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Abstract: In this phenomenological approach to the study of magnetism in bilayer graphene, the chiral model of graphene 

was employ to describe the interaction of the bilayer graphene with an external magnetic field. The simplest scalar chiral 

model of graphene suggested earlier and based on the SU (2) order parameter is generalized by including 8-spinor field as an 

additional order parameter for the description of spin (magnetic) excitations in the bilayer graphene. As an illustration we study 

the interaction of the bilayer graphene with the external magnetic field orthogonal to the plane. The Lagrangian density of the 

model was constructed; The Lagrangian density of the model includes the three interacting terms, the spinor field, chiral field, 

and the electromagnetic field. The domain wall solution describing the bilayer graphene configuration is introduced for 

studying the magnetic field behavior in the central domain of the material; the solution to the inhomogeneous equations were 

found using the Green’s function method, at small radial field, the paramagnetic behavior of the material was revealed and the 

strengthening of the magnetic intensity inside the material in the central domain of the material was also revealed. 
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1. Introduction 

Since the very discovery of this novel material it has 

attracted deep interest of researchers (theoretical and 

experimental) due to its extraordinary properties [1]. 

Graphene is a monolayer of carbon atoms packed into a 

dense honeycomb crystal structure, which can be obtained by 

mechanical exfoliation [2]. The electronic properties of 

graphene; a two dimensional crystal of carbon atoms are 

exceptionally novel [3]. Carbon atoms have a unique 

capability of associating with each other in different ways at 

the macro and nanoscopic scales to form various structures 

which turns to be unique [4] Bilayer graphene which is one 

of them, consists of two coupled mono-layers of carbon 

atoms, each with a honeycomb crystal structure [5]. As there 

are two layers, bilayer graphene represents the thinnest 

possible limit of an intercalated material,in monolayer 

graphene, each unit cell containing two carbon atoms, labeled 

A and B. Bilayer graphene consists of two coupled 

monolayer’s, with four atoms in the unit cell, labeled A1, B1 

on the lower layer and A2, B2 on the upper layer, the layers 

are arranged so that one of the atoms from the lower layer B1 

is directly below an atom, A2, from the upper layer [6]. 

There are two stacking arrangement of the bilayer graphene, 

depending on the orientation of the mono-layers:  

a AA stacking 

b AB Bernal stacking 

These two possibilities can be seen in Figure1, in this 

study the AB (Bernal) stacking was adopted, as it’s known to 

be the most stable structure of bilayer graphene [7]. However 

magnetism of conventional metal is composed of two 

different contributions, the Pauli paramagnetism due to the 

spin magnetic moment, and the Landau diamagnetism which 

is due to the orbital motion of the electrons. 

One of the present obstacles of graphene despite having 

novel properties is the absence magnetism; therefore most 

researchers in graphene base material mainly pay attention on 

the substantial magnetism in graphene. The incorporation of 

magnetism to the long list of graphene capabilities has been 

pursued since its first isolation in 2004 by Geim and 

Novoselov; it therefore motivates us to undergo this study. 

The chiral model of graphene is been adopted; the model was 

recently developed by Rybakov.Yu.P in 2012 to add to the 
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existing condensed matter field theoretical models [8, 9, and 

10].  

Furthermore, the choice for the model follows the fact that 

electrons in graphene show relativistic behavior, and the 

system is therefore an ideal candidate for the test of quantum-

field theoretical models. “Electrons travel through it so fast 

that their behavior is governed by the theory of relativity 

rather than classical physics” (The Economics, 2006). 

Although the electrons in graphene are conferred to move on 

a plane, the electromagnetic field through which they interact 

extends throughout the 3D space [11]. Another important 

observation is that the electron mobility in graphene is about 

ten times higher than the mobility of commercial silicon 

wafers and electrons can travel huge distances (300nm or 

more) without being scattered [12]  

In this phenomenological approach to the description of 

magnetism in bilayer graphene, the action of the external 

magnetic field orthogonal to the bilayer graphene planes was 

investigate, considering the fact that magnetism in graphene 

and other carbon structures prove to be extremely anisotropic 

[13].  

2. Chiral Model  

 

Figure 1. Stacking of bilayer graphene, consisting of two coupled mono-
layers of graphene: (a) AA stacking; (b) AB Bernal stacking. Each layer 

consists of two in equivalent site A and B, the intra-layer and intra-layer 

hoping integrals are ��	���	��  respectively(Barlas, Yang, & MacDonald, 
2012). 

The simplest scalar chiral model is based on the so-called 

sp-hybridization effect of the carbon atom valence electrons. 

In the honeycomb hexagonal mono-layer lattice three of the 

valence electrons form strong covalent bonds with the 

neighbors and the fourth electron is “free”, its state being 

linear combination of s- and p-states. In the scalar model the 

s-state is described by the scalar field �� and the p-state – by 

the vector field	��. These two fields are combined in the SU 

(2) matrix 	 
 ���� � 
������ where ��, �� denote the unit and 

the Pauli matrices respectively and the normalization 

condition ��� � ��� 
 1 is imposed [1]. Spin excitations in the 

model are described by the two Dirac spinors ��, �� 

corresponding to the electrons in the two independent 

triangular sub-lattices of the graphene (so-called quasi-spin 

excitations). It is convenient to introduce the combined field 

� 
 �⨂��� ⊕��� as the new order parameter of the model, 

where �  stands for the first column of the U-matrix. The 

Lagrangian density of the model reads:  

� 
 �
��������

�� � � 
� ��

�!�!� � 
"������#�$%�$�       (1) 

Here the interaction with the electromagnetic field is 

introduced via the extension of the derivative: �� 
 &� �

'�(�Γ*  where Γ+ 
 �1 � �,� 2⁄  stands for the charge 

operator corresponding to the natural boundary condition 

���∞� 
 1  and � 
 ��!�  is the projector on the positive 

energy states. The model uses the Dirac currents !� 
 ����� 

and also the direct Pauli interaction: 

#�$%�$ 
 0�� , �$1 �&�($ � &$(�� 4⁄ , the parameter I 

corresponds to the exchange energy per lattice spacing and 

"�is the Bohr magneton per spacing cubed. 

As an illustration let us study the case with the orientation 

of the magnetic field 0B
�

 along the 3  axis using the 

cylindrical coordinates	4, φ , 3, and also introduce the vector 

potential ,AA =φ  with the intensity of the magnetic field 

being 56 
 &7�4(� 4⁄ , 57 	
 �&6(,  and the natural 

boundary condition at infinity being imposed: (�3 → ∞� 

5�4 2⁄ . 

The model in question admits the evident symmetry 

�� ⟺ �� considering the infinite carbon plane  ���		�� -

invariance� ⇒ ��� . Where ZZ −=  corresponds to the 

reflection symmetry considering the 2 planes .That permits 

one to introduce 2-spinor <  where 

�� 
 �� 
 =>?�<, <�, < 
 =>?�@, A�.  To simplify the 

calculations, we us suppose the smallness of the radial 

magnetic field: 57 ≪ 56.  

In this approximation the new discrete symmetry holds 

< ⟹ �#,<,@ ⟹ �@, A ⟹ A∗, ��,, ⟹���,, , that permits 

one to introduce the chiral angle? ?: �� 
 =>FΘ, �� 
 F
�Θ 

and consider the axially symmetric configuration: @ 

0, A 
 A�4, 3�, Θ 
 Θ�4, 3�. 

3. The Lagrangian Density 

The Lagrangian density (�) of the model includes the three 

interacting fields the spinor field, chiral field, and the 

electromagnetic field. As a result the Lagrangian density 

takes the form:  

� 
 �8J KL��&MΘ�� � �
N �&ML�

� � '��L�(�F
��ΘO � 8μ�Rsin�Θ B � UV 
WX � 8Y�L�F
��Θ                        (2) 

The model contains the two constant parameters: the 

exchange energy J per lattice spacing and some characteristic 

inverse length √Y. Where "� [ 0 denotes the Bohr magneton 

per lattice spacing cubed.  

The new variable for our spinor field is introduced: 

L 
 A�	and	&M	 signifies the differentiation with respect 

to4	and	3 . The equations of motion corresponding to the 

three interacting fields; the spinor (L ), chiral ( ? ? ) and 
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electromagnetic field (() in (1) read as follows: 

2 2 2 2 2 2 2
0 04 ( ) 4 sin 2sin 2I R R e RA R Bλ µ   ∇ − ∇Θ − Θ = Θ −      (3) 

( ) 2 2 2 2 2
0 02 sin 2 sin 2I R e R A R R Bλ µ   ∇ ∇ Θ − Θ = Θ −         (4) 

( )2 2 2 2 2
0 0

1
16 sin 8 sin .

4
A Ie R A Rρµ

π
∇ = Θ + ∂ Θ          (5)  

Let us now search for the solution to the equations (2), (3), 

(4) in the asymptotic domain z → ∞ , where, 0,Θ →

01/ 4 ,     / 2 ,    0, 0.R A Bξ ρ β ξ β= + = + → → thus, the 

equation for our chiral angle in (3) takes the form: 

( )2 2 2 2 2
0 0 0 0

1
4

4
I e B Bρ λ µ ∇ Θ − Θ = Θ −  

 

Its solution can be obtained by separating variables: 

( )2
0 0exp ,    v kz constρΘ = Θ − − Θ = ,               (6) 

the constant parameters being: 

( )2 2
0 0 0 0 0/ 4,   I 4 .e B k B e Iν µ λ= = − +

 

Inserting equation (5) into (2) and (4), we get the 

inhomogeneous equations for �	and	^: 

∇�� = ∇Θ
�
+ K�N e�

�B��ρ� + �
c �λ

� − 2μ�B��O Θ
�
,      (7) 

∇�^ − e
7 = 2πe�B��λ� − 4μ�B��ρΘ

�
                (8) 

with the solution of the form: 

� = Θ��	'gh�−2i4� − 2j3�k�4�; 	^ = mΘ��'gh�−2i4� − 2j3�n�4�                                       (9) 

where the radial functions N (4) and K (4) satisfy the following equations: 

koo + ko p�7 − 8i4q + k K25� p'� − 8 �r
� q + 4 � 

� + '��5��4�O = �
� '�

�5��4� + '�5� + �
� �Y

� − 3"�5��          (10) 

noo + n′ p�7 − 8i4q + n p4j� − 8i4� − �
7 q = 4.    (11) 

Let us now estimate the magnetic intensity:  

56 = 5� + u6 , u6 =
1
4 &7�4^�, 	57 = u7 = −&6^ 

However, at small 4 → 0  one finds from (10) thatn ≈
4, 8⁄ , and therefore the intensity of the magnetic field reads: 

u6 = w'�5��'�J − 4"��Θ��4�	'gh�−2i4� − 2j3�    (12) 

u7 = xy
� '�5��'�J − 4"��Θ��4,'gh�−2i4� − 2j3�    (13) 

As can be seen from the equations (11) and (12), according 

to the sign of the multiplier '�J − 4"� our graphene material 

reveals diamagnetic or paramagnetic behavior. Therefore, it 

should be interesting to obtain numerical estimates for the 

parameters of the model. In view of the definitions adopted 

one has 

exch
0 0 3

E
 ,    ,   I .

a2 e

e e
e

c m ca
µ= = =ℏ

ℏ z                (14) 

Where, the exchange energy is usually adopted as{+|}~ =
2.9'�  and the lattice spacing as � = 3.56 ⋅10�W=�, with ' 

being the absolute value of the electron charge. Finally, one 

can find the following numerical values: 

'�J = 2 ⋅10,��AFF, 	"� = 2 ⋅10���AFF.             (15) 

It means that the parameter '�J − 4"� is positive and the 

weakening of the magnetic field inside the bilayer graphene 

is predicted and it’s strengthening for small r in accordance 

with (12) and (13). In view of the importance of the latter 

conclusion, it would be desirable to investigate the magnetic 

field behavior in the central domain of the bilayer graphene 

material. 

4. Domain Wall Structure 

In view of the importance of the later conclusion it would 

desirable to investigate the magnetic field behavior in the 

central domain of the bilayer graphene, i.e. at small �  but 

arbitrary to 3. To this end, we consider the extrapolation of 

the configuration (6) to the domain wall structure of the 

form: 

� = 4 arctan0exp�−i4� − j3�1.                  (16) 

&7� = −4i4 �
	�����$7 �y6�                        (17) 

	&6� = −2j �
	�����$7 �y6�                          (18) 

F
��� = 4 ���~ �$7 �y6�
}��~ �$7 �y6�                           (19) 

By inserting equation (16) and ( = 5�4 2 + ^,L ≈ 1 4⁄⁄  

into (4), would amount to the following inhomogeneous 

equation: 

∇�^ − e
7 = 2w4J5� 2

0e sin�� + 8π "� 2sinρ θ∂ ≡ 2w4! (20) 

The solution to the equation (20) satisfying boundary 

condition ^�4 = 0� = 0 can be obtained by the method of 

Green’s function: 
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^ 
 � �3′ � �F�
�� exp	0
F�3 � 3′�1 � �4o4o!o0J��F4�n��F4o� � n��F4�J��F4′�17

�
�
��                                 (21) 

where J�  and n�  stand for the modified Bessel functions of 

the imaginary argument. Taking into account their asymptotic 

behavior as	4 → 0: J��4� ≈ 4 2⁄ , n��4� ≈ 4�� 

J��F4�n��F4′� + J��F4′�n��F4� = �
� p

7
7V −

7V
7 q           (22) 

�
�� �4′7

� 4′� p 77V −
7V
7 q =

�
� p4 ∙

�
�4

� − �
7 ∙

�
N4

Nq = 7�
W       (23) 

one obtains: 

( )
3

2 20 0
0 02

tanh ( ) 4 tanh( ) 1 2 tanh ( )
cosh ( )

e B
Ie kz kz kz

kz

πρβ µ = + −
 

 (24) 

The expression (24) being positive is consistent with the 

numerical values in (15).Therefore, in the presence of an 

external magnetic field orthogonal to the planes one confirms 

the paramagnetic behavior of the bilayer graphene in the 

central domain at small 4. 

5. Conclusion 

In order to study the magnetic behavior of a bilayer 

graphene in the presence of an external magnetic field 

orthogonal to the plan, the two phenomenological approaches 

for the description were analyzed: The 8-spinor 

generalization of the scalar chiral model of graphene was 

considered. Using some symmetry properties of the model, 

the gamma 5 invariance Lagrangian density quadratic in 

derivative was constructed using the principle of the energy 

positivity and that of correspondence with the scalar model 

was simplified and the equation of motion of the three 

interacting field (spinor, chiral and electromagnetic) was 

realized. The bilayer graphene reveals a diamagnetic or 

paramagnetic behavior according to the sign of the multiplier 

in equations (11) and (12), the magnetic field intensity at 

small 4 base on the parameters of the model was estimated, 

and it was found to be positive. The scalar model admits a 

very simple domain wall solution describing the bilayer 

graphene configuration. In the case of the magnetic field 

orthogonal to the bilayer graphene, according to equation 

(17) it was also found to be positive at small 4  that fact 

confirms the paramagnetic behavior of the bilayer graphene 

and the strengthening of the magnetic field intensity inside 

the material was revealed in the central domain. In future the 

effect of temperature would be considered for further 

investigations using the chiral model of graphene.  
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