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Abstract: Even though it has been almost a century since quantum mechanics planted roots, the field has its share of 

unresolved problems. Could this be the result of a wrong mathematical structure providing inadequate understanding of the 

quantum phenomena [1]? Part of the problem is that the terms “state”, “observable”, “measurement” require a clear 

unambiguous definition that will make them universally acceptable in both classical and quantum mechanics. This concrete 

definition will help to further develop a feasible formalism for the challenging area of quantum computing [2]. 
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1. Introduction 

“We all say so, and so it must be true” Rudyard Kipling, 

The Jungle Book 

A lot of confusion comes from the lack of precision in 

using terms like “state”, “observable”, “measurement of 

observable in a state”, etc. This terminology creates 

ambiguity because the meaning of the words differs between 

prevailing quantum mechanics and what is logically and 

naturally assumed by the human mind in scientific researches 

and generally used in areas of physics other than quantum 

mechanics. Nevertheless, I will try using the terminology as 

close as possible to commonly accepted quantum mechanics 

paying respects to generations of people who learned 

quantum mechanics in the existing framework and worked in 

that area of physics. 

Important results like the theorem by Bell [3] and another 

by Kochen and Specker [4] proved that the existence of non-

contextual putative values of observables is in contradiction 

with the existing formalism of quantum mechanics. 

A much more important result is that the existence of non-

contextual putative values of observables, when traditionally 

interpreted, seems to be in contradiction with empirical 

reality. The common quantum mechanical wisdom reads, for 

example in the particular case of the position observable, that 

if we accept that the observable uncertainty is in the system 

itself, then we must abandon the image of a point and think 

of it as an extended object: the “particle” is more something 

like a “field” with all particle properties extended in physical 

space. This wisdom, as we will see later, must be replaced 

with more accurate requirement that observables may be 

placed differently from the states acting on them. Varying of 

an observable parameters through the physical space will 

technically be explicitly calculated through the combined 

states acting on observables. 

2. Qubit States in Geometric Algebra 

The first step of the long trip to clarity is to follow the 

definitions strictly: 

Definition 2.1: 

Measurement of observable ( )O ⋅  in a state ( )S ⋅  is a map 

( ) ( )( ) ( ),S O Oλ µ ν→  

where ( )O µ  is an element of the set of observables, the 

values of the elements are identified by some parameters µ , 

ν , …; ( )S λ  is an element of another set, set of states, the 

values of the elements are identified by some another 

parameters λ , …. 

The sets ( )O ⋅ and ( )S ⋅  are not necessary different in their 

formal mathematical implementations. However, alignment 

in mathematical implementations does not mean that the sets 

are ontologically identical. 

In general, the set of states is external to the set of 

observables, and vice versa. 

Definition 2.2: 

The result (value) of measurement of observable ( )O ⋅  in 
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state ( )S ⋅  is the map sequence 

( ) ( )( ) ( ), ( )S O O V Bλ µ ν→ →  

where V  is a set of (Boolean) algebra of subsets identifying 

possible results of the measurement. 

What Dirac had effectively done [5] was to remove the 

distinction between an element of the operator algebra and 

the wave function without losing any information about the 

content of what is carried by the wave function. This is 

exactly what is shown below to be an accurate 

implementation of the Definitions 2.1 and 2.2 in the case of a 

qubit as the state in terms of geometric algebra, when action 

of a state on observable is non-commutative operation 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )1,
def

S O O O S O Sλ µ ν ν λ µ λ−→ ←→ = , 

where ( )S λ  are elements of even subalgebra 3G
+

 of 

geometric (Clifford) algebra 3G  over three dimensional 

Euclidean space [2], and ( )O µ , ( )O ν  are generally 

elements of 3G , though mainly we will consider elements of 

3G
+

. 

Another critical thing is explicit generalization of formal 

“imaginary unit” to a unit value bivector from 3G
+

 specified 

by a process under consideration [6] [7]. All that allows to 

generalize the Dirac’s idea and to implement states as the 3G
+

 

valued operators (see also [8]). 

To distinguish the 3G
+

 states from qubits in the 2C  Hilbert 

space I call the former g-qubits [2]. Any 2C  qubit 

1 1

2 2

x iy

x iy

+ 
 + 

 has lift in 3G
+

, namely the g-qubit: 

( )

1 1 1 2 2 2 3

1 1 1 2 1 3 2 3

1 1 1 2 2 1 3

x y B y B x B

x y B y B B x B

x y B x y B B

+ + +
= + + +

= + + +

1 

where ( )1 2 3, ,B B B  is an arbitrary triple of unit value 

bivectors in three dimensions satisfying, with the assumption 

of right-hand screw orientation 1 2 3 1B B B = 2
, the 

multiplication rules: 

1 2 3 1 3 2 2 3 1, ,B B B B B B B B B= − = = −  

The lift has the ( )1 2 3, ,B B B  reference frame which can be 

arbitrary rotated in three dimensions. In that sense we have 

principal fiber bundle 
2

3G C
+ →  with the standard fiber as 

                                                             

1
 The lift can equivalently be written as 

( )1 1 1 2 2 1 2x y B y x B B+ + −
 with identical 

geometric content. 

2 The reference frame ( )1 2 3, ,B B B  can be chosen as left-hand screw oriented, 

1 2 3 1B B B = − . It is just reference frame and has nothing to do with physical 

nature of three dimensional space. 

group of rotations which is also effectively identified by 

elements of 3G
+

. 

The lift ( )1 1 1 2 2 1 3x y B x y B B+ + +  is the geometric algebra 

sum of two items, 1 1 1x y B+  and ( )2 2 1 3x y B B+ , the first is 

the lift of the quantum mechanical 0 , in usual Dirac 

notations, and the second – lift of 1 . 

Let the state 1 1 1x y B+  acts on observable 

( ) 1 1 2 2 3 3 3, , O OO I I B B B Gγ δ γ δ γ δ δ δ += + = + + + ∈ . 

The item OI  is unit value bivector defining the bivector 

part of the observable, orientation in three dimension space. 

If its expansion in the basis is 1 1 2 2 3 3OI B B Bω ω ω= + + , 

2 2 2
1 2 3 1ω ω ω+ + = , then , 1, 2,3i i iδ ω δ= = . Thus the action 

of the state on observable is: 

( ) ( )( )1 1 1 1 1 1, , Ox y B O I x y Bγ δ− +  

This action does not change the 1B  component of the 

observable and only rotates the remaining of the bivector part 

belonging to the subspace { }2 3,span B B  [2], [7]. 

The state ( )2 2 1 3x y B B+  structurally differs from the lift 

1 1 1x y B+  by additional factor 3B . The latter makes flip of 

the result of the transformation 

( ) ( )( )2 2 1 2 2 1, , Ox y B O I x y Bγ δ− +  over the plane 1B , 

particularly changes the sign of the 1B  component. 

So we get actual geometrical sense of the 3G
+

 lifts of 

conventional quantum mechanical basis states 0  and 1 . 

The lift of the first one only rotates observable around the 

axis orthogonal to basis plane 1B , the lift of the second one 

additionally flips the result, after rotation, over that plane. I 

will call the states correspondingly as 0-type and 1-type 

states. 

Good to remember that in the geometric algebra formalism 

measurement of an observable is not distributive relative to 

linear combinations of states, particularly: 

( )( ) ( ) ( )( )
( ) ( )( )

( )( ) ( ) ( )( )

1 1 1 3 2 2 1 1 1 1 2 2 1 3

1 1 1 1 1 1

3 2 2 1 2 2 1 3

, ,

, ,

, ,

O

O

O

x y B B x y B O I x y B x y B B

x y B O I x y B

B x y B O I x y B B

γ δ

γ δ

γ δ

− − − + + +

≠ − +

+ − − +

 

because generally 

( ) ( ) ( )( )
( )( ) ( )( )

1 1 1 2 2 1 3

3 2 2 1 1 1 1

, ,

, , 0

O

O

x y B O I x y B B

B x y B O I x y B

γ δ

γ δ

− +

+ − − + ≠
 

Any arbitrary state ( ) 1 1 2 2 3 3, , Ss I B B Bα β α β β β= + + +  

can be rewritten either as a 0-type state or 1-type state by 

rewriting the expression of the bivector part because: 
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( )1 2 3

2 2 2
1 1 2 2 3 3 1 2 3, ,S
B B B I β β βα β β β α β β β+ + + = + + + , 

where ( )1 2 3

1 1 2 2 3 3
, ,

2 2 2
1 2 3

S

B B B
I β β β

β β β

β β β

+ +
=

+ +
, 0-type, 

or 

( )

( )( )2 1

1 1 2 2 3 3

3 2 1 1 2 3 3

2 2 2
3 1 2 3, ,S

B B B

B B B B

I Bβ β α

α β β β
β β β α

β α β β− −

+ + +

= + − −

= + + +
 

where ( )2 1

2 1 1 2 3
, ,

2 2 2
1 2

S

B B B
I β β α

β β α

α β β
−

− −
=

+ +
, 1-type. 

Choosing of particular flipping plane is not critical since 

we generally can take the state bivector plane as its only non-

zero basis bivector component and write for the 

corresponding 0-type and 1-type states: 

( )

( )( ) ( )

1 2 3

1 2 3 1 2 3

2 2 2
1 1 2 2 3 3 1 2 3, ,

2 2 2
1 2 3 , , , ,

S

S S

B B B I

I I

β β β

β β β β β β

α β β β α β β β

β β β α

+ + + = + + +

= + + −
 

3. Geometric Algebra States Acting at 

Different Space Points 

The transformation 

( ) ( ) ( )1 1 1 2 2 3 2 1 1 1 2 2 3 2, , Ox y B y B B x O I x y B y B B xγ δ− − − + + +  

acting on a 3G+
 observable ( ), , OO Iγ δ  assumes the common 

origin in space for the observable and the state. In other 

words, the state acting on an observable must be defined at 

the location of observable. If, for example, the state is 

rotation of a bivector (observable) represented by a circle, the 

observable equivalence class member, then the 3G+
 state 

rotates the circle in 3D around its center. 

We are targeting to work with anyons, so it is necessary to 

define the meaning of the 3G+
 lifts of quantum mechanical 

states like ( )1 2,r rψ � �

 (wave function) or 1 2ψ ψ  (Dirac 

notations) without the assumption of common origin of states 

and observables. 

Suppose we need to transform observable by applying a 

state, that’s mainly to rotate a 3G+
 bivector around a point, 

and the point is different from the observable bivector center. 

Let the center of rotation is the origin of the coordinate 

system, null vector, and the observable bivector center is 0r
�

. 

All we need is to rotate the observable bivector by given 

angle around its center, along with the observable center 

position vector 0r
�

 rotation by the same angle around the 

origin. Thus the observable bivector got locally rotated and 

changed its position in three dimensions. 

To make that kind of transformation we need to explicitly 

write the dependence of the observable on its position is 3D 

space: ( ) ( )0, , , , ,O OO I O I rγ δ γ δ=
�

. Then the result of 

transformation is: 

( ) ( )( )1 0 1, , ,t t
O B BO I x I y r x I yγ δ − +� � �

 

where 2 2 2
1 2 3y y y y= + +�

, 

3

1

i
B i

i

y
I B

y=

=∑ �
, and the explicit 

transformed value 
t
OI  can be taken from a bit lengthy 

formula of the Sec. 5.1 of [2]: 

t
OI = ( ) ( ) ( ) ( )( )2 2 2 2

1 1 1 2 3 2 1 2 1 3 3 1 2 1 3 12 2b x y y y b y y x y b x y y y Bδ  + − + + − + + +
 

 

( ) ( ) ( ) ( )( )2 2 2 2
1 1 3 1 2 2 1 2 1 3 3 2 3 1 1 22 2b x y y y b x y y y b y y x y Bδ  + + + − + + − +

 
 

( ) ( ) ( ) ( )( )2 2 2 2
1 1 3 1 2 2 1 1 2 3 3 1 3 1 2 32 2b y y x y b x y y b x y y y Bδ β  − + + + + − +

 
 

where ib  are component values of the expansion 

1 1 2 2 3 3OI b B b B b B= + + 3 

Now assume that we have two observables, 

( )
11 1 1 1, , ,OO I rγ δ �  and ( )

22 2 2 2, , ,OO I rγ δ � , and two states 

( )
1

1 1
1 , , SS Iα β  and ( )

2

2 2
2 , , SS Iα β . When only one of the 

observables is in the scene then ( ), ,
i

i i
i SS Iα β  acts on 

( ), , ,
ii i i O iO I rγ δ �

 with default assumption of coincidence of 

                                                             

3  The last formula of t
O

I  actually is Hopf fibration received effectively as 

measurement in geometric algebra terms.  

origins of ( ), ,
i

i i
i SS Iα β  and ( ), , ,

ii i i O iO I rγ δ � . When we 

have both observables placed at two different space points 1r
�

 

and 2r
�

, and need to have a compound state assembled of the 

two states ( )
1

1 1
1 , , SS Iα β  and ( )

2

2 2
2 , , SS Iα β  acting on the 

observables at that two points we need to also explicitly write 

the position of a state because the origins of an observable 

and a state acting on it in measurement may not coincide. 

Thus we need to explicitly write  

( ) ( ), , , , ,
i i

i i i i
i S i SS I S I rα β α β= �

. 

The compound state can be easily formalized as: 
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( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )
1

2

1 1
12 1 2 1 1

2 2
2 2

, , ,

, ,

S

S

S r r S r r I r r r dr

S r r I r r r dr

α β δ

α β δ

= −

+ −

∫
∫

� � � � � � � �

� � � � � �

 

where ( )ir rδ −
� �  is Dirac delta function returning the value of 

integrated function at point 
ir
�  from the integral. The 

functions ( )i rα � , ( )i rβ � , ( )
iSI r
�

 are arbitrary ones in the 

three dimensions only satisfying the “pin” requirements 

( )i i
irα α=� , ( )i i

irβ β=�  and ( )
i iS i SI r I=� . 

In a similar way, the system of two observables is: 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )
1 212 3 4 1 1 1 3 2 2 2 4, , , , , , ,O OO r r O r r I r r r r dr O r r I r r r r drγ δ δ γ δ δ= − + −∫ ∫

� � � � � � � � � � � � � � � �

 

with the arbitrary functions ( )i rγ � , ( )i rδ � , ( )
iOI r
�

 satisfying ( )i i irγ γ=
� , ( )i i irδ δ=

�  and ( )
i iO i OI r I=� . 

Assume that 
1 3r r=� �  and 

2 4r r=� � , that’s the locations of states and of associated observables coincide. Then the system of two 

observables 
12O  in the state 

12S  returns the following result of measurement: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )( )1 2

1 1 2 2
12 1 2 12 1 2 12 1 2 1 1 2 2, , , , , , ,S SS r r O r r S r r S r r I r r r dr S r r I r r r drα β δ α β δ= − + − ×∫ ∫
� � � � � � � � � � � � � � � � � �

 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )( )1 21 1 1 1 2 2 2 2, , , , , ,O OO r r I r r r r dr O r r I r r r r drγ δ δ γ δ δ− + − ×∫ ∫
� � � � � � � � � � � � � �

 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )( )1 2

1 1 2 2
1 1 2 2, , , ,S SS r r I r r r dr S r r I r r r drα β δ α β δ− + − =∫ ∫

� � � � � � � � � � � �

 

( )
1

1 1
1 1, , ,SS I rα β � ( )

11 1 1 1, , ,OO I rγ δ � ( )
1

1 1
1 1, , ,SS I rα β +�  

( )
2

2 2
2 2, , ,SS I rα β � ( )

22 2 2 2, , ,OO I rγ δ � ( )
2

2 2
2 2, , ,SS I rα β +�  

( )
1

1 1
1 1, , ,SS I rα β � ( )

22 2 2 2, , ,OO I rγ δ � ( )
1

1 1
1 1, , ,SS I rα β +�  

( )
2

2 2
2 2, , ,SS I rα β � ( )

11 1 1 1, , ,OO I rγ δ � ( )
2

2 2
2 2, , ,SS I rα β +�  

( )
1

1 1
1 1, , ,SS I rα β � ( )

11 1 1 1, , ,OO I rγ δ � ( )
2

2 2
2 2, , ,SS I rα β +�  

( )
1

1 1
1 1, , ,SS I rα β � ( )

22 2 2 2, , ,OO I rγ δ � ( )
2

2 2
2 2, , ,SS I rα β +�  

( )
2

2 2
2 2, , ,SS I rα β � ( )

11 1 1 1, , ,OO I rγ δ � ( )
1

1 1
1 1, , ,SS I rα β +�  

( )
2

2 2
2 2, , ,SS I rα β � ( )

22 2 2 2, , ,OO I rγ δ � ( )
1

1 1
1 1, , ,SS I rα β �

 

The first two members are the results of the action of states 

on the observables placed at the same positions where the 

states are initially defined. 

The second two members are the results of action of states 

on the observables located in positions swapped relative to 

those where the states acting on them are defined. The 

observables get transformed but also change their positions in 

three dimensional space. This is explicit demonstration of 

correctness of the statement from Introduction that a particle 

(observable) properties are in a sense extendable in physical 

space. 

The last four members are of a sort of transformations 

different from usual observable measurement transformations 

and need further detailed elaboration that will be done in a 

separate research work. 

4. Geometric Algebra Anyon Exchange 

Statistics in Three Dimensions 

Below is the geometric algebra derivation of the “particle 

exchange statistics” (see, for example, [9] for the two 

dimensional case, 
2

1 2 2 1
ie π θψ ψ ψ ψ= ) in three 

dimensions. The preceding quotation does not properly 

reflect physical reality. As we are demonstrating, states are 

not a particle (observable) internal attributes, rather they are 
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operators acting on observables. 

Let’s consider the first item of the couple of members from 

the previous section last formula responsible for applying 

state action on a varying location observable in physical 

space: 

( )
1

1 1
1 1, , ,SS I rα β � ( )

22 2 2 2, , ,OO I rγ δ � ( )
1

1 1
1 1, , ,SS I rα β �

 

Since the state and observable have not coinciding origins 

we should use the formula given earlier: 

( ) ( )( )1 0 1, , ,t t
O B BO I x I y r x I yγ δ − +� � �

 

adjusted for the current case. It particularly follows from this 

formula that the observable location gets moved by the action 

of the state ( )
1

1 1
1 1, , ,SS I rα β �  to a new location. 

The above formula was derived in assumption that the 

state is located at the origin of reference system, while the 

observable is at the position 
0r
� . In the current case the state 

( )
1

1 1
1 1, , ,SS I rα β �  is located at 

1r
�  and the observable it acts on 

is at 
2r
� . Thus the result becomes: 

( )
1

1 1
1 1, , ,SS I rα β � ( )

22 2 2 2, , ,OO I rγ δ � ( )
1

1 1
1 1, , ,SS I rα β =�

( ) ( ) ( )( )2 1 1

1 1 1 1
2 2 2 1 1 1 2 1 1 1, , , , , , , , ,
t t

O S SO I r S I r r r S I rγ δ α β α β+ −
� � � � �

 

Similarly, for the second term of the considered couple we 

get: 

( )( ) ( )( )1 2 2

2 2 2 2
1 1 1 2 2 2 1 2 2 2, , , , , , , , ,t t

O S SO I r S I r r r S I rγ δ α β α β+ −� � � � �

 

Suppose now that the two states in the combined state 

swap their actions on observables: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )( )1 2

1 1 2 2
12 2 1 12 1 2 12 2 1 1 2 2 1, , , , , , ,S SS r r O r r S r r S r r I r r r dr S r r I r r r drα β δ α β δ= − + − ×∫ ∫
� � � � � � � � � � � � � � � � � �

 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )( )1 21 1 1 1 2 2 2 2, , , , , ,O OO r r I r r r r dr O r r I r r r r drγ δ δ γ δ δ− + − ×∫ ∫
� � � � � � � � � � � � � �

 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )( )1 2

1 1 2 2
1 2 2 1, , , ,S SS r r I r r r dr S r r I r r r drα β δ α β δ− + −∫ ∫

� � � � � � � � � � � �

 

Then the first couple of terms with not changing observable positions becomes: 

( )
1

1 1
1 2, , ,SS I rα β � ( )

22 2 2 2, , ,OO I rγ δ � ( )
1

1 1
1 2, , ,SS I rα β +� ( )

2

2 2
2 1, , ,SS I rα β � ( )

11 1 1 1, , ,OO I rγ δ � ( )
2

2 2
2 1, , ,SS I rα β �

 

Let’s consider the difference between ( )
1

1 1
1 1, , ,SS I rα β � ( )

11 1 1 1, , ,OO I rγ δ � ( )
1

1 1
1 1, , ,SS I rα β �  

from the initial case and ( )
2

2 2
2 1, , ,SS I rα β � ( )

11 1 1 1, , ,OO I rγ δ � ( )
2

2 2
2 1, , ,SS I rα β �  from the last case where the states got 

swapped. 

Rewrite the last item as 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 1 1 1 1 1 2

2 2 1 1 1 1 1 1 1 1 2 2
2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1, , , , , , , , , , , , , , , , , , , , ,S S S O S S SS I r S I r S I r O I r S I r S I r S I rα β α β α β γ δ α β α β α β× ×� � � � � � �

 

That means that the swapping of states is equivalent to multiplying of ( )
1

1 1
1 1, , ,SS I rα β �  on the right by ( )

1

1 1
1 1, , ,SS I rα β �

( )
2

2 2
2 1, , ,SS I rα β � . 

Now comparing the difference between 

( )
2

2 2
2 2, , ,SS I rα β � ( )

2
2 2 2 2, , ,

SOO I rγ δ � ( )
2

2 2
2 2, , ,SS I rα β �

 from the initial case and 

( )
1

1 1
1 2, , ,SS I rα β � ( )

22 2 2 2, , ,OO I rγ δ � ( )
1

1 1
1 2, , ,SS I rα β �

 from the swapped case we similarly get: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 2 2 2 2 1

1 1 2 1 2 2 2 2 2 2 1 1
1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2, , , , , , , , , , , , , , , , , , , , ,S S S O S S SS I r S I r S I r O I r S I r S I r S I rα β α β α β γ δ α β α β α β× ×

� � � � � � �

 

which means that the swapping of states is equivalent to multiplying of ( )
2

2 2
2 2, , ,SS I rα β �  on the right by 

( ) ( )( )1 2

1 1 2 2
1 2 2 2, , , , , ,S SS I r S I rα β α β� �

 which is complex conjugate relative to the result for first two elements. 

Similar calculations and comparing the results for the second couples 
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( )
1

1 1
1 1, , ,SS I rα β � ( )

22 2 2 2, , ,OO I rγ δ � ( )
1

1 1
1 1, , ,SS I rα β +� ( )

2

2 2
2 2, , ,SS I rα β � ( )

11 1 1 1, , ,OO I rγ δ � ( )
2

2 2
2 2, , ,SS I rα β �

 

and 

( )
2

2 2
2 1, , ,SS I rα β � ( )

22 2 2 2, , ,OO I rγ δ � ( )
2

2 2
2 1, , ,SS I rα β +� ( )

1

1 1
1 2, , ,SS I rα β � ( )

11 1 1 1, , ,OO I rγ δ � ( )
1

1 1
1 2, , ,SS I rα β �

 

show that the swapping is equivalent to multiplication of ( )
1

1 1
1 1, , ,SS I rα β �  on the right by ( )

1

1 1
1 1, , ,SS I rα β �

( )
2

2 2
2 1, , ,SS I rα β �

 and multiplication of ( )
2

2 2
2 2, , ,SS I rα β �

 on the right by ( ) ( )( )1 2

1 1 2 2
1 2 2 2, , , , , ,S SS I r S I rα β α β� �

. Thus the 

results are equivalent for both couples of measurement transformations by original and swapped states. So the product 

( )
1

1 1
1 , , ,SS Iα β ⋅ ( ) 1 21 2

2

2 2
2 , , , S SI I

SS I e e
θ θα β −⋅ = , where ( )1cos i

iθ α−= , is replacing the particle exchange statistics factor 

2 ie π θ  when state swapping is generalized to the three dimension anyons in the geometric algebra terms. 

Swapping of states acting on observables is one of the two logical options. Another one is swapping locations of two 

observables. In that case we have: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )( )1 2

1 1 2 2
12 1 2 12 2 1 12 1 2 1 1 2 2, , , , , , ,S SS r r O r r S r r S r r I r r r dr S r r I r r r drα β δ α β δ= − + − ×∫ ∫
� � � � � � � � � � � � � � � � � �

 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )( )1 21 1 1 2 2 2 2 1, , , , , ,O OO r r I r r r r dr O r r I r r r r drγ δ δ γ δ δ− + − ×∫ ∫
� � � � � � � � � � � � � �

 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )( )1 2

1 1 2 2
1 1 2 2, , , ,S SS r r I r r r dr S r r I r r r drα β δ α β δ− + − =∫ ∫

� � � � � � � � � � � �

 

( )
1

1 1
1 1, , ,SS I rα β � ( )

22 2 2 1, , ,OO I rγ δ � ( )
1

1 1
1 1, , ,SS I rα β +�  

( )
2

2 2
2 2, , ,SS I rα β � ( )

11 1 1 2, , ,OO I rγ δ � ( )
2

2 2
2 2, , ,SS I rα β +�  

( )
1

1 1
1 1, , ,SS I rα β � ( )

11 1 1 2, , ,OO I rγ δ � ( )
1

1 1
1 1, , ,SS I rα β +�  

( )
2

2 2
2 2, , ,SS I rα β � ( )

22 2 2 1, , ,OO I rγ δ � ( )
2

2 2
2 2, , ,SS I rα β +�  

( )
1

1 1
1 1, , ,SS I rα β � ( )

11 1 1 2, , ,OO I rγ δ � ( )
2

2 2
2 2, , ,SS I rα β +�  

( )
1

1 1
1 1, , ,SS I rα β � ( )

22 2 2 1, , ,OO I rγ δ � ( )
2

2 2
2 2, , ,SS I rα β +

�

 

( )
2

2 2
2 2, , ,SS I rα β � ( )

11 1 1 2, , ,OO I rγ δ � ( )
1

1 1
1 1, , ,SS I rα β +

�

 

( )
2

2 2
2 2, , ,SS I rα β � ( )

22 2 2 1, , ,OO I rγ δ � ( )
1

1 1
1 1, , ,SS I rα β �

 

Calculations similar to the case of swapping states give the same result 1 21 2S SI I
e e

θ θ−  for the generalized three dimensional 

anyons exchange statistics factor. 

5. Conclusions 

Generalization of the 2C  Hilbert space qubit formalism to 

the even subalgebra 3G+
 in three dimensions formalism [2] 

allowed to accurately distinguish between the observables 

and the states acting on them that removed contradiction of 

existence of non-contextual putative values of observables 

with the existing formalism of quantum mechanics. 

Particularly, varying of an observable parameters through the 

physical space was explicitly calculated through the 

combined states acting on observables. 

The generalization supports more profound braiding 

formalism in three dimensions by removing restrictions on 

space dimensionality of existing quantum formalism which 

only allows particle exchange statistics with phases of integer 

values of π . 

Thus it opens the options to track observable trajectories as 

the results of g-qubit non-abelian transformations that is 

critical for topological quantum computing implementation 

[10], [11]. 
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