �
 , ", #in the variational formulation of the heat 

transfer problem. In this case the heat transfer problem is 

restated as the problem of finding 

�UKL , UK� , … , UKM�N�� ∈ RP�Q�, 
�URL , UR� , … , URM�N�� ∈ RP�Q�, 
Sθ�, θ!, … , θP�Q�U ∈ RP�Q�, 

where they are satisfied in the system of equations 

∑ SE�=5=� − E
=V=�U;�(�=F� = 0,                        (13) 

∑ E�=W=�;�(�=F� + ∑ ∑ E�=E�XY=X�;�(�XF�;�(�=F� +∑ ∑ E�=E
X;�(�XF� Z=X�;�(�=F� + ∑ G=[=�;�(�=F� + \� = 0,                        (14) 

∑ E
=W]=�;�(�=F� + ∑ ∑ E
=E
XY]=X�;�(�XF�;�(�=F� +∑ ∑ E
=E�XZ]=X�;�(�XF�;�(�=F� + ∑ G=[]=�;�(�=F� + \]� = 0,                        (15) 

∑ #= =̂�;�(�=F� +∑ ∑ #= �E�X + E
X� _X�;�(�XF�;�(�=F� +,� = 0,                                                (16) 

` = 1,2,3, … , 2�ℎ�, 
which coefficients of the system are defined as 

Table 1. System Coefficients. 

5=� = a 8= b8�� − c8�c� d 
 V=� = a 8= c8�c? 

 

W=� = a 8= $c8�c@ − c
!8�c�! − c

!8�c?! + 1� c8�c� % 
 W]=� = a 8= $c8�c@ + c

!8�c�c? + c
!8�c?! % 

 

Y=X� = 12a 8=8X c8�c� 
 Y]=X� = 12a 8=8X c8�c? 

 

Z=X� = a 8= $8X c8�c? + 8� c8Xc? % 
 Z]=X� = a 8= $8X c8�c� + 8� c8Xc� % 

 

[=� = 1� a 8= c8�c� 
 []=� = 1� a 8= c8�c? 

 

\� = a ��8� 
 \]� = a �
8� 

 

=̂� = a 8= ec8�c@ + �̀f $c
!8�c�! + c

!8�c?! %g 
 _X� = a $8� c8Xc� + 8X c8�c� % 

 

,� = 1�f a b`h c8�c@ + �8�d 
  

We need to determine the values of the coefficients to derive the numerical solution of system, then we must define the 

sufficient domain and discrete it to compute the relevant integrals, and at last we would found all coefficients and finally we 

will earn the numerical solution of the system for the interpretation of the fluid behavior in the furnaces. 

4. Unknown Coefficients 

We continue the process by computing the coefficients in the transport system, for this objective we need to divide the 

domain Ω to the mesh cubes, the Figure 1 shows the Ai` −mesh cube where we will construct the test functions on Ai` −mesh 

cube. 
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Figure 1. Ai` −Mesh cube. 

To define the test functions we divide the Ai` −mesh cube 

into the 24 tetrahedrons as Figure 2. 

 

Figure 2. First tetrahedron. 

Now we are looking for the continuous piecewise linear 

function 8 = 8�j, k, @�  where it equals to 1 in the origin 

node ofAi` �mesh cube, and 0 in the other nodes. 

Suppose that 

8�j, k, @� � 5 	 Vj 	 fk 	 l@ 
for example to the point �j, k, ?�in the first tetrahedron 

8 �mSj= , kX , @�U� � 1 

8 �WSj=n�, kXo�, @�U� � 0 

8 �YSj=n�, kX , @�U� � 0 

8 �ZSj= , kX , @�n�U� � 0 

then we will have 

5 	 j=V 	 kXf 		@�l � 1 

5 	 j=n�V 	 kXo�f 		@�l � 0 

5 	 j=n�V 		kXf 		@�l � 0 

5 	 j=V 	 kXf 		@�n�l � 0 

We get the solution of the linear system as 

5 � 1
3 �j= 	 @�� 	 1, 

V � l � �13, 
f � 0, 

then we derive the test function 

8�j, k, @� � 1
3 ��j 	 j= � @ 	 @�� 	 1 

We perform the same approach for all of the other 

tetrahedrons and we demonstrate them as 

Parts 1, 2 

8�j, k, @� � 1
3 ��j 	 j= � @ 	 @�� 	 1 

Parts 3, 4 

8�j, k, @� � 1
3 S�j 	 j= � k 	 kXU 	 1 

Parts 5, 6 

8�j, k, @� � 1
3 S�k 	 kX 	 @ � @�U 	 1 

Parts 7, 8 
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8�j, k, @� = 1ℎ �j − j= + @ − @�� + 1 

Parts 9, 10 

8�j, k, @� = 1ℎ Sj − j= + k − kXU + 1 

Parts 11, 12 

8�j, k, @� = 1ℎ Sk − kX − @ + @�U + 1 

Parts 13, 14 

8�j, k, @� = 1ℎ �−@ + @�� + 1 

Parts 15, 16 

8�j, k, @� = 1ℎ �j − j=� + 1 

Parts 17, 18 

8�j, k, @� = 1ℎ S−k + kXU + 1 

Parts 19, 20 

8�j, k, @� = 1ℎ �@ − @�� + 1 

Parts 21, 22 

8�j, k, @� = 1ℎ Sk − kXU + 1 

Parts 23, 24 

8�j, k, @� = 1ℎ �−j + j=� + 1 

We are in the position to compute the coefficients of the 

continuity equation 5=� and V=� for the system (13), then we 

continue the process by determining the 5=� for 

` = A, 
` = A − �2! + 2 − 1�, 
` = A + �2! + 2 − 1�, 

and it is trivial that 5=� = 0  in the other cases. Then we 

divide the integral as 

5== = a 8= b8=� − c8=c� d 
 

= q 8= b8=� − c8=c� d l�l?l@rsKt	-�
+ q 8= b8=� − c8=c� d l�l?l@rsKt	-!

+⋯+ q 8= b8=� − c8=c� d l�l?l@rsKt	!v
. 

We compute the values of integrals in different tetrahedrons separately and derive the final value of 5==  as 

�j= + ℎ��6j=! − 8j=�j= + ℎ�! + 3�j= + ℎ�9�6ℎ! ln b1 + ℎj=d − j=
v − 4j=ℎ9 + 3ℎv6ℎ! ln b1 − ℎj=d − j=�3j=

! + ℎ!�9ℎ , 
and by the similar operation we gain 

5=,=oS;�n;o�U = 172ℎ �12j=9 − 6j=!ℎ + 40j=ℎ! − 3ℎ9� − 16ℎ! �j=v + 3j=!ℎ! + 2j=ℎ9 − 2ℎv� ln b1 + ℎj=d, 
5=,=nS;�n;o�U = 172ℎ �12j=9 + 6j=!ℎ + 40j=ℎ! + 3ℎ9� + 16ℎ! �j=v + 3j=!ℎ! − 2j=ℎ9 − 2ℎv� ln b1 − ℎj=d. 

Also for the coefficient V=�in (13) we get 

V== = 0, 
V=,=oS;�n;o�U = − ℎ!12, 
V=,=nS;�n;o�U = ℎ!12. 

Suppose that the domain 

Ω = �0.3, 0.9� × �0.3, 0.9� × �0.3, 0.9�, 
and 2 = 4, then ℎ = 0.15, and 
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j� � 0.3, j! = 0.45, j9 = 0.6, jv = 0.75, 
after inserting the values in the system (13) we will reach the coefficients matrix �G, �� with 64 rows and 128 columns, where 

G = 

�
��
��
��
��
��
�
0.41 0 … 0 0.0009 0 0 0 ⋱ 0 0 0 0 00 0.62 0 … 0 0.0001 0 0 ⋱ 0 0 0 0 0⋮ 0 0.67 0 … 0 −0.0003 0 ⋱ 0 0 0 0 00 ⋮ 0 0.41 0 … 0 −0.0006 ⋱ 0 0 0 0 00.003 0 ⋮ 0 0.41 0 … 0 ⋱ 0 0 0 0 00 0.002 0 ⋮ 0 0.62 0 … ⋱ 0.0009 0 0 0 00 0 0.002 0 ⋮ 0 0.67 0 ⋱ 0 0.0001 0 0 00 0 0 0.002 0 ⋮ 0 0.41 ⋱ ⋮ 0 −0.0003 0 00 0 0 0 0.003 0 ⋮ 0 ⋱ 0 ⋮ 0 −0.0006 00 0 0 0 0 0.002 0 ⋮ ⋱ 0.41 0 ⋮ 0 0.00090 0 0 0 0 0 0.002 0 ⋱ 0 0.41 0 ⋮ 00 0 0 0 0 0 0 0.002 ⋱ 0 0 0.62 0 ⋮0 0 0 0 0 0 0 0 ⋱ 0 0 0 0.67 00 0 0 0 0 0 0 0 ⋱ 0.003 0 0 0 0.41 �

��
��
��
��
��
�

 

and 

� = 

�
��
��
��
��
��
�

0 0 … 0 0.002 0 0 0 ⋱ 0 0 0 0 00 0 0 … 0 0.002 0 0 ⋱ 0 0 0 0 0⋮ 0 0 0 … 0 0.002 0 ⋱ 0 0 0 0 00 ⋮ 0 0 0 … 0 0.002 ⋱ 0 0 0 0 0−0.002 0 ⋮ 0 0 0 … 0 ⋱ 0 0 0 0 00 −0.002 0 ⋮ 0 0 0 … ⋱ 0.002 0 0 0 00 0 −0.002 0 ⋮ 0 0 0 ⋱ 0 0.002 0 0 00 0 0 −0.002 0 ⋮ 0 0 ⋱ ⋮ 0 0.002 0 00 0 0 0 −0.002 0 ⋮ 0 ⋱ 0 ⋮ 0 0.002 00 0 0 0 0 −0.002 0 ⋮ ⋱ 0 0 ⋮ 0 0.0020 0 0 0 0 0 −0.002 0 ⋱ 0 0 0 ⋮ 00 0 0 0 0 0 0 −0.002 ⋱ 0 0 0 0 ⋮0 0 0 0 0 0 0 0 ⋱ 0 0 0 0 00 0 0 0 0 0 0 0 ⋱ −0.002 0 0 0 0 �
��
��
��
��
��
�

 

Now we have obtained a linear system of equations that it has 128 variables E�L , E�� , … , E���; E
L , E
� , … , E
�� within 64 

equations. We will return to the system (13) in the next sections again, thus we focus on the Navier-Stokes system (14) to earn 

the remainder coefficients. 

We continue the process by determining the coefficients of the Navier-Stokes system (14), (15). We start by specifying the 

coefficient W=� , and as we done before we suppose the Ai` −mesh cube that it was divided to 24 tetrahedrons, then after 

integration process in the whole parts we gain 

W== = − ���n(�9(� ln �1 + (��� + ���o(�9(� ln �1 − (��� + ����n!(��( ,                                                     (17) 

W=,=oS;�n;o�U = − ���( �6j=! + 15j=ℎ + 11ℎ!� + ���n(��9(� ln �1 + (��� − (��!,                                         (18) 

W=,=nS;�n;o�U = − ���( �6j=! − 15j=ℎ + 11ℎ!� + ���o(��9(� ln �1 − (��� + (��!.                                           (19) 

Now we insert the values of W=� from (17), (18), and (19) into the ∑ E�=W=�;�(�=F� from (14) and we earn the coefficient matrix �W=���v×�v as 
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�
��
��
��
��
��
�
0.008 0 … 0 0.004 0 0 0 ⋱ 0 0 0 0 00 0.003 0 … 0 0.002 0 0 ⋱ 0 0 0 0 0⋮ 0 0.002 0 … 0 0.001 0 ⋱ 0 0 0 0 00 ⋮ 0 0.001 0 … 0 0.0005 ⋱ 0 0 0 0 0−0.07 0 ⋮ 0 0.008 0 … 0 ⋱ 0 0 0 0 00 −0.33 0 ⋮ 0 0.003 0 … ⋱ 0.004 0 0 0 00 0 −0.78 0 ⋮ 0 0.002 0 ⋱ 0 0.002 0 0 00 0 0 −1.43 0 ⋮ 0 0.001 ⋱ ⋮ 0 0.001 0 00 0 0 0 −0.07 0 ⋮ 0 ⋱ 0 ⋮ 0 0.0005 00 0 0 0 0 −0.33 0 ⋮ ⋱ 0.001 0 ⋮ 0 0.0040 0 0 0 0 0 −0.78 0 ⋱ 0 0.008 0 ⋮ 00 0 0 0 0 0 0 −1.43 ⋱ 0 0 0.003 0 ⋮0 0 0 0 0 0 0 0 ⋱ 0 0 0 0.002 00 0 0 0 0 0 0 0 ⋱ −0.07 0 0 0 0.001�

��
��
��
��
��
�

 

We continue the process of finding the coefficients of the Navier-Stokes system (14) by focusing on the coefficient Y=X�  

from ∑ ∑ E�=E�XY=X�;�(�XF�;�(�=F� , and we achieve 

Y=== = 0 

Y=,=oS;�n;o�U,= = − ℎ!20 

Y=,=nS;�n;o�U,= = ℎ!20 

Y=,=oS;�n;o�U,=oS;�n;o�U = ℎ!20 

Y=,=nS;�n;o�U,=nS;�n;o�U = − ℎ!20 

Y=,=,=oS;�n;o�U = ℎ!60 

Y=,=,=nS;�n;o�U = − ℎ!60 

then by applying the values Y=X� we will obtain the value of ∑ ∑ E�=E�XY=X�;�(�XF�;�(�=F�  as 

for ` < 20 

ℎ!10E��E���S�����LU + ℎ
!
60E���������L�!  

for 20 ≤ ` ≤ 45 

− ℎ!10E��E���S�����LU + ℎ
!
10E��E���S�����LU − ℎ

!
60E���������L�! + ℎ!60E���������L�!  

for ` > 45 

− ℎ!10E��E���S�����LU − ℎ
!
60E���������L�!  

Also the values of Z=X� are as 

Z=== = 0 

Z=,=oS;�n;o�U,= = ℎ!15 
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Z=,=nS;�n;o�U,= = − ℎ!15 

Z=,=,=oS;�n;o�U = ℎ!15 

Z=,=,=nS;�n;o�U = − ℎ!15 

Z=,=oS;�n;o�U,=oS;�n;o�U = −ℎ!5  

Z=,=nS;�n;o�U,=nS;�n;o�U = ℎ!5  

then we insert the values Z=X� to get the ∑ ∑ E�=E
XZ=X�;�(�XF�;�(�=F�  as 

for ` < 20 

− ℎ!15E��E
��S�����LU − ℎ
!
5 E
�E���S�����LU + ℎ

!
15E���S�����LUE
��S�����LU 

for 20 ≤ ` ≤ 45 

− ℎ!15E���S�����LUE
��S�����LU + ℎ
!
5 E���S�����LUE
� + ℎ

!
15E��E
��S�����LU − ℎ

!
15E��E
��S�����LU − ℎ

!
5 E���S�����LUE
� 

+ ℎ!15E���S�����LUE
��S�����LU 
for ` > 45 

ℎ!15E��E
��S�����LU − ℎ
!
15E���S�����LUE
��S�����LU + ℎ

!
5 E���S�����LUE
� 

We terminate this section by computing the coefficients [=�  form (14) and we have 

[== = 0, 
[=,=oS;�n;o�U = ℎ!12, 
[=,=nS;�n;o�U = − ℎ!12, 

then we will get the coefficient matrix �[=���v×�v from ∑ G=[=�;�(�=F�  as 

1�

�
��
��
��
��
��
�

0 0 … 0 0.002 0 0 0 ⋱ 0 0 0 0 00 0 0 … 0 0.002 0 0 ⋱ 0 0 0 0 0⋮ 0 0 0 … 0 0.002 0 ⋱ 0 0 0 0 00 ⋮ 0 0 0 … 0 0.002 ⋱ 0 0 0 0 0−0.002 0 ⋮ 0 0 0 … 0 ⋱ 0 0 0 0 00 −0.002 0 ⋮ 0 0 0 … ⋱ 0.002 0 0 0 00 0 −0.002 0 ⋮ 0 0 0 ⋱ 0 0.002 0 0 00 0 0 −0.002 0 ⋮ 0 0 ⋱ ⋮ 0 0.002 0 00 0 0 0 −0.002 0 ⋮ 0 ⋱ 0 ⋮ 0 0.002 00 0 0 0 0 −0.002 0 ⋮ ⋱ 0 0 ⋮ 0 0.0020 0 0 0 0 0 −0.002 0 ⋱ 0 0 0 ⋮ 00 0 0 0 0 0 0 −0.002 ⋱ 0 0 0 0 ⋮0 0 0 0 0 0 0 0 ⋱ 0 0 0 0 00 0 0 0 0 0 0 0 ⋱ −0.002 0 0 0 0 �
��
��
��
��
��
�

 

We note that the last coefficient \= in the system (14) is 

\= = ��ℎ9. 
Now we reach to the nonlinear system in 64 variables E�L , E�� , … , E���in 64 equations, then we repeat precisely the 

same process for the second part of the Navier-Stokes 
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equations (15), and again we get the second nonlinear system, 

that it has 64 variables E
L , E
� , … , E
��within 64 equations. 

5. Numerical Solution 

As we have shown in the section (4) equation (13) may 

be exhibited as a linear system in 64 equations in 128 

variables, where we got the coefficients matrix �G, �� 
before, now we return to the equation (13) and rewrite it in 

the matrix form as 

�G, �� bE�E
d = 0, 
GE� + �E
 = 0. 

Since the matrix G is invertible therefore we can derive the E�  uniquely as 

E� = −Go��E
                                   (20) 

Also remember from section (5) that the Navier-Stokes 

systems (14), and (15) respectively have the styles 

WE� +���E� , E
� + [" + \ = 0,                      (21) 

W]E
 +�!�E� , E
� + []" + \] = 0,                      (22) 

where the matrices W , [ , W] , and []  are obtained in the 

section (5) and��, �! are the nonlinear parts of the systems 

(14) and (15). Also we know that 

[ = −[], 
\ = ℎ9��1, 
\] = ℎ9�
1. 

After the summation of (21) and (22) we will reach to 

WE� + W]E
 + ��E� , E
� + \ + \] = 0,         (23) 

where ��E� , E
� = ���E� , E
� + �!�E� , E
�, and we replace 

the value of E�  from (20) into the (23) to earn 

�W] − WGo���E
 + ��E
� = −ℎ9��� + �
�1    (24) 

The system (24) has 64 equations within 64 variables. Our 

purpose is to find its numerical solution by invoking the 

Newton’s method, thus we need the initial solution to start 

the process of iterations, so we assume that the nonlinear part 

of the system (24) be zero, that is 

��E
� = 0, 
then 

�W] − WGo���E
 = −ℎ9��� + �
�1.              (25) 

From the system (25) immediately we compute 

E
�L = E
�� = E
�� = E
�� = E
�� = E
�� = E
�� = E
�� = E
�L = E
�� = E
�� = E
�� = E
�� = E
�  = −16.5 

Newton’s algorithm after sufficient iterations leads to the following solutions of the system (24). 

Table 2. Numerical values of E
. 
E
L = −19.964396203271495 E
� = −19.03263160383139 E
� = −21.585584196054814 E
� = −21.15249196304994 E
� = −19.96439620327149 E
� = −21.02739191619664 E
� = −21.585584196045044 E
  = −5.153356893381632 E
� = −15.080509375582018 E
L� = −26.18565106460826 E
LL = −18.13195925635669 E
L� = −5.153356893381636 E
L� = −15.08035122328177 E
L� = −26.18565106460826 E
L� = −18.13195925635669 E
L� = −5.153356893381636 E
L� = −15.08050937558201 E
L  = −26.18565106460826 E
L� = −18.13138786041306 E
�� = 0.9044792016387821 E
�L = 0.9512084266258982 E
�� = 0.8210418438489437 E
�� = 0.8364611015836216 E
�� = 0.9044792016387821 E
�� = 0.8527276053620682 E
�� = 0.8210418438493451 E
�� = 14.525657477973708 E
�  = 1.2569219242317637 E
�� = 0.9665538943001553 E
�� = 1.0909165624593518 E
�L = 14.525657477973725 E
�� = 1.256935110922197 E
�� = 0.9665538943001551 E
�� = 1.0909165624593518 E
�� = 14.525657477973725 E
�� = 1.2569219242317635 E
�� = 0.9665538943001551 E
�  = 1.0909428660709701 E
�� = −16.96838569358458 E
�� = −15.81750451636952 E
�L = −19.11862394842311 E
�� = −18.95208878856998 E
�� = −16.96838569358458 E
�� = −18.34556685135166 E
�� = −19.11862394841126 E
�� = −2.881538324002666 E
�� = −8.018433353991593 E
�  = 12.77607584911194 E
�� = 3.629362362017885 E
�� = −2.881538324002671 E
�L = −8.01837578716835 E
�� = 12.776075849111944 E
�� = 3.629362362017885 E
�� = −2.881538324002670 E
�� = −8.018433353991593 E
�� = 12.776075849111944 E
�� = 3.6285109525148713 E
�  = 1.365358543778119 E
�� = 1.0708011223774292 E
�� = 1.8262529864312615 E
�L = 1.7875947952490874 E
�� = 1.3653585437781197 E
�� = 1.8781813493164021 E
�� = 1.8262529864328112   

Now we refer to the relation (10) to simulate the function�
(, and the result is exhibited in the Figure 3. 
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Figure 3. Simulation of the function �
(. 

We insert E
 valuesto compute the E�  from (20). 

Table 3. Numerical values of E�. 
E�L � �0.00438008 E�� = −0.00306589 E�� = −0.00245443 E�� = −0.00408989 E�� = −0.00438008 E�� = −0.00274863 E�� = −0.00245443 E�  = −0.0708664 E�� = −0.00605582 E�L� = −0.0030872 E�LL = −0.0032878 E�L� = −0.0708664 E�L� = −0.0060558 E�L� = −0.0030872 E�L� = −0.0032878 E�L� = −0.0708664 E�L� = −0.0060558 E�L  = −0.0030872 E�L� = −0.0032879 E��� = −0.0145846 E!� = −0.0156674 E��� = −0.0079492 E��� = −0.0065575 E��� = −0.0145846 E��� = −0.0130577 E��� = −0.0079492 E��� = −0.0065490 E��  = −0.0343992 E��� = −0.1900569 E��� = −0.0701881 E��L = −0.0065490 E��� = −0.0343987 E��� = −0.190056 E��� = −0.0701881 E��� = −0.0065490 E��� = −0.0343992 E��� = −0.1900564 E��  = −0.0701836 E��� = −0.0013567 E��� = −0.0005378 E��L = −0.0046600 E��� = −0.0030321 E��� = −0.0013567 E��� = −0.0049867 E��� = −0.0046600 E��� = 0.04687816 E��� = 0.00385469 E��  = 0.00610555 E��� = 0.00566393 E��� = 0.04687813 E��L = 0.00385473 E��� = 0.00610555 E��� = 0.00566393 E��� = 0.0468781 E��� = 0.00385469 E��� = 0.00610555 E��� = 0.00624877 E��  = −0.0547324 E��� = −0.0472148 E��� = −0.0932275 E��L = −0.0924344 E��� = −0.0547324 E��� = −0.054748 E��� = −0.0932275   

Now we insert the values of E�  into the relation (9) to simulate the function��(, and we will show the result in the Figure 4. 
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Figure 4. Simulation of the function ��(. 

In the section 5 we have computed the values of E�  and E
, then in the final stage we are ready to determine the coefficients 

of energy conservation equation. We can apply the computed values of E�  and E
 to earn the linear system of equations in 64 

equations in 64 variables. After determining the relevant integrals in 24 tetrahedrons and summation we prepare the necessary 

coefficients as 

,=== � 10ℎ, 
,=,=oS;�n;o�U,= = 0, 
,=,=oS;�n;o�U,=oS;�n;o�U = 0, 
,=,=,=oS;�n;o�U = 253 ℎ, 
,=,=nS;�n;o�U,= = 0, 
,=,=nS;�n;o�U,=nS;�n;o�U = 0, 
,=,=,=nS;�n;o�U = 253 ℎ, 
¡� = − �̂f ℎ9, 

Also we compute the _=X� by applying the Mathematica codes, and at last we derive # as 

Table 4. Numerical values of #. 

#� = 267464.5078493500 #! = 248522.6313318577 #9 = 307632.2765236602 #v = 307560.1642197024 #¢ = 279837.7344858227 #� = 321624.6206048220 #£ = 427070.98850310955 #� = 196160.3580918937 #� = 3066.7775345885548 #�- = 186800.7827549864 #�� = 121034.4905810277 #�! = 196594.3191942781 #�9 = 2152.441237715346 #�v = 188106.5416768024 #�¢ = 121684.1356482915 #�� = 197507.5771545514 #�£ = −74.8655135629144 #�� = 191421.1027365251 #�� = 123429.0998086314 #!- = −13968.2246030608 #!� = −12457.9582485794 
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#!! � �16553.2395549419 #!9 = −15559.4804962354 #!v = −13416.8361963791 #!¢ = −14444.3019556148 #!� = −12094.5116324607 #!£ = 2288889.553754123 #!� = −19412.9119058730 #!� = −26223.6525347567 #9- = −16086.2781566500 #9� = 2294428.379661617 #9! = −19492.9492477656 #99 = −26169.6517726984 #9v = −16049.7064357589 #9¢ = 2306132.915719399 #9� = −19683.5593562787 #9£ = −26029.2197438298 #9� = −15944.7220984291 #9� = 171548.6330508735 #v- = 160669.1329869789 #v� = 196734.1927353769 #v! = 196477.2036791131 #v9 = 186387.4932733776 #vv = 220899.00388040626 #v¢ = 333148.2212944843 #v� = −178843.4387299384 #v£ = −198087.481717315 #v� = 85489.45076041944 #v� = 23049.55145269956 #v- = −179359.7530518020 #¢� = −200293.621391681 #¢! = 82636.400388273181 #¢9 = 20157.04122994467 #¢v = −180465.9496057742 #¢¢ = −205556.800967222 #¢� = 75306.140893004793 #¢£ = 12048.14127260225 #¢� = −31523.73111885111 #¢� = −31697.6883903928 #�- = −31297.29104957784 #�� = −30510.6513150699 #�! = −30577.26948649386 #�9 = −26586.2177068013 #�v = −19116.16815249271   

 

Figure 5. Simulation of the function #(. 

We enter the values of # into the relation (12) to simulate 

the function #(, and we will show the result in the Figure 5. 

Numerical solution of the transport phenomena and its 

mathematical simulation, where they have been gotten in the 

current work, are suitable tools to describe the environment 

of furnaces and fluid flow inside them. Also they help to 

designers to determine the optimal position of the electrical 

boosters. In particular designers analyze the mathematical 

simulation to decide about the optimized style of the 

furnaces, then we hope this work is useful for them. 

6. Summary and Conclusion 

In this work we performed the process to get the 

mathematical modeling of heat transfer in the Garnissage 

furnace in three dimension in the cylindrical coordinate 

system. The cylindrical coordinate system has chosen for the 

modeling process because of its symmetric advantages, then 

we applied the physical conservation laws, that is the mass, 

momentum, and energy conservation laws, to achieve the 

continuity, Navier-Stokes, and heat equation. To modeling 

the free boundary between the solid and liquid phase we used 

the three dimensional version of Stefan condition. 

When we derived the mathematical modeling of the 

transport phenomena immediately we started to rearrange the 

modeling to the weak formulation by handling the sufficient 

test functions. In this part we divided the domain by cubes 

and every cubic parts had 24 tetrahedrons. Then we defined 

the test functions on the tetrahedrons and we got the 

coefficients after solving the integrals on the mentioned 

tetrahedrons, and we completed the finite element technic by 

constructing the system of equations with 128 variables 

within 64 linear equations and 64 nonlinear equations. 

Newton’s method has been used to achieve the numerical 

solution of the system and we simulated the numerical 

solution of the heat transfer system where that was applicable 

for furnace designers. 
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Nomenclature 

�, >, ? cylindrical coordinates ��¤ , �
¤ 
approximate velocity components in cylindrical 

coordinate �� , �
 velocity components in cylindrical coordinate "( approximate pressure @ time # temperature �� , �
 gravity acceleration components h latent heat f specific heat capacity � dynamic viscosity ` thermal conductivity � density " pressure #( approximate temperature � heat source ,-� Sobolev space with compact support 
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