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Abstract: In the present world, due to the complicated dynamic properties of neural cells, many dynamic neural networks 

are described by neutral functional differential equations including neutral delay differential equations. These neural networks 

are called neutral neural networks or neural networks of neural-type. The differential expression not only defines the derivative 

term of the current state but also explains the derivative term of the past state. In this paper, global asymptotic stability of a 

neutral-type neural networks, with time-varying delays, are presented and analyzed. The neural network is made up of parts 

that include: linear, non-linear, non-linear delayed, time delays in time derivative states, as well as a part of activation function 

with the derivative. Different from prior references, as part of the considered networks, the last part involves an activation 

function with the derivative rather than multiple delays; that is a new class of neutral neural networks. This paper assumes that 

the activation functions satisfy the Lipschitz conditions so that the considered system has a unique equilibrium point. By 

constructing a Lyapunov-Krasovskii-type function and by using a linear matrix inequality analysis technique, a sufficient 

condition for global asymptotic stability of this neural network has been obtained. Finally, we present a numerical example to 

show the effectiveness and applicability of the proposed approach. 
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1. Introduction 

Since Hopfield proposed a neural network model which 

was named after him in 1984, the Hopfield neural network 

has been applied to various fields, such as combinatorial 

optimization [1–4], image processing [5, 6], pattern 

recognition [7], signal processing [8], and communication [9]. 

As for one of the recurrent neural networks, the Hopfield 

neural network has been continuously investigated in the past 

decades [10-14]. In fact, due to the finite speeds of the 

switching and transmission of signals in a network, time 

delays exist in a working network and thus should be 

incorporated into the model equation of the network. Neural 

networks in the presence of time delays have received a great 

deal of attention in recent literature [15-22]. 

Due to the complexity of nerve cells in the real world, 

people have found that many existing neural network models 

cannot easily or accurately describe the characteristics of the 

neural response process. So, the different information of the 

past states should be incorporated to describe such a complex 

neural reactive dynamic system. Since a time derivative of 

the state is a function of time, delay parameters need to be 

introduced into the time derivatives of states of the system. 

The neural network model containing time delays in the time 

derivatives of states is called a delayed neutral-type neural 

network. Neutral-type neural networks are a special type of 

time-delayed neural networks, in which the information 

relating to derivatives of the past states is introduced to 

describe the system dynamics [23-27]. Further neural 

networks and applications can be refereed to other studies 

[28-30]. Neutral-type neural networks are usually described 

by the following ordinary differential equations: 
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( ) ( ) ( ( )) ( ( ( )))

( ( ))

x t Cx t Af x t Bf x t t

Ex t t u

τ
τ

= − + + −
+ − +

ɺ

ɺ
      (1) 

In 2008, C. Bai investigated system (1) and has given 

sufficient conditions ensuring the existence and global 

exponential stability of the continuously differentiable, 

almost periodic, solution by using a fixed point theorem and 

differential inequality technique [25]. In 2012, Orman has 

obtained sufficient conditions for the existence, uniqueness 

and global asymptotic stability of the equilibrium point for 

the class of neutral-type systems (1) [26]. In 2013, S. 

Lakshmanan et al. have studied the following neutral delay 

Hopfield neural network model: 

( ) ( ) ( ( )) ( ( ))

( ( )) ( )
t

t

y t Ay t Bg y t Cg y t

D g y s ds Ey t d I
τ

τ

−

= − + + −

+ + − +∫

ɺ

ɺ
       (2) 

S. Lakshmanan and his group developed several 

LMI-based criteria to guarantee the asymptotic stability of 

neural networks. They considered the delay partitioning on 

both discrete and distributed delays and triple integral term 

for the neutral delay for the development of the derived 

results, and by employing a new type of Lyapunov–

Krasovskii functionals, new delay-dependent stability criteria 

were derived [27]. 

Motivated by the idea and work of S. Lakshmanan et al, in 

this paper, the following neutral delay neural network model 

will be studied: 

1 2 3 1

4 2 5

( ) ( ) ( ( )) ( ( ( )))

( ( )) ( ( ))

y t A y t A g y t A g y t t

A y t t A g y t I

τ
τ

= + + −
+ − + +

ɺ

ɺ ɺ
     (3) 

where 1 2( ) ( ( ), ( ), , ( ))T
ny t y t y t y t= ⋯  denotes the state 

variable, and 1 1 2 2( ( )) ( ( ( )), ( ( )), , ( ( )))T
n ng y t g y t g y t g y t= ⋯  

denotes the activation function. 1 1 2{ , , , }nA diag a a a= ⋯

( 0, 1,2,ia i n< = ⋯ ), 2 ( )ij n nA b ×= , 3 ( )ij n nA c ×= , 4 ( )ij n nA d ×= , 

5 ( )ij n nA e ×=  and the constants aij, bij, cij, dij and eij denote, 

respectively, the connection weights of the jth neuron on the 

ith neuron. If the output of the jth neuron activates the ith 

neuron (or inhibits it), then 0ijb >  (or 0ijb < ), ijc , ijd , ije

are similar. 1( )tτ  and 2 ( )tτ denote the transmission delays of 

corresponding terms, and satisfies 0 ( )i itτ τ≤ ≤ < ∞ , 

*( ) 1i itτ τ≤ <ɺ , where ( )i tτɺ  is the first derivative of ( )i tτ , 

and iτ , *
iτ  are positive constants (i=1,2). 

1 2( , , , )T
nI I I I= ⋯ , in which Ii is the external bias on the ith 

neuron. 

Let the activation functions ( )ig i  satisfy the following 

conditions: 

(H) The activation function is bounded and satisfies,

( )i i ig y M≤ , 1,2,i n= ⋯ , 1 2

1 2

( ) ( )
0 i i

i

g z g z
L

z z

−≤ ≤
−

, 1 2,z z∀ ∈R , 

and 1 2z z≠ , where Mi and Li are positive constants. 

Because the activation functions satisfies (H), by using the 

Brouwer fixed-point theorem, it would be inferred that the neural 

network model (3) has an unique equilibrium point y* for each I; 

it is similar to the proof provided by the literature [25]. 

The equilibrium point y* in (3) is shifted to the origin by 

letting x(t)=y(t)- y*, and then the system (3) can be 

transformed into the following form by 

1 2 3 1

4 2 5

( ) ( ) ( ( )) ( ( ( )))

( ( )) ( ( ))

x t A x t A f x t A f x t t

A x t t A f x t

τ
τ

= + + −

+ − +

ɺ

ɺɺ
     (4) 

where 1 2( ) ( ( ), ( ), , ( ))T
nx t x t x t x t= ⋯  is the state vector of 

the transformed system, and ( ( )) ( ( ) ) ( )f x t f x t y f y∗ ∗= + − , 

obviously, (0) 0f = . 

From the assumption (H), the transformed neuron 

activation function satisfies 

( )i i if y M≤ , 1,2,i n= ⋯ , 
1 2

1 2

( ) ( )
0 i i

i

f z f z
L

z z

−
≤ ≤

− , 1 2,z z∀ ∈R , 

and 1 2z z≠ , where Mi and Li are positive constants. 

2. Main Results 

In this section, the sufficient conditions for global 

asymptotic stability of system (4) would be established. 

Throughout this paper, the following notations will be made 

use of: 

i. 1 ( )x tη = , 2 ( ( ))f x tη = , 3 1( ( ( )))f x t tη τ= − ,  

4 2( ( ))x t tη τ= −ɺ , 5 ( ( ))f x tη = ɺ ;  

ii. 1 2max{ , , }M nL L L L= ⋯， ,  

1 2max{ , , }M na a a a= ⋯， , M

M

a

L
λ = ;  

iii. The superscript T denotes the transpose of the matrix 

and the notation X Y≥ (respectively, X > Y), (where X 

and Y are symmetric matrices), means that X-Y is 

positive semi-definite (respectively, positive definite). 

( )m Pλ  and ( )M Pλ  denote the minimum eigenvalue 

of P and the maximum eigenvalue of P, respectively. 

Diag{· · · } denotes the block diagonal matrix. I denotes 

identity matrix. 

By using notations (I), system (4) can be rewritten as: 

1 1 2 2 3 3 4 4 5 5( )x t A A A A Aη η η η η= + + + +ɺ    (5) 

Next, a theorem, which provides sufficient conditions for 

global asymptotic stability of the system (4), will be 

established. 

Theorem 1 The zero solution of system (4) is globally 

asymptotically stable if there exist symmetric positive definite 

matrices P, Q, such that 
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where 
T

=ij i jA QA∑ , i, j=1,2,3,4,5. 

Proof Define the following Lyapunov-Krasovskii 

functional for system (4), 

( )

0
1

( ( )) ( ) ( ) 2 ( ( ) ( ))
i

n x t
T

i i

i

V x t x t x t f s f s ds

=

= + +∑∫ ɺ  

1

0

( )
( ( )) ( ( ))

T

t
f x t s P f x t s ds

τ−
+ + +∫  

2

0

( )
( ) ( )

T

t
x t s Qx t s ds

τ−
+ + +∫ ɺ ɺ  

By using assumption (H), we derived 

( ( ))
0

( )

i i
i M

i

f x t
L L

x t
≤ ≤ ≤ ,              (6) 

0 ( ) i Mf s L L≤ ≤ ≤ɺ , 

0 | ( ( )) | | ( ) | | ( ) |i i i i M if x t L x t L x t≤ ≤ ≤ , 

0 | ( ( )) ( ( )) |i i i if x t f x t≤  

| ( ) ( ( )) |i i i iL x t f x t≤  

| ( ) ( ( )) | .M i i iL x t f x t≤  

From (6), it is easy to understand that the signs of fi(xi(t)) 

and xi(t) are the same (both positive, or both negative) if fi(xi(t)) 

≠ 0, therefore 

0 ( ( )) ( ( ))i i i if x t f x t≤  

( ) ( ( ))i i i iL x t f x t≤  

( ) ( ( )),m i i iL x t f x t≤  

1
( ( )) ( ) ( ( )) ( ( ))i i i i i i i

m

f x t x t f x t f x t
L

≥ , 

according to 0ia < , 1 2max{ , , }M na a a a= ⋯， , and M

M

a

L
λ = , 

the following is true 

1
( ( )) ( ) ( ( )) ( ( ))i i i i i i i i i

M

f x t a x t f x t a f x t
L

≤  

1

1
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i

f x t A x t f x t a x t

=

=∑  

1

1
( ( )) ( ( ))

n

i i i i i
Mi

f x t a f x t
L=

≤∑  

1

( ( )) ( ( ))

n
M

i i i i
M i

a
f x t f x t

L =

≤ ∑  

( ( )) ( ( ))Tf x t f x tλ=  

that is  

1( ( )) ( ) ( ( )) ( ( ))Tf x t A x t f x t f x tλ≤      (7) 

By using the notations in (I), (7) can be rewritten as 

2 1 1 2 2
TAη η λη η≤  

By calculating the derivative of V(x(t)) along the 

trajectories of system (4), then 

d ( ( ))
2 ( ) ( ) 2 ( ( )) ( )

d

T TV x t
x t x t f x t x t

t
= +ɺ ɺ  

2 ( ( )) ( ) ( ( )) ( ( ))T Tf x t x t f x t Pf x t+ +ɺ ɺ  

1 1 1(1 ( )) ( ( ( ))) ( ( ( )))Tt f x t t Pf x t tτ τ τ− − − −ɺ  

2 2 2( ) ( ) (1 ( )) ( ( )) ( ( ))T Tx t Qx t t x t t Qx t tτ τ τ+ − − − −ɺ ɺ ɺ ɺ ɺ  

1 1 1 2 2 3 3 4 4 5 52 ( )T A A A A Aη η η η η η= + + + +  

2 1 1 2 2 3 3 4 4 5 52 ( )T A A A A Aη η η η η η+ + + + +  

5 1 1 2 2 3 3 4 4 5 52 ( )T A A A A Aη η η η η η+ + + + +  

2 2 1 3 3(1 ( ))T TP t Pη η τ η η+ − − ɺ  

1 1 2 2 3 3 4 4 5 5( )TA A A A A Qη η η η η+ + + + +  

1 1 2 2 3 3 4 4 5 5( )A A A A Aη η η η η+ + + +  

2 4 4(1 ( )) Tt Qτ η η− − ɺ  

1 1 1 1 2 2 1 3 3 1 4 4 1 5 52 2 2 2 2T T T T TA A A A Aη η η η η η η η η η= + + + +  

1 1 1 1 2 2 1 3 3 1 4 4 1 5 52 2 2 2 2T T T T TA A A A Aη η η η η η η η η η≤ + + + +  
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here 
T

=ij i jA QA∑ , i, j=1,2,3,4,5.

 

According to the known conditions, Ω  is negative definite, 

so ( ( ))V x tɺ  is negative definite, thus system (4) is globally 

asymptotically stable. This completes the proof. 

3. A numerical Example 

In this section, an example to test the validity of results 

would be presented. Consider the following model with two 

neurons: 

1 1 1 1
1 2

2 2 2 2

( ) ( ) ( ( ))

( ) ( ) ( ( ))

x t x t f x t
A A

x t x t f x t

     
= +     

     

ɺ

ɺ
 

1 1
3

2 1

( ( ( )))

( ( ( )))

f x t t
A

f x t t

τ
τ

− 
+  − 

1 2
4

2 2

( ( ))

( ( ))

x t t
A

x t t

τ
τ

− 
+  − 

ɺ

ɺ

1 1
5

2 2

( ( ))

( ( ))

f x t
A

f x t

 
+  

 
 

ɺ

ɺ

 (8) 

where, 
1

( ( ))
1

i

i

x

i i x

e
f x t

e

−

−
−=
+

, 1

1 0

0 1
A

− 
=  − 

, 2

1 0.15

0.15 1.7
A

− 
=  − 

, 

3

1 0.5

0.5 0.7
A

− − 
=  − − 

,  

4

0.1 0

0 1.1
A

 
=  
 

, 5

4 0

0 0.34
A

 
=  
 

,  
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1

2

( )
( )

( )

x t
x t

x t

 
=  
 

, 1( ) 0.05cos( )t tτ = , 2 ( ) 0.03cos( )t tτ = , 

Obviously, the functions ( ( ))f x t  satisfies condition (H), and 

LM=0.5, Ma =-1, 2M

M

a

L
λ = = − , *

1 0.05τ = , *
2 0.03τ = . Let 

0.5 0

0 5
P

 
=  
 

, 
1.1 0

0 1.2
Q

 
=  
 

 

According to Theorem 1, by calculating the eigenvalue of 

matrix Ω , and by using Matlab, we obtained its eigenvalues 

( )eig Ω =[-0.0476 -0.2776 -0.4739 -5.5279 -4.9338 -3.7996 

-3.7308]. 

The matrix Ω  is negative definite. According to the result 

of Theorem 1, system (8) is globally asymptotically stable at 

its equilibrium point. 

4. Conclusion 

This paper investigated the problem of global asymptotic 

stability of delayed neutral neural networks. These neutral 

delayed neural networks are formulated by neutral delay 

differential equations. They not only include the derivative 

term of the current state but also the derivative term of the past 

state. 

A new Lyapunov-Krasovskii-type technique is employed to 

develop sufficient conditions of global asymptotic stability of 

the neural networks. All these stability criteria are expressed 

in the form of linear matrix inequalities, which are solvable by 

the use of the Matlab software. 

Finally, a numerical example is presented to illustrate the 

effectiveness and usefulness of the obtained results. Our 

results are suited to investigate the neural networks containing 

activation functions with both the state derivatives and 

multiple delays. 

Acknowledgements 

The authors are grateful for the reviewer’s suggestion. This 

research was supported by Guangxi Natural Science 

Foundation (No. 2016GXNSFAA380125). 

 

References 

[1] J. J. Hopfield. Neurons with graded response have collective 
computational properties like those of two-state neurons. Proc. 
Aead. Sci. USA, 1984, 81: 3088-3092. 

[2] S. Abe, J. Kawakami, K. Hirasawa. Solving inequality 
constrained combinatorial optimization problems by the 
Hopfield neural networks. Neural Networks, 1992, 5: 663-670. 

[3] H. Tamura, Z. Zhang, X. S. Xu, M. Ishii, Z. Tang. Lagrangian 
object relaxation neural network for combinatorial 
optimization problems, Neurocomputing, 2005, 68: 297-305. 

[4] R. L. Wang, Z. Tang, Q. P. Cao. A learning method in Hopfield 
neural network for combinatorial optimization problem. 
Neurocomputing, 2002, 48: 1021-1024. 

[5] S. Rout, Seethalakshmy, P. Srivastava, J. Majumdar. 
Multi-modal image segmentation using a modified Hopfield 
neural network Original Research Article. Pattern Recognition, 
1998, 31: 743-750. 

[6] R. Sammouda, N. Adgaba, A. Touir, A. Al-Ghamdi. 
Agriculture satellite image segmentation using a modified 
artificial Hopfield neural network. Computers in Human 
Behavior, 2014, 30: 436-441. 

[7] P. Suganthan, E. Teoh, D. Mital. Pattern recognition by 
homomorphic graph matching using Hopfield neural networks 
Original Research Article. Image and Vision Computing, 1995, 
13: 45-60. 

[8] N. Laskaris, S. Fotopoulos, P. Papathanasopoulos. A. 
Bezerianos. Robust moving averages, with Hopfield neural 
network implementation, for monitoring evoked potential 
signals Original Research Article. Electroencephalography and 
Clinical Neurophysiology/Evoked Potentials Section, 1997, 
104: 151-156. 

[9] D. Calabuig, J. F. Monserrat, D. Gmez-Barquero, O. Lzaro. An 
efficient dynamic resource allocation algorithm for 
packet-switched communication networks based on Hopfield 
neural excitation method. Neurocomputing, 2008, 71: 
3439-3446. 

[10] W. Zhang. A weak condition of globally asymptotic stability 
for neural networks. Applied Mathematics Letters, 2006. 19: 
1210–1215. 

[11] X. Li, Z. Chen. Stability properties for Hopfield neural 
networks with delays and impulsive perturbations. Nonlinear 
Analysis: Real World Applications, 2009, 10: 3253-3265. 

[12] L. Wang, Y. Gao. Global exponential robust stability of 
reaction–diffusion interval neural networks with time-varying 
delays. Physics Letters A, 2006, 350: 342-348. 

[13] X. Lou, Q. Ye, B. Cui. Parameter-dependent robust stability of 
uncertain neural networks with time-varying delay. Journal of 
the Franklin Institute, 2012, 349: 1891-1903. 

[14] C. Marcus, R. Westervelt. Stability of analog neural networks 
with delay. Physical Review A, 1989, 39: 347-359. 

[15] J. Wu. Symmetric functional-differential equations and neural 
networks with memory. Transactions of the American 
Mathematical Society, 1999, 350: 4799-4838. 

[16] J. Wu, X. Zou. Patterns of sustained oscillations in neural 
networks with time delayed interactions. Applied Mathematics 
and Computation, 1995, 73: 55-75. 

[17] K. Gopalsamy, X. He. Stability in asymmetric Hopfield nets 
with transmission delays. Physica D, 1994, 76: 1344-358. 

[18] P. van den Driessche, X. Zou. Global attractivity in delayed 
Hopfield neural network models. SIAM Journal on Applied 
Mathematics, 1998, 58: 1878-1890. 

[19] H. Zhao. Global asymptotic stability of Hopfield neural 
network involving distributed delays. Neural Networks, 2004, 
17: 47–53. 



 International Journal of Applied Mathematics and Theoretical Physics 2018; 4(3): 78-83 83 

 

[20] R. Rakkiyappan, P. Balasubramaniam. Delay-dependent 
asymptotic stability for stochastic delayed recurrent neural 
networks with time varying delays. Applied Mathematics and 
Computation, 2008, 198: 526–533. 

[21] H. Xu, Y. Chen, K. L. Teo. Global exponential stability of 
impulsive discrete-time neural networks with time-varying 
delays. Applied Mathematics and Computation, 2010, 217: 
537-544. 

[22] R. Luo, H. Xu, W. Wang, J. Sun, W. Xu. A weak condition for 
global stability of delayed neural networks. Journal of 
Industrial and Management Optimization, 2016, 12: 505-514. 

[23] R. Samli, S. Arik. New results for global stability of a class of 
neutral-type neural systems with time delays. Applied 
Mathematics and Computation, 2009, 210: 564–570. 

[24] X. Zeng, Z. Xiong, C. Wang. Hopf bifurcation for neutral-type 
neural network model with two delays. Applied Mathematics 
and Computation, 2016, 282:17–31. 

[25] C. Bai. Global stability of almost periodic solutions of Hopfield 
neural networks with neutral time-varying delays. Applied 
Mathematics and Computation, 2008, 203: 72–79. 

[26] Z. Orman. New sufficient conditions for global stability of 
neutral-type neural networks with time delays. 
Neurocomputing, 2012, 97: 141-148. 

[27] S. Lakshmanan, J. H. Park, H. Y. Jung, O. M. Kwon, R. 
Rakkiyappan. A delay partitioning approach to 
delay-dependent stability analysis for neutral type neural 
networks with discrete and distributed delays. Neurocomputing, 
2013, 111: 81-89. 

[28] J. Ye, H. Xu, E. Feng, Z. Xiu. Optimization of a fed-batch 
bioreactor for 1, 3-propanediol production using hybrid 
nonlinear optimal control. Journal of Process Control. 2014, 24: 
1556-69. 

[29] R. Luo, H. Xu, W. Wang, X. Wang. A new stability criterion of 
neutral neural networks with time-varying delays. Pacific 
Journal of Optimization, 2016, 12: 487-96. 

[30] H. Zeng, K. L. Teo, Y. He, H. Xu, W. Wang. Sampled-data 
synchronization control for chaotic neural networks subject to 
actuator saturation. Neurocomputing, 2017, 260: 25-31. 

 

 


