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Abstract: In a soudano-guinean climate context, the Ouémé River Basin is simulated using the semi-distributed hydrological 

model SWAT to understand the rainfall-runoff process on this basin and also to assess this model performance on West Africa 

large areas basins at daily and monthly time steps. The inputs data consist of climatic data and rain gauge discharge records. The 

inputs records are long-term times series for the period 1979-2010, while the considered land use is just for the year 2003. After 

calibration and validation of the model, spatial calibration is also performed to appreciate this other feature of the model. It gives 

such acceptable and disputable results. Six (06) hypotheses have been emitted to analyze this performance loss. It comes out that 

hypothesis H5 results perform better both in calibration and validation. This hypothesis used data for the period 1993-2010 with 

1993-2004 for calibration and 2005-2010 for validation; and considered the missing data in discharge records without any 

completion. Considering the internal rain gauge outlet performance for this hypothesis, the best is retained and the corresponded 

project is realized for each individual subbasin to see how best the model could simulate discharge for the Bétérou, Kaboua and 

Atchérigbé individual subbasins. Hypothesis H1; an assumption which considers missing discharge with data time period of 

1982-2010 with 1982-1996 for calibration and 1997-2010 for validation; is the best for Bétérou and Kaboua, whereas H5 is better 

for Atchérigbé subbasin. Uncertainty analysis and Global Sensitivity Analysis were performed to appreciate what are this 

process occurring in the basin and how these results could be validated. A last comparison effort is performed with 10km rainfall 

grid for climatic rainfall data at the global catchment outlet; this approach does not improve results, while at internal outlet some 

improvements are observed. 
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1. Introduction 

World is nowadays affected by climate unmastered laws. 

This situation leads to serious modification of human beings. 

According to climate drought of 70’s and the flood occurring 

in the second normalized regime, a lot of researchers have 

started work on understanding the phenomen of rainfall runoff 

by setting up some distributed, global, conceptual or physic 

based models which describes and estimated the different 

water cycle on a basin. 

According to Mazet [1], floods are a disaster which is the 

most widespread and spares no part of the planet. During the 
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past decade, several countries have been severely affected in 

Asia (China, Bangladesh and Vietnam in 2002 for example), 

Europe (France, Germany, Hungary and the Czech Republic 

in 2000) and elsewhere in the world (Venezuela in 1999, 

Canada, 1996, United States, 2005, etc.). It is the most 

frequent natural hazard arising from meteorological 

conditions and affecting the greatest number of people on the 

planet [2]. From this point of view, these authors estimated 

that floods account for more than a third of all cataclysms 

recorded at the end of the 20th century. Floods permit to 

account for the occurrence duration of exceptional climatic 

events [3]. They arise every year to complicate our urban 

populations’ existence than the rural one [4]. Their 

uncontrolled feature increases the populations’ vulnerability, 

especially the poorest ones. Indeed, these Floods sweep away 

agricultural crops, fields, houses, and socio-economic 

infrastructure, making thus many climate refugees. 

In sub-Saharan Africa, it is checked and admitted that many 

more populated town (Lagos, Douala, Lome, Abidjan, 

Cotonou, Freetown, etc.) are often and increasingly suffer 

from floods. In 2010, several towns in Benin, including the 

city of Cotonou, were affected by floods that induced 680,000 

disaster victims and caused 15,000 homeless. Forty-six (46) 

people were dead and the needs to face the damages were 

estimated at over US $ 46,847,399 [5]. 

For controlling the flood problem, the rainfall-runoff 

process needs to be more understood. Many researchers in the 

world have already thought about this situation by realizing 

models for control the water cycle components. This one leads 

to another important topic that many researchers focus 

nowadays. It is related to better understanding the water cycle 

for estimating the fresh water availability. Rapid, and often, 

unpredictable changes with regard to freshwater supplies 

create uncertainties for water managers. As meeting future 

water demands becomes more uncertain, and water scarcity is 

continuously increasing [6], societies become more vulnerable 

to a wide range of risks associated with inadequate water 

supply in quantity and/or quality [7]. Benin also, like all the 

other West African countries, have faced severe droughts 

period in the 70’s and its hydrologic cycle have changed. 

These changes have affected the water resources of West 

African watersheds [8-10]). Therefore, in the context of 

sustainable development, it is important to understand the 

dynamics of water exchanges within the whole biophysical 

and socio-economic systems. This reinforces the need for 

hydrological modeling of our basins. Hydrological models are 

important tools for planning sustainable use of water resources 

to meet various demands. 

To account for all of these, hydrological models need data 

records in time and space for the investigated basin. Due to 

limited data availability, Water resources managers are facing 

challenges in many river basins across the world. This 

situation is more pronounced in developing countries, where 

in many river basins, any runoff data are available [11-15] and 

the existing ones are of questionable quality or, short time 

series or incomplete. This general situation is amplified by the 

non-maintenance of the existing network stations, the 

deterioration of some and the theft of equipment. According to 

this issue of missing rainfall data and may be in addiction 

missing river discharge data, hydrological modelling of small 

scale basin become difficult. Nowadays, there is a new 

research thematic, which consist of modelling a large scale 

basin and others small scale in order to find the relationship 

between hydrological modelling of any small scale located in 

the large one based on the parameters set ranges of the model. 

In the fifth assessment report on regional aspects of climate 

change, the Inter-Governmental Panel on Climate Change [16] 

has shown that adaptation to climate change in Africa is 

confronted with a number of challenges among which there is 

a significant data gap. Too many basins lack reliable data 

necessary to assess, in details, impacts of climate change on 

different components of the hydrological cycle and to develop 

strategies of adaptation related to each specific impact. Thus, 

it is important to predict hydrological variables in ungauged 

basins for building high adaptive capacity by improving: (i) 

water resources knowledge, planning, and management; (ii) 

identification and implementation of strategies of adaptation 

to climate change in the sector of water, and (iii) ecological 

studies for a sustainable development. 

For this study purpose, the distributed watershed model 

‘‘Soil and Water Assessment Tool’’ (SWAT) [17] was selected. 

The SWAT (Soil and Water Assessment Tool) model is a 

continuous-time, semi-distributed, process-based river basin 

model. It was developed to evaluate the effects of alternative 

management decisions on water resources and 

nonpoint-source pollution in large river basins [18]. The 

development of SWAT is a continuation of USDA Agricultural 

Research Service (ARS) modelling experience that spans a 

period of over 30 years [19, 20]. The current SWAT model 

version used in this study is the 2012’s and the database update 

released of January, 2017. The model is already used in the 

‘‘Hydrologic Unit Model for the United States’’ (HUMUS) 

[21, 22], where the entire US was simulated with good results 

for river discharges at around 6000 gauging stations. This 

study is now extended within the national assessment of the 

USDA Conservation Effects Assessment Project. Gosain 

modeled twelve large river catchments in India with the 

purpose of quantifying the climate change impact on 

hydrology [23]. Schuol simulated hydrology of the entire 

Africa with SWAT in a single project and calculated water 

resources at a subbasin spatial resolution and monthly time 

intervals [24]. Faramarzi simulated hydrology and crop yield 

for Iran with SWAT [25]. In a subsequent work, Faramarzi 

used the African model to study the impact of climate change 

in Africa [26]. More closely, many studies have successfully 

applied the SWAT model in West Africa, on different river 

basins. For instance, Schuol and Abbaspour [27] and Schuol et 

al. [24] applied the SWAT model to selected watersheds in 

West Africa including three largest basins. It consists of those 

of the rivers Niger (2.2 million km2 including the arid 

sections), Volta (0.4 million km2), and Senegal (0.4 million 

km2). They modeled monthly values of river discharges (blue 

water) as well as the soil water (green water), and clearly 

showed the uncertainty of the model results. We can also quote 
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others examples of SWAT model calibration on the Niger 

River basin [24, 27-30], the Volta basin [24, 27, 29-33] and the 

Oueme catchment in Benin [30, 34-36]. 

Many scientific worked in modelling the water balance 

cycle components in our basin to account for fresh water 

sustainability, showed SWAT performance for simulating 

discharge at Bonou Outlet subbasin (Atchérigbé, Savè, 

Kaboua, Beterou and Upper Oueme catchment) [34-45]. They 

worked on short data time period and sometimes 

non-continuous. Just one of them modeled the large area at 

Bonou outlet [45]. The works address the chemical dimension 

of soil degradation, notably the soil organic N and P loads and 

delivered together with sediment at catchment outlet. Organic 

N and P loads highly depend on landscape heterogeneity and 

spatial patterns of hydrological processes which are well 

known to smooth out with increasing catchment size resulting 

in more uncertain model parameters (without physical 

meaning) and more uncertain impact calculations at large 

scale, but almost none of the available impact studies have 

addressed this scaling problem, what is offered in its study. 

But the scale effect according to model performance for 

discharge using the same land use map was not considered. 

This scaling effect of modelling is important according to 

model a sub catchment without discharge data for predictions. 

Also the previous studies on the Ouémé River catchment used 

Impetus database for land use and most of them used gridded 

CRU data for rainfall. The rainfall gauged network is very 

rarely used due to missing values and the rain gauges spatial 

density. In this study, a network of 35 stations is considered, 

where 24 stations data have less than 15% missing values, the 

other ones data records were completed using the regional 

vector method. According to previous studies, where 

generally the uncertainties indicators values weren’t 

mentioned, they have been brought and the method for 

calibration have been revised to take into account all the large 

literature on the modeling with SWAT across the world. 

This study is focused on SWAT performance for Ouémé 

basin at the outlet of Bonou, the spatial validation and the 

prediction and uncertainties. The time series considered were 

long terms time series according to the first SWAT 

applications in United States and in opposition to the recent 

daily realized on this basin. More precisely, the objective of 

this study was to assess the performance of the SWAT model 

and its predictive uncertainty on the Ouémé basin at 

catchment and sub catchment levels. It means specifically to: 

(i) set up a hydrological model for the entire Ouémé catchment 

using the SWAT program; (ii) calibrate the model at the 

catchment outlet at daily and monthly time steps and assess 

the predictive performance and uncertainty; (iii) evaluate the 

spatial performance of the watershed-wide model within the 

catchment by validating it at five internal stations; and (iv) 

calibrate the model at the sub-catchments separately and 

provide a comparative assessment of the model performance 

at different spatial scales; (v) make assumptions on the data 

records time series to get the best performance according to 

the available input data. 

The choice of parameters, their ranges, and the inputs files 

chosen for setting up the models, the spatial validation, which 

account for scale and the model prediction and uncertainties, 

were all discussed to provide a solid tool to help for using 

SWAT in the catchment for future works. 

Bossa et al. [46] used scale dependent catchment properties 

to derive SWAT model parameters (for ungauged basins) 

using uncertainty thresholds and statistical approaches. They 

stated that for environmental modeling it is important to know 

(1) how knowledge of different small-scale processes may 

efficiently contribute to the simulation of large-scale behavior 

and (2) how and with which uncertainties model parameters 

are transferable to ungauged catchments. Therefore, the 

present study will assess the SWAT performance for the large 

basin by making some assumptions. It will also analyze how 

this large scale effect could influence the performance of small 

scale effect and vis-versa. 

2. Materials and Methods 

2.1. The Study Area 

The Ouémé River basin at Bonou is located in the 

inter-tropical zone (between 07°58ʹN and 0°12ʹN), and has a 

wet and dry tropical climate. It covers an area of 46,920 km2 at 

the hydrometric station of Bonou. It stretches over 523 km [9, 

47]. The aridity degree increases from south to north, and to a 

lesser extent, from west to east; according to the distance 

between the Atlantic Ocean and the latitude [48]. 

Mainly characterized by a Precambrian basement, 

consisting predominantly of complex migmatites granulites 

and gneisses, its soil is composed of fersialitic soils 

(ferruginous tropical soils) which are predominant, 

characterized by clay translocation and iron segregation 

(ferruginous tropical soils with iron segregation), which lead 

to a clear horizon differentiation [49]. A local scale description 

has shown a typical catena with lixisols/acrisols on the upper 

and middle slopes, following by plinthosols on the 

downslopes, gleysols in the inland valleys and fluvisols on the 

fluvial plain [50]. The landscape is characterized by forest 

islands, gallery forest, savannah, woodlands and agriculture, 

as well as pasture land. 

The rainfall regime is mainly controlled by the atmospheric 

circulation of two air masses and their seasonal movements 

(the harmattan and monsoon) and it is characterized by three 

types of climate: first, the unimodal rainfall regime in North 

Ouémé comprising two seasons, i.e., the rainy season from 

May to October, and the dry and hot season; second, the 

bimodal rainfall regime in South Ouémé comprising two rainy 

seasons, i.e., a long rainy season between March and July and 

a short rainy season between September and mid-November, 

and a long dry season between November and March; and 

third, the transitional rainfall regime in Central Ouémé 

comprising a rainy season between March and October, with 

or without a short dry season in August [47]. The rain usually 

originates from the Guinean Coast. The annual rainfall 

average for the series over the period 1950 – 2014 is around 

1211.74 mm at Bonou station, 1103.28 mm at Savè station and 
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1318.05 mm at Beterou station. Thus, the rainfall decreases 

middle ward and increases following an eastern south – 

western north gradient. The Ouémé River flows southward, 

and it is joined by two most important tributaries, Zou (150 

Km) on the right bank and Okpara (200 km) on the left (Figure 

1). Rainfall-runoff variability is high in this basin and leads to 

runoff coefficients that vary from 0.10 to 0.26 (of the total 

annual rainfall), with the lowest values in the savannahs and 

forest landscapes [44]. 

 

Figure 1. Location of the Ouémé River catchment at the Bonou outlet. 

2.2. Input Data and Databases 

A combination of spatial and non-spatial input data from a 

variety of sources was used to set up the model. The spatial 

input data are described in Table 1. A 30 m DEM was obtained 

from the National Aeronautics and Space Administration 

(NASA) ASTER Global Digital Elevation Map to generate 

stream networks and watershed configurations, and to 

estimate topographic parameters. Three types of land 

use/Land cover were freely obtained on the waterbase 

mapwindow site and from usgs site. Two soil type maps were 

obtained; the first from the waterbase site and the second one 

from the Harmonized World Soil Database (HWSD) of FAO. 

Daily precipitation data from 25 rain gauges, as well as daily 

maximum and minimum temperature from four weather 

stations located mainly on the catchment were used as input. 

The location and spatial distribution of input precipitation and 

temperature stations are represented in Figure 1. 

Rainfall and temperatures data were obtained from Benin 

National Meteorological Agency (Meteo Benin). Missing 

rainfall data were completed using multi regression technic on 

the close stations data. 

The daily discharge data were provided by the National 

Water Directorate (Direction Générale de l’Eau, DGEau). 

Twenty river gauges are available from the national 

observatory network in the Ouémé catchment (including the 

French Institute for Research and Development (IRD) river 

gauges). Discharge data for the period 1979–2010 are used for 

five stations (i.e. Atcherigbé, Bétérou, Bonou, Kaboua and 

Savè), whereas the time series for the period over 1986 – 2010 

are used for Ahlan station. 

Wind velocity, solar radiation and relative humidity data 

were also used to set up the physical model of the area, with 

the help of the Global Weather database, freely obtained from 

the National Centers for Environmental Prediction (NCEP) 

site. Climate Forecast System Reanalysis (CFSR) was 5km x 

5km gridded daily completed over 36-year’s period of 1979 

through 2014. Thus, a common period of observation from 

1979 to 2010 was first determined. Missing values were filled 

by the weather generator during the running time. For this 
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purpose, the excel macro WGNmaker was used to calculate 

weather stations statistics needed to generate representative 

daily climatic data. 

Table 1. Input data of the SWAT model for the Oueme river catchment. 

Data Type Description Resolution/Period Source 

Topography 
ASTER digital elevation 

model (DEM) 
30 m 

NASA USGS Hydrosheds. Available online: 

http://hydrosheds.cr.usgs.gov/dataavail.php 

Land use/ Land 

cover 

GLCC version 2 1 km/ 2003 Waterbase. Available online: http://www.waterbase.org/resources.html 

GLCC version 2 1 km/ 2000 Waterbase. Available online: http://www.waterbase.org/resources.html 

Global Landuse/Land Cover 

Characterization USGS 
1 km http://landcover.usgs.gov/landcoverdata.php#africa 

Soil FAO Soil Map 5 km 
FAO. Available online: 

http://www.fao.org/geonetwork/srv/en/main.home 

 
GLCC version 2 1km Waterbase. Available online: http://www.waterbase.org/resources.html 

Weather data 
Rainfall, maximum and 

minimum temperature 
Daily (1979-2010) Meteo Benin 

Discharge Discharge Daily (1979-2010) DGEau 

 

2.3. Model Description 

The SWAT program is a comprehensive, semi-distributed, 

continuous-time, watershed processed-based model [18, 19, 

51]. It is developed for assessing the impact of management 

and climate on water supplies, sediment, and agricultural 

chemical yields in watersheds and larger river basins. The 

hydrological component of SWAT allows explicit calculation 

of different water balance components, and subsequently 

water resources (e.g., blue and green waters) at a sub basin 

level. In SWAT, a watershed is divided into multiple sub 

basins, which are then further subdivided into hydrologic 

response units (HRUs) that consist of unique land use, 

management, topographical, and soil characteristics. Physical 

characteristics, such as slope, reach dimensions, and climatic 

data are considered for each sub basin. Simulation of 

watershed hydrology is done in the land phase, which controls 

the amount of water, sediment, nutrient, and pesticide loadings 

to the main channel in each sub basin, and in the routing phase, 

which is the movement of water, sediments, etc., through the 

streams of the sub basins to the outlets. Channel routing is 

simulated using the variable storage or Muskingum method. 

The hydrological cycle is climate driven and provides 

moisture and energy inputs, such as daily precipitation, 

maximum/minimum air temperature, solar radiation, wind 

speed, and relative humidity that control the water balance. 

SWAT uses the data from the station nearest to the centroid of 

each sub basin. Hydrologic processes simulated by SWAT 

include canopy storage, surface runoff, infiltration and 

percolation. Optionally, pumping, pond storages, and 

reservoir operations could also be considered. The water 

balance for reservoirs includes inflow, outflow, rainfall on the 

surface, evaporation, seepage from the reservoir bottom, and 

diversions. The water in each HRU in SWAT is stored in four 

storage volumes: snow, soil profile (0 –2 m), shallow aquifer 

(typically 2–20 m), and deep aquifer. 

Surface runoff from daily rainfall is estimated using a 

modified SCS curve number method, which estimates the 

amount of runoff based on local land use, soil type, and 

antecedent moisture condition. Peak runoff predictions are 

based on a modification of the Rational Formula [52]. The 

watershed concentration time is estimated using Manning’s 

formula, considering both overland and channel flow. Snow is 

computed when temperatures are below freezing, and soil 

temperature is computed because it impacts water movement 

and the decay rate of residue in the soil. 

The soil profile is subdivided into multiple layers that 

support soil water processes including infiltration, evaporation, 

plant uptake, lateral flow, and percolation to lower layers. The 

soil percolation component of SWAT uses a water storage 

capacity technique to predict flow through each soil layer in 

the root zone. Downward flow occurs when field capacity of a 

soil layer is exceeded and the layer below is not saturated. 

Percolation from the bottom of the soil profile recharges the 

shallow aquifer. Daily average soil temperature is simulated as 

a function of the maximum and minimum air temperature. If 

the temperature in a particular layer reaches less than or equal 

0°C, no percolation is allowed from that layer. Lateral 

sub-surface flow in the soil profile is calculated 

simultaneously with percolation. Groundwater flow 

contribution to total stream flow is simulated by routing a 

shallow aquifer storage component to the stream [53]. A 

provision for estimating runoff from frozen soil is also 

included. Snow melts on days when the maximum 

temperature exceeds a prescribed value. Melted snow is 

treated the same as rainfall for estimating runoff and 

percolation. The model computes evaporation from soils and 

plants separately. Potential evapotranspiration can be 

computed with the Penman–Monteith method [54], Priestley–

Taylor [55], or Hargreaves methods [56], depending on data 

availability. Potential soil water evaporation is estimated as a 

function of potential ET and leaf area index (area of plant 

leaves relative to the soil surface area). Actual soil evaporation 

is estimated by using exponential functions of soil depth and 

water content. Plant water evaporation is simulated as a linear 

function of potential ET, leaf area index, and root depth, and 

can be limited by soil water content. SWAT uses a single plant 

growth model to simulate growth and yield of all types of land 

covers and differentiates between annual and perennial plants. 

The plant growth model is used to assess removal of water and 

nutrients from the root zone, transpiration, and biomass/yield 

production. SWAT uses the Modified Universal Soil Loss 
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Equation (MUSLE) [57] to predict sediment yield from the 

landscape. In addition, SWAT models the movement and 

transformation of several forms of nitrogen and phosphorus, 

pesticides, and sediment in the watershed. SWAT allows the 

user to define management practices taking place in every 

HRU. Once the loadings of water, sediment, nutrients, and 

pesticides from the land phase to the main channel have been 

determined, the loads are routed through the streams and 

reservoirs within the watershed. More details on the SWAT 

can be found in the theoretical documentation 

(http://swatmodel.tamu.edu) and in [17]. 

2.4. Model Setup 

The catchment was delineated and divided into 

sub-catchments based on the DEM. A stream network was 

superimposed on the DEM in order to accurately delineate the 

location of the streams. The threshold drainage area was kept 

as default and additional outlets were considered at the 

location of stream gauging stations to enable comparison of 

measured discharge with SWAT results. 

After combinations of the different land use/ land cover and 

soil type maps for the physical model setting and our 

SWAT2012.mdb database continuous modification to 

consider all classes of land use and soil, the retained final 

model is the one with the larger Nash Sutcliffe value at the 

first iteration. A Nash-Sutcliffe Efficiency (NSE) [58] was 

then calculated at Bonou catchment by comparing measured 

discharges against each default simulation and the one which 

will yield the highest NSE value will be kept for calibration 

and validation processes. This iteration was realized with no 

parameter value modification, just by considering the default 

value of the database. According to this methodology of 

processing, the combination of landuse map 2003 of 

waterbase.org and the FAO soil map got the larger NSE value: 

-2.32. 

The whole catchment was discretized into 31 

sub-catchments, which were further subdivided into 272 

HRUs based on soil, land use, and slope combinations 

according to [59] and first iteration of 500 simulations results 

comparison using different land use soil type and slope 

thresholds. It is finally retained respectively the 5%, 5%, 2% 

thresholds for land use, soil type and slope respectively in the 

HRU creating step. Further parameters have been edited 

through the general watershed parameters and SWAT 

simulation menus. 

The entire simulation period is from 1979 to 2010. As each 

station has data for different years, it is used about first half of 

the data for calibration and the second remaining for 

validation. The three first years are used for warm-up period to 

mitigate the initial conditions and were excluded from the 

analysis. 

2.5. Calibration and Validation 

2.5.1. Calibration Protocol for Large-Scale Distributed 

Models 

To calibrate the model, we used the following general 

approach: 

1. Build the model with ArcSWAT using the best parameter 

estimates based on the available data, literature, and 

analyst’s expertise. There is always more than one data 

set (e.g., soil, land use, climate, etc.) available for a 

region. For Bonou, three different land use maps, two 

different soil maps were available (Table 1). Hence, 

initially several models were built and ran without any 

calibration (referred as the default model) with different 

databases. The model results were compared with 

observations (here discharge) and the best overall 

performing database was selected for further analysis. It 

should be noted that the performance of the default 

model should not be too drastically different from the 

measurement. If so, often calibration can be of little help. 

2. Use the best default model to calibrate. Based on the 

performance of the default model at each outlet station, 

relevant parameters in the upstream sub basins are 

parameterized using the guidelines summarized in [60]. 

This procedure results in regionalization of the 

parameters. 

3. Based on parameters identified in step 2 and 

one-at-a-time sensitivity analysis, initial ranges are 

assigned to parameters of significance. Experience and 

hydrological knowledge of the analyst is also of great 

asset in defining parameter ranges. In addition to the 

initial ranges, user-defined absolute parameter ranges are 

also defined for every SWAT parameter in SWAT-CUP 

[61], where parameters are not allowed to be outside of 

this range. 

4. Once the model is parameterized and the ranges are 

assigned, the model is run 300–1000 times, depending 

on the number of parameters, the processing algorithm 

used, the speed of the model execution and the system 

capabilities. 

5. After all simulations are completed; the post processing 

option in SWAT-CUP calculates the objective function 

and the 95PPU for all observed variables in the objective 

function. New parameter ranges are suggested by the 

program for a new iteration, which modifies the previous 

ranges focusing on the best parameter set of the current 

iteration [62, 63]. 

6. The suggested new parameter ranges could be modified 

by the user to stay in the Absolute parameters range and 

one-at-a-time sensitivity analysis again. A new iteration 

is then performed. The procedure continues until 

satisfactory results are reached (in terms of the P-factor 

and R-factor) or no further improvements are seen in the 

objective function. Normally, three to five iterations are 

sufficient for satisfactory results. More detailed 

information could be found in [62-64]. 

2.5.2. The SUFI2 Procedure 

Multi-scale auto-calibration and uncertainty analysis were 

performed applying the SUFI-2 procedure (Sequential 

Uncertainty Fitting version 2, SWAT-CUP interface [65]). 

Multi-scale auto calibration/validation, uncertainty analysis, 
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and sensitivity analysis were performed within the SWAT 

Calibration and Uncertainty Programs SWAT-CUP version 

2012 [65], using the Sequential Uncertainty Fitting version 2 

(SUFI2) procedure [61]. In SUFI-2, uncertainty of input 

parameters are depicted as uniform distributions, while model 

output uncertainty is quantified by the 95% prediction 

uncertainty (95PPU) calculated at the 2.5% and 97.5% levels 

of the cumulative distribution of output variables obtained 

through Latin hypercube sampling. For the goodness of fit, as 

it compares two bands (the 95PPU for model simulation and 

the band representing measured data plus its error), 

Abbaspour coined two indices referred to as ‘‘P-factor’’ and 

‘‘R-factor’’ [63]. The P-factor is the fraction of measured data 

(plus its error) bracketed by the 95PPU band and varies from 0 

to 1, where 1 indicates 100% bracketing of the measured data 

within model prediction uncertainty (i.e., a perfect model 

simulation considering the uncertainty). For discharge, they 

recommend a value of >0.7 or 0.75 to be adequate. This of 

course, depends on the scale of the project and adequacy of the 

input and calibrating data. The R-factor on the other hand is 

the ratio of the average width of the 95PPU band and the 

standard deviation of the measured variable. A value of <1.5, 

again depending on the situation, would be desirable for this 

index [62, 63]. These two indices are used to judge the 

strength of the calibration and validation. A larger P-factor can 

be achieved at the expense of a larger R-factor. Hence, often a 

balance must be reached between the two. In the final iteration, 

where acceptable values of R-factor and P-factor are reached, 

the parameter ranges are taken as the calibrated parameters. 

SUFI-2 allows usage of ten different objective functions such 

as R2, Nash-Sutcliff (NSE), and mean square error (MSE). 

The likelihood functions selected here is principally the NSE 

as it is very commonly used and included in SWAT-CUP for 

SUFI2 performance assessment and is the best objective 

function for estimating the peaks. In this study, the number of 

model runs was set to 4 iterations of 500 simulations each one 

and the total sample of simulations were split into “behavioral” 

and “non-behavioral” based on a threshold value of 0.5, a 

minimum threshold for NSE recommended by Moriasi [66] 

for streamflow simulation to be judged as satisfactory on a 

monthly time step. In that case, only simulations which 

yielded a NSE > 0.5 are considered behavioral and kept for 

further analysis. 

2.5.3. Calibration and Validation Steps 

The first step in the calibration and validation process in 

SWAT is the determination of the most sensitive parameters 

for a given watershed or sub watershed. The sensitivity 

analysis is carried out by keeping all parameters constant to 

realistic values, while varying each parameter within the range 

assigned in step one. For each parameter about five 

simulations are performed by simply dividing the absolute 

ranges in equal intervals and allowing the midpoint of each 

interval to represent that interval. Plotting results of these 

simulations along with the observations on the same graph 

gives insight into the effects of the parameters on observed 

signals. 

After retaining 17 parameters which could influence the 

discharge production according to all the found literature, 

one-at-time sensitivity analysis was performing to find the 

most sensitive range for each parameter. Then global 

calibration was performing using the 17 parameters. It has 

been called cal C. 

According to former studies on the same area or on West 

Africa basins, 12 parameters were found to be used with 

certain range. Another calibration process was realized using 

them with their range. It has been called cal A. Still to be more 

focused on the SWAT project using data mentioned further, a 

new calibration process is set using the 12 parameters found 

but with one-at-time analysis results on their range. The new 

one is called cal B. 

The 12 parameters used in previous studies were: SCS 

runoff curve number II (CN2), Manning’s “n” value for 

overland flow (OV_N), Average slope length (SLSUBBSN), 

Soil evaporation compensation factor (ESCO), Available 

water capacity of the soil layer (SOL_AWC), Groundwater 

delay (GW_DELAY), Threshold depth of water in the shallow 

aquifer required for return flow to occur (GWQMN), 

Threshold depth of water in the shallow aquifer for “revap” to 

occur (REVAPMN), Deep aquifer percolation fraction 

(RCHRG_DP), Groundwater “revap” coefficient 

(GW_REVAP), Surface runoff lag coefficient (SURLAG) and 

Baseflow alpha factor (ALPHA_BF). The five other added for 

cal C, are: Saturated hydraulic conductivity (SOL_K), 

Manning's "n" value for the main channel (CH_N2), Effective 

hydraulic conductivity in main channel alluvium (CH_K2), 

Maximum canopy storage (CANMX) and Average slope 

steepness (HRU_SLP). 

The various calibrations realized using 4 iterations results 

were shown on the Table 2. According to this table, Cal C 

gives the best performance by considering the Nash and R2 but 

the last one considering P-factor and R-factor. Cal C was then 

used for the validation processing. 

The final step is validation for the component of interest 

(here discharge). Model validation is the process of 

demonstrating that a given site-specific model is capable of 

making sufficiently accurate simulations, although 

“sufficiently accurate” can vary based on project goals [67]. 

Validation involves running a model using parameters that 

were determined during the calibration process, and 

comparing the predictions to observed data not used in the 

calibration. In general, a good model calibration and 

validation should involve: (1) observed data that include wet, 

average, and dry years [68]; (2) multiple evaluation 

techniques [69-71]; (3) calibrating all constituents to be 

evaluated; and (4) verification that other important model 

outputs are reasonable. 

Table 2. Preprocessing calibration to choose the parameters and range. 

 
P-factor R-factor R2 NSE 

Cal A 0.8 1.11 0.63 0.59 

Cal B 0.76 0.8 0.34 0.29 

Cal C 0.53 1.19 0.82 0.8 
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2.6. Hypotheses for Results Improvement 

Some hypotheses were made to justify the results case (i.e. 

the weak performance at daily time step). This unfitness of 

SWAT to perform well on this period is may be due to (1) rain 

and climatic stations network dispersion, should the rain data 

be spatialized using a grid?; (2) the land use map which is the 

same in all the simulation period; (3) missing data completion 

technic for rainfall and discharge records, shouldn’t the 

discharge missing data be completed? ; (4) semi-distributed 

feature of SWAT; (5) the long term time step in comparison 

with the former studies, the considered time period in 

validation, the non uniform regime of precipitations after the 

2000, the presence of wet and dry years on this period. These 

last points highlight the data split procedure for calibration 

and validation. According to literatures, two thirds of flow 

series data is used for calibration and the last one for 

validation than half for each procedure. The entire period 

should be divided into calibration and validation periods while 

attempting to ensure that both periods have a similar number 

of wet and dry years and similar average water balances [18]. 

All these assumptions could not be verified; however some 

hypotheses have been done to achieve the study goals. 

According to the former studies on study areas with SWAT or 

on the West Africa, it is noticed different length (sometimes 

short) for data time period for simulation. Abbaspour [60] 

applied SWAT for water quality needs in Europe continent 

area. They used time period of 1970-2006 at monthly time 

step with first three years for warm-up period, two thirds for 

calibration and one third for validation. Gaborit [72] applied 

SWAT in model comparison approach to simulate the 

streamflow of the Saint-Charles River, located in Quebec, 

Canada. He used data for 1985-2005 time periods with first 

year for warm-up period, 1986-1995 for calibration and 

1996-2005 for validation. He did not have good performance 

so he emitted the possibility to inverse the periods if the 

performance highly decreased on the validation period. Bossa 

[46] estimated scale effects for model soil and water 

degradation in Benin by using SWAT. These authors worked 

on 1998-2009 data periods with years 2007-2008 for 

calibration and 2001 to 2006 plus 2009 for validation. This 

approach does not follow any rule for choice. In an approach 

of modeling multiple hydrological ecosystem services, Duku 

[73] applied SWAT on the Bétérou basin in the time period of 

1999-2011 with the two first years as warm-up period. Data 

period of 2001-2007 was considered for calibration, while the 

period 2008-2011 is used for validation. Hounkpè [74], 

applied SWAT on the Atchérigbé basin over the periods 1990 - 

2010 ]. He used one year for warm-up period, 1999-2010 for 

calibration and 1991-1998 for validation. In order to 

contribute to the sustainable water resources management, 

Sintondji [36] applied SWAT to the Ouémé basin at the outlet 

of Savè over the 1999-2006 time periods. They used the first 

two years for warm-up period, the period 2001-2004 for 

calibration and 2005-2006 for validation. Still to the 

contribution to the sustainable water resources management, 

Sintondji [75] applied SWAT to the Okpara basin at the outlet 

of Kaboua over the 1999-2007 time periods. Here, they just 

used the first year for warm-up period, the period 2000-2004 

for calibration and 2005-2007 for validation. By evaluating 

SWAT model performance on multi-site validation of the Bani 

catchment, Begou [76] worked on 1983-1997 time periods for 

simulations with 1981-1982 for warm-up period, 1983-1992 

for calibration and 1993-1997 for validation. 

Stating on all the above, these hypotheses were made to try 

to find the best acceptable results at daily time step: 

a) H1: streamflows data not completed, so with missing 

data on 1982-1996 for calibration and 1997-2010 for 

validation 

b) H2: streamflows data not completed, so with missing 

data on 1997-2010 for calibration and 1982-1996 for 

validation 

c) H3: streamflows data not completed, so with missing 

data on 1982-2001 for calibration and 2002-2010 for 

validation 

d) H4: streamflows data not completed, so with missing 

data on 2002-2010 for calibration and 1982-2001 for 

validation 

e) H5: streamflows data not completed, so with missing 

data on 1993-2004 for calibration and 2005-2010 for 

validation 

f) H6: streamflows data not completed, so with missing 

data on 2005-2010 for calibration and 1993-2004 for 

validation. 

3. Results 

3.1. The Catchment Scale Model 

3.1.1. Global Model Performance 

According to the results (Table 3), SWAT performs well to 

simulate discharge in calibration compared to the validation 

on this time period. However, the results for Bonou catchment 

was not good enough. At daily time step, in calibration all the 

results were satisfactory except for Atchérigbé sub catchment. 

At monthly time step, globally all the results were better in 

calibration than in validation; however the results at 

Atcherigbé were worst. An important notice is that the 

individual catchment which does not include another one, do 

not seem to be well simulated in comparison with Bonou, 

Ahlan and Savè. 

Table 3. Model performance statistics for the Ouémé River catchment at Bonou, Ahlan, Atchérigbé, Savè, Kaboua and Bétérou discharge gauging stations. 

Time Step Criterion 
Calibration (1982 - 1996) 

Bonou Atchérigbé Ahlan Kaboua Savè Bétérou 

Daily 
NSE 0.8 0.5 0.6 0.61 0.7 0.65 

R2 0.82 0.53 0.62 0.64 0.73 0.66 

Monthly NSE 0.84 0.68 0.65 0.73 0.78 0.72 
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R2 0.86 0.69 0.67 0.74 0.83 0.73 

 

Time Step Criterion 
Validation (1997 - 2010) 

Bonou Atchérigbé Ahlan Kaboua Savè Bétérou 

Daily 
NSE 0.46 -0.25 0.48 0.22 0.42 0.41 

R2 0.47 0.09 0.54 0.27 0.49 0.42 

Monthly 
NSE 0.52 -0.01 0.59 0.34 0.51 0.51 

R2 0.54 0.2 0.6 0.36 0.55 0.51 

 

3.1.2. Spatial Validation 

Some actions could be done to improve these results or 

better understand the reason behind these results. The first one 

is the motivation to compare the globally sub catchment 

SWAT performance with these individuals catchment SWAT 

model results. This operation is realized for Bétérou, Kaboua 

and Atchérigbé catchments. 

The results were summarized in Table 4. Globally all the 

results obtained at the sub catchment applied models were 

better than those at internal sub basin considering the Bonou 

applied Model except Bétérou at the daily time step. But in 

validation the results weren’t good yet. 

According to this (SWAT performance on our large area 

basin), one could suppose that SWAT should not be concealed 

for hydrologic modelling on large area using so long term data 

at daily time step. 

3.2. Bonou Outlet Comparative Hypotheses Results 

After applying the different hypotheses, the results at the 

global model outlet of Bonou were shown in Table 5. 

Table 4. Model performance statistics for the individual subbasins projects gauging stations. 

Time Step Criterion 
Calibration (1982 - 1996) Validation (1997 - 2010) 

Bétérou Kaboua Atchérigbé Bétérou Kaboua Atchérigbé 

Daily 
NSE 0.7 0.74 0.67 0.41 0.32 0.09 

R2 0.7 0.75 0.67 0.42 0.35 0.15 

Monthly 
NSE 0.84 0.83 0.88 0.63 0.37 0.22 

R2 0.84 0.83 0.90 0.64 0.40 0.26 

Table 5. Hypotheses Model performance statistics for the Bonou catchment at daily time step. 

Basin Model Bonou 

Hypothesis H1 H2 H3 H4 H5 H6 

Calibration 

Data periods 1982-1996 1997-2010 1982-2001 2002-2010 1993-2004 2005-2010 

Criterion 
NSE 0.82 0.43 0.82 0.47 0.86 0.65 

R2 0.83 0.44 0.83 0.47 0.87 0.66 

Validation 

Data periods 1997-2010 1982-1996 2002-2010 1982-2001 2005-2010 1993-2004 

Criterion 
NSE 0.59 0.78 0.35 0.72 0.65 0.76 

R2 0.60 0.8 0.38 0.77 0.66 0.79 

 
By analyzing this table, one could notice first by comparing 

H1 results with the previous SWAT applied model to the basin, 

that the completion technique was not such efficient mainly on 

the 1997-2010 periods’ data. Calibration on the recent part of 

the simulation period, do not give such good results. This case 

shows the unsteady character of this period mainly on the 

years 2000 to 2004 rainfall and discharge data. According to 

all these hypotheses, H2 gives the best results in validation, 

while H5 gives the best results in calibration. Globally on the 

both periods SWAT performance H5 could be considered to be 

the most acceptable SWAT performance at the Bonou outlet. 

Visual graphical analyzes were also performed. At monthly 

time step, the results of Table 6, confirm these interesting 

results for hypothesis H5. 

Table 6. Best Hypothesis Model performance statistics for the Bonou catchment at daily and monthly time steps. 

Basin Model Bonou 

Considered Outlet Bonou 

Time Step Criterion Calibration H5 Validation H5 

Daily 
NSE 0.86 0.65 

R2 0.87 0.66 

Monthly 
NSE 0.90 0.67 

R2 0.90 0.68 

 

In the followings, the spatial validation is realized 

considering all these hypotheses results at the internal outlets 

in comparison with their subbasin applied SWAT model 

performance for the most acceptable results. 

3.3. Spatial Validation 

This process states on two phases. The first step is to find 

for each individual internal subbasin outlet the best hypothesis 
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and the second step is to create the Sub basin SWAT model on 

this supposed “best hypothesis” for each subbasin to compare 

its performance to the internal sub basin performance of the 

Bonou SWAT model. 

The results at the internal outlets of Bonou SWAT model on 

these hypotheses for the individual outlets of Bétérou, Kaboua 

and Atchérigbé are the following (Table 7, Table 8 and Table 9): 

According to these three tables, one starts by comparing H1 

internal outlet results with the first Bonou internal outlets 

results. For Bétérou subbasin, H1 calibration results are little 

bit better (NSE+0.01; R2+0.02), while H1 validation results 

are little bit worse (NSE-0.01; R2-0.02). But globally these 

two models for the sub basin are not so different. The 

completion was right done. For Kaboua sub basin, H1 

calibration results are better (NSE+0.08; R2+0.06), while H1 

validation results are little bit worse (NSE-0.02; R2-0.01). The 

completion was also almost right done. 

Table 7. Hypotheses Model performance statistics for the Bonou catchment at the internal subbasin of Bétérou and daily time step. 

Basin Model Bonou 

Considered Outlet Bétérou 

Hypothesis H1 H2 H3 H4 H5 H6 

Calibration 

Data periods 1982-1996 1997-2010 1982-2001 2002-2010 1993-2004 2005-2010 

Criterion 
NSE 0.66 0.38 0.62 0.4 0.62 0.28 

R2 0.68 0.38 0.63 0.41 0.69 0.29 

Validation 

Data periods 1997-2010 1982-1996 2002-2010 1982-2001 2005-2010 1993-2004 

Criterion 
NSE 0.40 0.64 0.38 0.63 0.23 0.67 

R2 0.40 0.66 0.38 0.65 0.31 0.67 

Table 8. Hypotheses Model performance statistics for the Bonou catchment at the internal sub basin of Kaboua and daily time step. 

Basin Model Bonou 

Considered Outlet Kaboua 

Hypothesis H1 H2 H3 H4 H5 H6 

Calibration 

Data periods 1982-1996 1997-2010 1982-2001 2002-2010 1993-2004 2005-2010 

Criterion 
NSE 0.69 0.03 0.59 0.07 0.56 0.13 

R2 0.70 0.11 0.6 0.13 0.57 0.14 

Validation 

Data periods 1997-2010 1982-1996 2002-2010 1982-2001 2005-2010 1993-2004 

Criterion 
NSE 0.20 0.66 -0.03 0.6 0.03 0.55 

R2 0.26 0.67 0.07 0.61 0.09 0.57 

Table 9. Hypotheses Model performance statistics for the Bonou catchment at the internal sub basin of Atchérigbé and daily time step. 

Basin Model Bonou 

Considered Outlet Atchérigbé 

Hypothesis H1 H2 H3 H4 H5 H6 

Calibration 

Data periods 1982-1996 1997-2010 1982-2001 2002-2010 1993-2004 2005-2010 

Criterion 
NSE 0.45 0.01 0.47 0.05 0.51 0.29 

R2 0.50 0.11 0.51 0.12 0.52 0.29 

Validation 

Data periods 1997-2010 1982-1996 2002-2010 1982-2001 2005-2010 1993-2004 

Criterion 
NSE -0.22 0.48 0.06 0.51 0.09 0.45 

R2 0.10 0.49 -0.14 0.53 0.24 0.47 

 

For Atchérigbé subbasin, H1 calibration results are worse 

(NSE-0.05; R2-0.03), while H1 validation results are little bit 

better (NSE+0.03; R2+0.01). The completion was also right 

done. Globally H1 is not so different of the first Bonou SWAT 

model at the internal subbasin outlets. That means that it is just 

at Bonou outlet where there is an important difference mainly 

in validation (NSE+0.13; R2+0.13). 

By comparing all the internal subbasins results for the different 

hypotheses, it is notified that H5 was not still the best option for 

future improvement. For Bétérou internal subbasin for example, 

H1 gives the best performance for calibration (NSE=0.66; 

R2=0.68), while H6 gives the best performance for validation 

(NSE=0.67; R2=0.67). But there is still a great problem about the 

recent period of the both in calibration or validation for all the 

hypotheses. For a best consensus, H1 is the best of the six 

hypotheses for Béterou subbasin outlet. For Kaboua internal 

subbasin, H1 gives the best performance for calibration 

(NSE=0.69; R2=0.70), while H2 gives the best performance for 

validation (NSE=0.66; R2=0.67). Here also the problem about the 

recent period of the both in calibration or validation for all the 

hypotheses remains and the performance were worst (NSE= 0.20; 

NSE= 0.03; NSE= -0.03; NSE= 0.07; NSE= 0.03; NSE= 0.13). 

For a best consensus here also, H1 gives the best performance 

according to the six hypotheses for Kaboua subbasin outlet. 

Finally, at Atchérigbé internal subbasin, H5 gives the best 

performance for calibration (NSE=0.51; R2=0.52) while H4 

gives the best performance for validation (NSE=0.51; R2=0.53). 

The recent period problem both in calibration or validation for all 

the hypotheses is definitively persistent (NSE= -0.22; NSE= 0.01; 

NSE= 0.06; NSE= 0.05; NSE= 0.09; NSE= 0.29). And the 

calibration performance was not also such satisfied results. There 

must be some errors about the rainfall data or discharge records, 

also on the outlet situation and finally on the land use type which 

definitively is not so constant. For the best consensus, H6 gives 

the best performance according to the six hypotheses for 

Atchérigbé sub basin outlet; but as one of the study first 
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objectives was to perform simulation of the last years’ peak flows, 

the options were between H1, H3 and H5. H5 is then chosen. 

In summary, H1 gives the best performance for Bétérou and 

Atchérigbé internal sub basin, while H5 gives the best one for 

Atchérigbé internal sub basin. The Béterou, Kaboua and 

Atchérigbé SWAT model performance using respectively 

hypothesis H1, H1 and H5 are summarized in Table 10: 

Table 10. Best Hypothesis Model performance statistics for the Bonou, Atchérigbé and Kaboua. 

  
Calibration Validation 

Hypothesis H1 (1982 - 1996) H5 (1993 - 2004) H1 (1997 - 2010) H5 (2005 - 2010) 

Time Step Criterion Bétérou Kaboua Atchérigbé Bétérou Kaboua Atchérigbé 

Daily NSE 0.69 0.83 0.58 0.40 0.33 0.39 

 
R2 0.69 0.84 0.59 0.41 0.35 0.39 

Monthly NSE 0.79 0.91 0.82 0.57 0.38 0.60 

 
R2 0.80 0.91 0.82 0.57 0.4 0.61 

 
This table clearly shows that lot of performance on each sub 

basin SWAT model positively change. For Bétérou SWAT 

model, one can see that its SWAT performance was not so 

different from the Bonou model internal Bétérou sub basin. It 

is almost the same (NSE+0.03; R2+0.01 for calibration and 

NSE+0.00; R2+0.01 for validation). But it could be noticed 

that important difference appears in Kaboua and Atchérigbé 

SWAT model performance. For Kaboua, at calibration a real 

increase is noticed (NSE+0.14; R2+0.14). It is most well 

simulated. For validation also, a real raise is realized 

(NSE+0.13; R2+0.09), but it is not enough to say this is well 

simulated. For Atchérigbé also something important could be 

seen as for calibration (NSE+0.07; R2+0.07) than for 

validation (NSE+0.3; R2+0.15). A great increase is obtained 

for simulation but it’s still not well simulated. 

Generally all the applied models performed well at monthly 

time step except at Kaboua where the decrease from 

calibration to validation is too huge. Something important 

such as important loss or important variation of land use or 

bad quality of the recorded data should be behind this inability 

to perform on last recent years setting on the historic data. 

3.4. Using 10km Grid Network Rainfall 

Here, one try to check the real influence of grid data in 

SWAT model using our rain gauges network for input. To this 

end, 10km grid data has been achieved base on the rain gauges 

network using IDW spatialization technique. Calibration and 

validation have been performed after setting up the ArcSwat 

physical model. The post processing results at the global outlet 

and sub basin ones have been highlighted in Table 11. 

Table 11. H5 Hypothesis Model performance statistics for the Bonou catchment at daily and monthly time steps using spatialized rainfall input. 

Time Step Criterion 
Calibration (1993 - 2004) 

Bonou Atchérigbé Ahlan Kaboua Savè Bétérou 

Daily 
NSE 0.86 0.59 0.58 0.62 0.78 0.66 

R2 0.87 0.59 0.63 0.63 0.79 0.74 

Monthly 
NSE 0.85 0.77 0.57 0.75 0.86 0.74 

R2 0.87 0.79 0.64 0.76 0.87 0.84 

 

Time Step Criterion 
Validation (2005- 2010) 

Bonou Atchérigbé Ahlan Kaboua Savè Bétérou 

Daily 
NSE 0.6 0.29 0.49 0.08 0.43 0.29 

R2 0.63 0.29 0.49 0.17 0.43 0.36 

Monthly 
NSE 0.58 0.5 0.53 0.17 0.46 0.25 

R2 0.66 0.58 0.56 0.24 0.48 0.47 

 
With Bonou SWAT model H5 results in calibration and 

validation at daily and monthly time step comparison, there is 

not almost any difference for calibration at the general basin 

outlet performance (same values at daily time step but a 

difference of +0.03 at monthly step). Observed rain gauges 

network project seems better. At internal outlet performance, 

the difference is more important. The gridded network project 

is better for all individual internal sub basin performance. For 

Bétérou, it’s about +0.04 for NSE and +0.05 for R2. For 

Kaboua it’s about +0.06 for NSE and R2. For Atchérigbé, it’s 

about +0.08 for NSE and +0.07 for R2. 

For validation at daily or monthly time step here also, the 

observed network rain gauges stations project gives better 

performance. At daily time step, it is noticed a difference of 

+0.05 for NSE and +0.03 for R2; and at monthly time step, a 

difference of +0.09 for NSE and +0.02 for R2. At internal 

outlet performance, there is more difference according to 

discharge dynamic than its peak flows’ simulation for 

Bétérou and Kaboua outlet while the inverse is got for 

Atchérigbé subbasin. The results favored rain gages network 

gridded project than ours. For Bétérou, there is a difference 

of +0.06 for NSE and + 0.05 for R2. For kaboua, a +0.05 

difference for NSE is seen and 0.08 for R2. And finally for 

Atchérigbé, one noticed a difference of +0.2 for NSE and 

+0.05 for R2. 

3.5. Sensitivity Analysis 

Sensitivity analysis is performed for many applications. 
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Considering the fact that one –a-time sensitivity analysis is 

performed first in calibration steps, after the fourth iteration, at 

the end of calibration phase, Global Sensitivity Analysis 

(GSA) is performed to appreciate the most influenced 

parameters for the results. It is achieved on all the realized 

projects and the results were almost the same. Based on the 17 

selected SWAT parameters, a GSA was used herein for 

identifying sensitive and important model parameters in order 

to better understand which hydrological processes are 

dominating the streamflow generation in the Bonou catchment. 

The chosen methodology for calibration was SUFI-2. So GSA 

was performed after each 500 simulations’ iteration. But 

considering the fact that it was the fourth iteration parameters 

values that were retained for calibration, its sensibility 

analysis was the most important. So, using the fourth iteration 

GSA for the five final projects, we derive the results present in 

Table 12 which gives the rank of their sensibility in projects 

and the number of sensibilities. 

Table 12. Statistics of fourth iteration SUFI2 GSA for the sensible parameters ranking. 

  
Bonou first project H5 Bonou H1 Bétérou H5 Atchérigbé H1 Kaboua 

Mean 

rank 

Number of 

sensibilities 
Order of 

appea-rance 

Number of sensible 

parameters 
6 5 5 7 7 

Parameters 
     

1 R__CN2.mgt 1 3 1 3 7 1 5 

2 R__SOL_AWC(..).sol 2 2 2 9 5 2 4 

3 V__ESCO.hru 3 1 8 14 1 3 3 

4 V__GWQMN.gw 17 7 10 6 12 11 1 

5 V__GW_REVAP.gw 5 6 16 16 3 9 2 

6 V__REVAPMN.gw 9 8 6 17 11 10 0 

7 R__HRU_SLP.hru 15 13 17 10 15 17 0 

8 R__OV_N.hru 8 4 13 1 9 5 2 

9 R__SLSUBBSN.hru 13 10 11 11 14 14 0 

10 V__CANMX.hru 7 9 15 12 16 15 0 

11 V__CH_N2.rte 12 17 5 4 17 13 2 

12 V__RCHRG_DP.gw 11 16 9 5 4 8 2 

13 V__CH_K2.rte 14 11 3 8 8 7 1 

14 V__ALPHA_BF.gw 6 15 14 2 2 6 3 

15 V__GW_DELAY.gw 4 5 7 7 6 4 4 

16 R__SOL_K(..).sol 10 12 4 15 13 12 1 

17 V__SURLAG.bsn 16 14 12 13 10 16 0 

 
The three most sensitive parameters (CN2, SOL_AWC, and 

ESCO) are directly related to the peak flows runoff, reflecting 

therefore the easy capacity of the model to simulate downflows 

and the dynamics in Ouémé river basins. One can notice here 

the dominance of the surface runoff on the streamflow 

generation in the Ouémé river catchment. Also, here the five 

additive parameters were not so good positioned though 

(CH_N2) got two times sensible, in Bétérou and Atchérigbé 

project which means that its sensibility in the large Bonou scale 

basin disappears by comparing to other parameters. 

3.6. Model Predictive Uncertainty 

Generally, model uncertainties are due to: (i) conceptual 

simplifications (e.g., SCS curve number method for flow 

partitioning), (ii) processes occurring in the watershed but not 

included in the program (e.g., wind erosion, wetland 

processes), (iii) processes that are included in the program, but 

their occurrences in the watershed are unknown to the modeler 

or unaccountable because of data limitation (e.g., dams and 

reservoirs, water transfers, farm management affecting water 

quality), and (iv) input data quality. In large watershed 

applications, one expects to have all these forms of 

uncertainties, which explains some of the large prediction 

errors. In SUFI-2, parameter uncertainty accounts for all 

sources of uncertainty, e.g., input uncertainty, conceptual 

model uncertainty, and parameter uncertainty, because 

disaggregation of the error into its source components is 

difficult, particularly in cases common to hydrology where the 

model is nonlinear and different sources of error may interact 

to produce the measured deviation [77]. 

SWAT-CUP produces output results at each station as 95PPU 

as well as showing the best fit (e.g., the simulation run with the 

best objective function value), but for simplicity and clarity of 

presentation we only show the calibration/validation results for 

the Bonou basin, the individual sub basins and the final retained 

hypothesis simulation and report the overall statistics. The 

tables 13, 14 and 15 show the uncertainty results at all time 

steps for first Bonou project and internal outlets results, the 

individual sub basins in comparison, the final most accepted 

hypothesis results for Bonou, Bétérou, Atchérigbé and Kaboua. 

Table 13. Predictive Uncertainty indices of Ouémé River SWAT model at Bonou gauging discharge station and its internal subbasins’ gauging stations. 

Time Step Criterion 
Calibration (1982 - 1996) 

Bonou Atchérigbé Ahlan Kaboua Savè Bétérou 

Daily 
p-factor 0.73 0.46 0.77 0.61 0.49 0.52 

r-factor 0.99 0.6 1.17 0.96 0.76 0.91 

Monthly 
p-factor 0.54 0.33 0.58 0.43 0.33 0.32 

r-factor 0.84 0.64 0.99 0.81 0.71 0.83 
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Time Step Criterion 
Validation (1997 - 2010) 

Bonou Atchérigbé Ahlan Kaboua Savè Bétérou 

Daily 
p-factor 0.6 0.33 0.6 0.32 0.39 0.32 

r-factor 0.52 0.51 0.45 0.43 0.39 0.47 

Monthly 
p-factor 0.59 0.32 0.58 0.34 0.36 0.29 

r-factor 0.8 0.64 0.66 0.72 0.51 0.58 

Table 14. Predictive Uncertainty indices of Ouémé River SWAT model at Bétérou, Kaboua and Atchérigbé discharge gauging stations individually. 

Time Step Criterion 
Calibration (1982 - 1996) Validation (1997 - 2010) 

Bétérou Kaboua Atchérigbé Bétérou Kaboua Atchérigbé 

Daily 
p-factor 0.39 0.46 0.38 0.37 0.28 0.2 

r-factor 0.7 0.72 0.56 0.48 0.3 0.42 

Monthly 
p-factor 0.31 0.51 0.42 0.38 0.32 0.28 

r-factor 0.86 0.82 0.95 0.74 0.38 0.52 

Table 15. Predictive Uncertainty indices of the best hypothesis Ouémé River SWAT model at Bonou, Kaboua, Atchérigbé and Bétérou discharge gauging stations 

individually. 

  
Calibration Validation 

Hypothesis H1 (1982 - 1996) H5 (1993 - 2004) H1 (1997 - 2010) H5 (2005 - 2010) 

Time Step Criterion Bétérou Kaboua Atchérigbé Bonou Bétérou Kaboua Atchérigbé Bonou 

Daily p-factor 0.41 0.5 0.47 0.72 0.35 0.49 0.43 0.69 

 
r-factor 0.55 0.59 0.45 0.7 0.46 0.69 0.35 0.82 

Monthly p-factor 0.41 0.52 0.54 0.54 0.38 0.5 0.42 0.54 

 
r-factor 0.87 0.91 0.94 0.76 0.36 0.67 0.73 0.86 

 
The importance of both criteria appears to validate the 

range of parameters chosen. The r-factor is always less than 

1.5 and most is less than 1; which is satisfied. The analysis lies 

then on the p-factor values. The Table 13 clearly shows that 

SWAT reproduces well the phenomenon happen to generate 

discharge using this parameters at the main outlet Bonou as for 

daily or monthly step. At internal outlet stage, the parameters 

range was well found for all subbasins except Atchérigbé for 

daily calibration. Savè and Bétérou results were acceptable. At 

monthly time step, only at Bonou and Ahlan, there were 

satisfied results which means that p-factor needs to be higher 

for daily calibration to facilitate interesting results at monthly 

time step because all the p-factors decrease while r-factor 

increase. For validation results too, only Bonou and Ahlan 

which outlet is not far from Bonou, gives good results. 

Parameters used and their range become less sensitive at 

individual internal basin scale and the simulation results 

appoint this deduction. 

At internal basin scale project herein, one can notice that 

uncertainty band is very small while percentage is few. The 

results were not so good. But by comparing to their 

correspondent at internal stage using Bonou project, the band 

at individual project was larger while the percentage higher. It 

doesn’t help to conclude something. 

For retained hypothesis uncertainty analysis results, Bonou 

and Kaboua were acceptable even if one knows Kaboua 

performance weren’t so satisfied. Simulation of the sub basin 

of Atchérigbé, although visually very good, suffers from a 

small lag in the simulation, which could not be corrected by 

the parameters listed in Table 2. This could have been caused 

by a small shift in the observed rainfall input governing this 

outlet in SWAT. 

4. Discussion 

In a real interest to assess the performance of a non lumped 

hydrological model, the SWAT model was chosen and applied 

on the Ouémé Rvier catchment at Bonou outlet. It is calibrated 

and validated on this large area at long time period the model 

at multiple sites on daily and monthly time steps by using 

measured climate data. The results were not so satisfactory on 

this long time period and with input discharge data used in 

calibration and validation. Therefore, analysis and hypotheses 

have been emitted to try to decrease at possible, some data 

errors which could deteriorate the model performance. 

Hypothesis H5 where data used are observed discharge data as 

got with no completion for missing values and where the 

simulation time period was 1993-2010, was retained. There 

was no statistically significant difference in model 

performance among time intervals. Using guidelines given in 

[66], the overall performance of the SWAT model in terms of 

NSE and R2 can be judged as very good, especially 

considering limited data conditions in the studied area. On a 

monthly basis, it is obtained at the Bonou outlet a NSE value 

equal to 0.90 for the calibration period (0.67 for the validation 

period). These results are greater than the ones obtained by 

[27], and [24] at the same outlet for calibration. Indeed, [27] 

reported a negative NSE (between 1 and 0) for the monthly 

calibration and a value ranging between 0 and 0.7 for monthly 

validation, while [24] obtained a NSE between 0 and 0.70 for 

both monthly calibration and validation. 

The quantified prediction uncertainty is surprisingly 

satisfactory for the principal outlet while for internal it was 

almost acceptable (Table 13). At the end of the daily calibration, 

for the H5 hypothesis results, the model was able to account for 



74 Berenger Arcadius Sêgnonnan Dègan et al.:  Ouémé River Catchment SWAT Model at Bonou Outlet:   
Model Performance, Predictive Uncertainty and Multi-Site Validation 

72% of observed discharge data (54% for monthly calibration) 

in a narrow uncertainty band. These results are close to the 

results of [24] who estimated the observed discharge data 

bracketed by the 95PPU between 60% and 80% for monthly 

calibration (40% and 60% for monthly validation). 

On the other hand, results showed that transferring the 

model parameters from the catchment outlet (Bonou) to the 

internal gauging stations performs reasonably well only in the 

case of similarity between donor and target catchments. The 

case of catchments controlled by Ahlan and Bonou gives a 

clear example of such physical proximity where precipitation, 

soil and land use vary smoothly between both catchments. 

However, it really does not perform well for the upstream 

internal gauging stations that account for tributaries of Ouéme 

River (Atchérigbé, Kaboua). According to K. Abbaspour 

discussions on his results on large scale basin internal outlets 

[60], the study results even for internal outlets were well 

simulated though. There is so much dissimilarity between 

donor and target catchments. The SWAT model parameters 

determined at these outlets could not reproduce well the 

measured discharge at Atchérigbé mainly due to more 

significant spatial dissimilarities. 

Moreover, it has been demonstrated that the individual 

calibration at sub-catchment scale has led to a narrower 

uncertainty band and more observed discharge data enclosed 

in it, which is the sought adequate balance between the two 

indices. These results showed the importance of the 

calibration of hydrological models at finer spatial scale to 

ensure that predominant processes in each sub-catchment are 

captured, and this is particularly relevant in case of large-area 

global catchments. Concerning the effect of temporal scale, it 

demonstrated that the validation period is characterized by 

less predictive uncertainty as opposed to the calibration period. 

One explanation that can be given is the fact that last recent 

years (2005-2010, 2002-2010, 1997-2010) used in validation 

even in calibration constitutes a more humid period than 

olders (1982-1996, 1982-2001, 1993-2004) and is 

characterized, therefore, by less variability in precipitation. In 

contrast, when moving from daily to monthly calibration, the 

uncertainty of the model, in terms of uncertainty band width, 

increased. This could be attributed to the cumulative effect of 

uncertainty in daily discharge data used to compute monthly 

discharge, resulting therefore in larger monthly uncertainty. 

Overall, due to decreasing prediction uncertainty with 

decreasing spatial and temporal scales, it is germane to 

develop on the basin a more efficient system of 

hydro-meteorological data collection to account for spatial 

and temporal variabilities in hydro-meteorological systems 

prevailing in the region, especially under changing climate 

and land use conditions. 

According to spatial performance, the results of different 

calibration and validation hypotheses showed varying 

predictive abilities of the SWAT model through scales. Firstly, 

it can be derived from these findings that model performance 

in terms of NSE and R2 was higher on the watershed-wide 

level than on the sub-watershed level. However, this could be 

attributed to compensation between positive and negative 

errors of processes occurring at a larger scale [78, 79]. This 

suggests that calibrating a model only at the basin outlet leads 

to an over confidence in its performance than at the sub-basin 

scale. Secondly, individual calibration and validation of sub 

catchment were not as interesting as expected when realized 

on individual tributaries outlets. These results have an 

important role to play in the calibration and validation 

approaches of large-area watershed models and constitutes a 

first step to model parameter regionalization for prediction in 

ungauged basins. 

This study is a step in that long-term direction, where an 

integrated water management tool would be developed and 

validated spatially on the Bonou catchment, which allows 

investigation of future effects of land use and climate change 

scenarios on water resources. 

5. Conclusions 

In this study, the performance of the widely-used SWAT 

model was evaluated on the Ouémé River at Bonou outlet 

catchment using both split-sample and split-location 

calibration and validation techniques on daily and monthly 

time step. The model was calibrated at the Bonou outlet and at 

five internal stations. Freely available global data and daily 

observed climate and discharge data were used as inputs for 

model simulation. Calibration, validation, uncertainty, and 

sensitivity analyses were performed with SUFI-2 within 

SWAT-CUP. Both graphical and statistical techniques were 

used for hydrologic calibration results evaluation. 

Finally, it is noticed that at internal outlet sub-catchments, 

the long period 1982-2010 could not be accepted for validate 

the SWAT capacity to simulate discharge. However, a real 

good model is that one which could simulate discharge in all 

rainfall regimes even for dry and wet years. Another 

conclusion to lean on is this unavailability to get good 

performance in after 2000’ year’s simulation even in 

calibration and validation. It underlines the problem of 

parameters equifinality. 

The results showed a good SWAT model performance to 

predict daily, as well as monthly discharge at Bonou with 

acceptable predictive uncertainty despite the poor data density 

and the high gradient of climate and land use characterizing 

the study catchment. However, the daily calibration resulted in 

less predictive uncertainty than the monthly calibration. 

Sub-catchment calibration induced an increase of model 

performance at intermediate gauging stations, as well as a 

decrease of total uncertainty. The GSA revealed the 

predominance of surface and subsurface processes in the 

streamflow generation of the Ouémé River catchment. 

Overall, this study has shown the validity of the SWAT 

model for representing globally hydrological processes of a 

large-scale Soudano-Sahelian catchment in West Africa. 

Given the high spatial variability of climate, soil, and land use 

characterizing the catchment, additional calibration is 

however needed at sub-catchment level to ensure that 

predominant processes are captured in each sub-catchment. 

Schuol [27] indicates the importance of adding more 
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variables in and constraining the objective function, which 

produces parameters reflecting more of the local processes, 

hence, providing more reasonable simulations. The downside 

is that more data are required for a reliable model calibration 

at the watershed scale. This step could really improve the 

study’s SWAT model by taking into account the objective 

function on other variables such as sediments, Nitrate and 

Total phosphorus. 

The calibrated SWAT model for the Bonou catchment can be 

used to assess the current and future impacts of climate and land 

use change on water resources of the catchment, increasingly 

necessary information awaited by water resources managers. 

Knowing this information, a strategy of adaptation in response to 

the current and future impacts can be clearly proposed and the 

vulnerability of the population can therefore be reduced. More 

widely, this impact study can increase the transferability of the 

model parameters from the Bonou sub-catchment to another 

ungauged basin with some similarities, and then predicting 

discharge without the need of any measurement. These findings 

are very useful, especially in West Africa, where many river 

basins are ungauged or poorly gauged. 
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