

Higher Education Research
2022; 7(5): 149-152

http://www.sciencepublishinggroup.com/j/her

doi: 10.11648/j.her.20220705.12

ISSN: 2578-9341 (Print); ISSN: 2578-935X (Online)

Exploration and Implementation of Teaching Reform for
Compiler Principle

Yanhua Wang
*
, Yue Feng, Chunhong Zhang, Ping Luo

College of Electronic Information Engineering, Langfang Normal University, Langfang, China

Email address:

*Corresponding author

To cite this article:
Yanhua Wang, Yue Feng, Chunhong Zhang, Ping Luo. Exploration and Implementation of Teaching Reform for Compiler Principle. Higher

Education Research. Vol. 7, No. 5, 2022, pp. 149-152. doi: 10.11648/j.her.20220705.12

Received: August 4, 2022; Accepted: September 9, 2022; Published: September 16, 2022

Abstract: The course of Compiler Principle is rich in theory which have strong logicality. It is an important professional

compulsory course for undergraduate students majoring in computer science. Its theory is difficult to understand. The design

and implementation of experiments need a certain basis of programing. For the study of theoretical concepts of the course, we

propose an inverse derivation method. In addition, aiming at the experimental section, we propose a progressive experimental

method to simplify the implementation of comprehensive experiments. Therefore, we construct a mutual feedback teaching

system of theory and experiment. With the help of the system, students can not only understand theory easier, but also

understand the causes of theory furtherly. Furthermore, the system can lead student to expand their thinking method. Through

the trial of the system for students majoring in computer science and technology (Grade 2018) of Langfang Normal University,

we found that the students' ability of understanding concepts have been improved to a great extent and their ability of logical

thinking have been deepened. With regard to the experimental aspect, their experimental ability have been further improved,

and the ability of transformation from theoretical problems to practical applications have been strengthened, which achieved a

certain better effect of teaching.

Keywords: Compiler Principle, Teaching Reform, Experiment Reform

1. Introduction

Compiler principle is a compulsory course for majors of

computer [1, 2]. It plays an important role in undergraduate

teaching [3, 4]. It is a key part of the whole theoretical system. It

is indispensable for computer advanced language design system

[5]. The course systematically plans the basic principles and the

development and implement method of compile program. It

mainly includes grammar, lexical analysis, syntax analysis,

attribute grammar, semantic analysis, intermediate code

generation, symbol table, runtime storage management, code

optimization, and object code generation [6]. The course

requires students to master the compilation process of advanced

language programing, understand and analyze the principles of

each stage of compilation in middle layers.

However, the Compiler Principle course is highly

theoretical [7]. Its theoretical system is complex, logical and

practical, and the theories and practise are closely combined

[8-11]. There are common problems on difficult theoretical

understanding and difficult practise [12, 13]. It includes a

variety of theoretical and abstract concepts and formal

descriptions. This requires students to be familiar with formal

language and its description method for general problems. Its

experiments require design and implementation of algorithms

based on understanding basic concepts. During the process of

experiments, the construction and verification of basic

principles have certain requirements for advanced language

programming and implementation.

2. Teaching Reform

2.1. Reform Contents

By concluding the overall framework of the course and

analyzing the current situation of teaching and learning,

aiming at the typical problems of undergraduate students

during their learning process, we try to make some reform.

150 Yanhua Wang et al.: Exploration and Implementation of Teaching Reform for Compiler Principle

2.1.1. Theoretical Teaching Methods

The course contains definitions and theorems which are

involved in grammar, lexical analysis, grammatical analysis,

attribute grammar, semantic analysis and so on. We explore

new teaching methods, combine reflective methods, and

make extensive analysis on these theories.

2.1.2. Experimental Teaching Contents and Methods

On the basis of understanding theory, the design and

development of diversified experiments with different

degrees of difficulty are carried out. Design and realize the

connection of all experiments. Combine the experimental

contents with the compiling process of the advanced

language programming flexibly.

2.2. The Proposed Teaching System

We propose an inverse derivation method for teaching and

learning of theory. Aiming at the experimental teaching, the

progressive experimental teaching method is proposed. By

the methods, a complete mutual feedback teaching system of

theory and experiment is formed.

2.2.1. Theory Teaching

Definition 1 (The Inverse Derivation Method) With

understanding the meaning of theory, start from its results,

make derivation in a bottom-up manner. At last, the basic

conditions are derived.

We try to understand the concept of SELECT set by

Definition 1.

For a Production A→α (AϵVN, αϵV*), its SELECT set

SELECT (A→α) indicates the next symbols that it can use.

The symbols that the production can produce is determined by

its right part α. For ∀α, if the symbol set can deduce is M

(M={β| α
∗

⇒βγ, βϵVT, γϵV*}), then the next symbol that can be

used by A→α must be β. Thus, βϵSELECT (A→α). Because β

is the first symbol of the symbol string that can be derived

from α, that’s First (α)=M. So, SELECT (A→α)= First (α).

Specially, if α
∗

⇒ε (the derivation length is n) and α ^
∗

⇒ε (the

derivation length is m, m<n, ^
∗

⇒means not
∗

⇒), the next symbol

that A→α can use includes the result of the previous step, First

(α). If First (α)=ε when the derivation length is n, and S
∗

⇒...Ab...,

bϵVT or S
∗

⇒...A# is satisfied, here A→α will not use ε, but use

the following symbol of A. That’s b or #. Because FOLLOW

(A)={b| #}, so SELECT (A→α)={First (α)-ε}∪ FOLLOW (A).

In addition, for the problem of concept understanding,

grammar is described by formal language, which increases

difficulties to understanding. And definitions may have strong

cohesion. The incomprehensible understanding of the previous

theory directly leads to the incomprehension of the following

concepts. That is because many definitions have previous

definitions, which are described by example in Table 1.

Table 1. Definitions relation.

Concepts (name/definition) Previous Concepts (name)

Language (the language is the collection of all sentences of a grammar) Sentence

Sentence (if a sentence pattern x is only composed of terminators, then x is a sentence) Sentence pattern

Sentence pattern (if a symbol string x is derived from the identifier S, then x is a sentence pattern) Derivation. Closure. +Closure

Derivation (n direct derivation sequence constitutes a derivation) Direct derivation. Grammar

For others like concepts in Table 1, we should lay a solid

foundation through the consolidation of the previous concepts.

2.2.2. Experiments

We make reform for experiment on 4 aspects to ensure the

completion rate and degree.

(i). Diversified Forms

Design various forms, including algorithm verification,

module design development, and comprehensive design.

(ii). Import Tools

We will import some sophisticated tools such as Lex and

Yacc [14]. Lex is used for lexical analysis, and the self-help

construction tool. Yacc is used to make grammatical analysis

and semantic analysis.

(iii). Experiments Cohesion

Each experiment has strong independence, which can form

its own module. Guide students to connect subsequent

experiments. Finally, a simple compiler is constructed.

(iv). Combined with Advanced Language Programming

Through the compiling results of compilers such as GCC,

combined with the functions realized in each stage of compiling,

thoroughly understand the principle and application of compile

system.

We also propose a progressive experiment method, and

carry out the total-fraction design and implementation for

comprehensive experiments.

Definition 2 (Progressive Experimental Method) Design the

overall framework, and carry out the experiment from the

local to the overall and from easy to hard.

Table 2. Predictive analysis table constructing algorithm.

input: grammar G = (VN, VT, P, S), SELECT (P)

output: predictive analysis table M

if G belongs to LL (1) grammar
Define M[m,n], where as m=|VN|, n=|VT |+1 (including ‘#’)

Initialize, M[0, i]=VT [i], M[i, 0]=VN[i]

foreach aϵVT

if aϵSELECT (A→α)
M[A, a]=A→α

foreach M[i, j], among which iϵ [0, m-1], jϵ [0,n-1]
if M[i, j] is Null

M[i, j]=error

We take table driven LL (1) analysis for example. Build the

overall framework, construct predictive analysis table, design

analysis algorithm based on the table, and make syntax

analysis. Progressive experimental method is used to ensure

 Higher Education Research 2022; 7(5): 149-152 151

the difficulty and logic are progressive. Firstly, we design an

algorithm for constructing a predictive analysis table.

Then, design and understand the syntax analysis algorithm

based on the predictive analysis table, which is shown in

Table 3. Finally, verify the whole algorithm.

Table 3. LL (1) analysis algorithm.

Input: Symbol string χ, predictive analysis table M

Output: Process of grammar analysis

Define stack Z=Null
push (#), push (S),

Initialize, i=0, a=χ[i++]

while i<χ. length
γ= pop (Z)

if γϵVT

if γ==a

a=χ[i++]

else error
else if γ==‘#’

if γ==a break
else error

else if M[γ,a] == {γ→γ1γ2…γk})

push (γk), push (γk-1),…,push (γ1)
else error

Moreover, experiment is the realization and understanding

of theory. Experimental verification can make feedback to

theory which can be understood better.

In addition, we guide students to think divergently, and to

spread theories to the relevant fields, including the research

of other theories, as well as the exploration and combination

of theories in other application fields [15]. During the study,

keep on exploring ideas and breaking thinking stereotypes,

changing the inherent thinking manner and form an open and

innovative research-based thinking manner gradually.

3. Effects

In view of the problems encountered in teaching, with

analyzing the characteristics of students, the teaching reform

method proposed have been used for majors of computer

science and technology (Grade 2018) in our school. A

preliminary result has been achieved compared with Grade

2017 who did not use this method.

Figure 1. Teaching effects comparison.

It can be seen from Figure 1 that the teaching reform

method proposed in this paper has achieved a certain effect. In

the case of proposition types and difficulty are consistent, the

pass rate of Grade 2018 reached 100%, indicating that this

method is generally applicable to most students. In terms of

score distribution, the excellence rate is significantly higher

than that of 2017. The method has a certain effect in raising

the grade. In terms of usual teaching feedback, more students

participated in questioning and discussion, and the

questioning rate increased by 27.26%, which stimulated

students' interest in learning. In terms of experiment

implementation, the completion of algorithm verification

experiments such as lexical analysis experiments has reached

100%, but there are still a few students who cannot complete

design experiments independently, who need to further

improve the ability of advanced language programming.

4. Conclusion and Future Works

The theoretical system of Compiler Principle course is

complex. It includes a variety of theoretical and abstract

concepts, formal descriptions and complex experiments. By

Pass Rate Excellence Rate Experiment Completion Rate(avg.) Questioning Rate (avg.)
0

10

20

30

40

50

60

70

80

90

100

Comparison between 2 Grades

(%
)

Grade 2017

Grade 2019

152 Yanhua Wang et al.: Exploration and Implementation of Teaching Reform for Compiler Principle

studying its overall theoretical composition and analyzing the

current teaching situation, aiming at the typical problems in

the learning process, we proposed a mutual feedback

teaching system of theory and experiment, which provided

advanced methods and technologies for principle

understanding, analysis, refinement, experimental design and

implementation. This system can promote students' logical

thinking ability. It plays a significant role in cultivating

students' abilities of basic design and algorithm analysis and

technical implementation and program optimizing.

Although the teaching system has been proved to be

effective, our work still has some shortage which we hope to

solve in the future. The teaching system practice is done only

for 1 grade and 1 major. To make it widely used in other

grades, other majors, or similar courses such as Data

Structure and Operating System, we will make more

practices for the proposed mutual feedback teaching system.

By analyzing the results of examinations, experiments,

learning interactions and so on, we would adjust the teaching

methods accordingly. Therefore, the teaching system will be

stronger and more effective.

Acknowledgements

This work was supported by Langfang Normal University

Education and Teaching Reform Project“Research and

Practice on the Reform of the Teaching system of Compiler

Principle” (No. K2020-38), Langfang Science and

Technology Research and Development Plan Project (No.

2021011062) and Langfang Normal University Basic

Education Key Project “Application and research of maker

education in primary and middle school education and

teaching” (No. JCJY202209).

References

[1] G. Qiuyan, “Discussion of Teaching Reform on Compiler
Principle Course,” Popular Science & Technology, vol. 158, pp.
174–176.

[2] Y. Jun, “Application of level-division Teaching Thoughts on
the Compiling Priciples,” Agriculture network information, vol.
10, pp. 105–108.

[3] H. xi, C. Jia and N. Jian, “Exploration on the Reform of
Teaching "Compile Theory,” Journal of Wuzhou University,
vol. 31, pp. 85-89.

[4] S. Rui and Z. Xuejun, “Thoughts on the teaching of the course
"principles of compilation, "Scientific and technological
horizon, vol. 4, pp. 135-135, 162.

[5] Z. Jing, W. Yu and L. Haiyan, “Discussion on the Construction
and Reform of Experimental Teaching in Compiler Principle,”
Agriculture network information, vol. 3, pp. 133–135.

[6] W. Shengyuan, D. Yuan and Z. Suqin, Compiler Principle, 3rd
ed., Beijing: Tsinghua University, 2015, pp. 2.

[7] S. Bing, Y. Haiyan and Z. Li, “Teaching reform and practice of
compiling principle course,” Computer education, vol. 2, pp.
73-76.

[8] S. Zhongmei, L. Wenjun and Z. Xiaocong, “Practice and
Experience of Teaching Reform for Compiler Principle,”
ACTA SCIENTIARUM NATURALIUM UNIVERSITATIS
SUNYATSENI, vol. S2, pp. 101-104.

[9] Z. Dongmo and F. Xiwen, “Teaching Practive and Reform of
Principles of Compilers Course Design,” Research and
exploration in laboratory, vol. 31, pp. 134-137.

[10] H. Li and W. Zhiguo, “Practice of teaching reform in the course
of "compilation principle," [J]. China Electric Power Education,
vol. 2, pp. 66-67.

[11] W. Tiefeng and Z. Zhichao, “Application of goal
decomposition and task driven teaching method in the teaching
of Compilation Principle,” Pioneering with Science &
Technology Monthly, vol. 012, pp. 85-86.

[12] Z. Ruyan, H. Yanling and Z. Minghua, “Research on teaching
methods of computer major courses based on ability training --
Taking classroom teaching and experimental teaching of
"compilation principle" as an example,” Industry and
Information Technology Education, vol. 11, pp. 52-57.

[13] R. Xiaoqiang, W. Xuemei and T. Xiaohua, “Design and
practice of teaching demonstration module of compilation
principle based on Python,” Industrial Control Computer, vol.
9, pp. 72-73.

[14] Z. Taisheng and L. Junjie, "Discussion on the teaching reform
of compiling principles,” Journal of Chifeng University
(Nature Science Edition), vol. 9, pp. 223-224.

[15] Z. Huiping, W. Ting and L. Mengjun, “On the orientation of
compiling principle course reflection,”Computer Education,
vol. 11, pp. 45-47.

