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Abstract: The logistic map is one of the most important but common examples of chaotic dynamics. The object shows the 

crucial belief of the deterministic chaos theory that brings a new procedural structure and apparatus for exploring and 

understanding complex behavior in dynamical systems. We put an importance on report of the Verhulst logistic map which is 

one of the potential models and methods for researching dynamical systems that could develop to chaotic. Chaotic signals 

present a special difficulty in parameter estimation. The difficulty arises from the definition of a chaotic system because of 

sensitive dependence on initial conditions. It is seen that very slight changes in the initial conditions cause significant effects in 

the evolution. In general the chaotic systems are nonlinear and apparently random but they are deterministic. The main 

objective of this paper is how can find the logistic map equation and investigated the chaotic behavior for the logistic equation 

by varying the control parameters and finally discover Lyaponov exponent, Bifurcation diagrams etc. 
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1. Introduction 

The logistic map is a one dimensional discrete time 

demographic model how very complex, chaotic behavior can 

arise from very simple non-linear dynamical equations. 

Mathematically, the logistic map is written as: 

x rx (1 x )n nn 1 = −+                              (1) 

Where, 

x [0,1]n ∈  and represents the ratio of existing population to 

the maximum possible population at year n and hence 0x  

represents the initial ratio of population to maximum (at year 0), 
r  [0,4]∈  and represents a combined rate for reproduction and 

starvation. It was originally made as a very simple model for the 

population numbers of species in the presence of limiting factors 

such as food supply or disease containing two causal loops: 

i Due to reproduction the population will increase at a 

rate proportional to the current population when the 

population size is small. 

ii Due to starvation where the growth rate will decrease 

at a rate proportional to the value obtained by taking 

the theoretical carrying capacity of the environment 

less the current population.  

This type of simple equation already exhibits wonderful 

dynamics, quickly summarized. In a cobweb plot, the 

dynamics of the evolution of the map can be seen quickly. The 

applications of logistic map in engineering and technology are 

enormous. The focus of paper is on design of a chaotic noise 

generator governed by a logistic map [1]. The performance 

evaluation results demonstrate correct operation of the analog 

noise generating circuit system. Paper examined practical 

applications of chaos theory in microelectronic field using 

logistic map. It was found in their study that logistic map 

modeling is highly promising when genetic algorithm is used 

for numerical simulations [2]. Moreover, paper has shown that 

some nonlinear systems that have their sub-domains on the 

logistic map are often characterized with unique chaotic 

attractors [3]. These chaotic attractors have interesting 

stabilizing characteristics. This indeed is a good contribution to 

the literature on the exciting dynamic of logistic model.  

In the following section we have mentioned how the 
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general form of realistic logistic equation can be derived 

from logistic differential equation. Then we have shown how 

it matched with bounded population model. Later on we have 

deduced logistic difference equation from the logistic 

differential equation which is the logistic map. Lastly, the 

present paper which is strongly motivated by the quest to 

introduce the beginners to the theories of chaos and nonlinear 

dynamics focus on the development of time series and 

cobweb plot and also bifurcation and Lyapunov exponent 

based-chaos diagram in one dimensional logistic map. 

2. Methodology 

We know kty Ce=                                  (2) 

is the exponential growth model for unlimited growth. But 

for physically viable situation we cannot take this type of 

population model because this will give us unlimited growth 

of the species. For a realistic case we have to take an account 

that when we put forward with a population model most 

often we have to encounter an upper limit to the population 

which is called the carrying capacity L. This upper limit 

exists because of some limiting factor in the environment 

such as food, water, shelter, predation, etc. i.e. if we consider 

a logistic differential equation model with exponential 

growth which has some limiting value, say , L and a constant 

of proportionality, k then we can claim an accepted model.  

dy y
ky(1 )

dt L
= −                                (3) 

If y  is between 0 and L then 
dy

dt
 is positive and the 

population is increasing. If y  is greater than L then 
dy

dt
 is 

negative and the population is decreasing. Solving the 

logistic differential equation (3) we can find the logistic 

equation. After separating the variables, equation (3) can be 

written as  

dy
kdt

y
y 1

L

=
 − 
 

 

which can be rewritten as  

1 1
dy dy kdt

y L y
+ =∫ ∫ ∫−

                   (4) 

Integrating and after simplification this becomes 

( )
L

y
kt C

1 e

=
− +

+
 

If we put Ce b− =  then we obtained 

L
y

kt1 be
= −+

                              (5) 

Equation (5) is the general form for the logistic equation. 

If we look very carefully equation (3) it is clear that the 

general form of the logistic differential equation is 

dp 2
ap bp (a,b o)

dt
= − > ,                      (6) 

which is a basic model that can describe the behavior of 

some species population p(t) that is subject to no external 

influences. Assuming that the actual population of the species 

can be determined for the current generation, it will be seen 

that the population at some time n can be predicted solely 

from the knowledge of the present population. This 

differential equation can be solved using separation of 

variables like before. But it will be interesting and more 

significant if we use numerical method to solve this 

differential equation. Then with the help of computer we can 

predict more accurate behavior of the species of population. 

To use numerical method we can write the derivative term of 

equation (6) as difference equation. Let us first consider the 

step size h which designates the time between t0 , t1 , t2 ,…..

tn  such that t t hnn 1 .= ++  In the case of population model 

h might represent the line between mating seasons, i.e. if p0  

is the population at time t0 , then by integration we can 

predict pn  at any later time tn . 

Hence, 
p pdp nn 1

dt h

−+=                         (7) 

Using (7) equation (6) can be rewritten as  

2
p p (ap bp )hn n nn 1 = + −+  

p p p (ah bh p )n n nn 1 = + −+  

p p (1 ah bh p )n nn 1 = + −+  

Now we can let 1 ah+ = r and bh d=  reducing the 

equation to  

2
p r p d pn nn 1 = −+                               (8) 

Substitution of 
r

p xn n
d

=  

Equation (8) be comes 

x r x (1 x )n nn 1 = −+                        (9) 

This is a simplified form of the logistic difference equation 

which we derived from the logistic differential equation 

which is exactly same as equation (2). The logistic difference 

equation is that given an initial population x0 ,  

Successive xn  may be calculated 
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x r x (1 x )1 0 0= −  

x r x (1 x )2 1 1= −  

……………………… 

……………………… 

x r x (1 x )n n 1 n 1= −− −                        (10) 

Originally population modeling is extremely complicated 

but by analyzing the end behavior of the orbits produces by 

equation (9), the fate of any initial population can be 

determined. Although the logistic function is a fairly basic 

equation the mathematics can get rather complicated when 

computing orbits fate. For this reason our attention will 

examine for estimating the parameters of chaotic signals of the 

logistic map. The logistic map has very interesting properties 

for varying values of the parameter r  in (10). Once we have a 

formula then we can study the behavior of the logistic equation. 

That means how the behavior changes with the change of the 

parameter value r . Here we mentioned that chaos can come 

into play when the value of r  is beyond 2.5. In the following 

section we will mainly focus on that point for initial condition 

and for different number of iterations. 

3. Result and Discussion 

The notion of chaos implies three things: (i) the system is 

bounded (ii) it is periodic and (iii) has sensitive dependence on 

initial conditions. Of course boundedness and periodicity are 

relatively straightforward things to prove. However the 

dependence on initial conditions is a bit more difficult to show. 

But graphically this dependency is easy to see. When r is less 

than 1 the population will eventually die and also independent 

of the initial population which is shown in figure 1. 

 

 

Figure 1. Behaviorfor r is less than 1 and [0,1]x ∈ . 

 

 

 

Figure 2. Behavior of the logistic map for r  =1.25, 1.5 and 1.95 and 

x .5= . 

In figure2 when r  between 1 and 2 the population will 

quickly stabilize on a single value and the value depends on 

parameter r but does not depend on the initial population. 

When r  lies between 2 and 3 the population will also 

eventually stabilize on a single value but for some times first 

oscillates around that value. Again, the final value does not 

depend on the initial population. This case is shown in figure 

3. 

When r is 3.45 the population will oscillate between two 

values forever. These two values are dependent on r  but 

independent of the initial population which is depicted by 

figure 4. 
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Figure 3. Behavior of the logistic map for r  =2.25, 2.5 and 2.7 and 

x .5= . 

 

Figure 4. Behavior of the logistic map for r  =3.45. 

When r is 3.45 the population will oscillate between two 

values forever. These two values are dependent on r  but 

independent of the initial population which is depicted by 

figure 4. When r  slightly bigger than 3.54 the population will 

oscillate between 8 values then 16, 32 etc. which is seen in 

figure 5. But when r 4= and x .1= the behavior of logistic 

map is chaotic. This type of behavior is seen in figure 6. 

 

Figure 5. Behavior of the logistic map for r  =3.56 and .001x = . 

 

Figure 6. Behavior of the logistic map is Chaotic for r  = 4 and x .1= . 

Finally, if starting value of 1r >  but less than 3 successive 

points flow to a fixed point at a nonzero value of x. However 

for values of r  a little larger than 3 the fixed point bifurcates 

to a limit cycle of period 2. This then bifurcates again at a 

larger value of r  to a limit cycle with period 4. As r  

increases the period continues to double at successively 

closer and closer values of r  until at around 4r = the period 

becomes infinity and have chaotic behavior. 
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(ii) 

Figure 7. Lyapunov exponent dynamics for (i) [3.5,3.99999]r ∈  and x .1=  

and (ii) [0,4]r ∈  and x .1= . 

All the features and their dynamics can see more easily in 

the Lyapunov exponent. A defining feature of a chaotic 

system is sensitivity to initial conditions. If two trajectories 

which start off close to each other deviate more and more 

with increasing time the system is said to be chaotic. The rate 

at which nearby trajectories deviate from each other with 

time is characterized by a quantity called the Lyapunov 

exponent. There are a host of estimation schemes to 

determine the value of the Lyapunov exponent from a time 

series most of which assume that the initial condition is 

known. The main significance of these figures are that one 

can easily distinguish the regions which are chaotic r> 0 from 

the regions which tend to a fixed point or limit cycle (r< 0). 

There are several points (the first is at r = 3.0) where the 

Lyapuov exponent hits 0 and then goes negative again. These 

are the period doubling bifurcations. Precisely at the period 

doubling point the system is at the limit of chaos but then 

becomes non-chaotic when the period doubles. In figure 7(i) 

for r in the range greater than the point where f(x) first goes 

positive, there are many regions where f(x) is negative 

islands of stability where the behavior is fixed point or limit 

cycle. However in figure 7(ii) at the end of the period 

doubling regime at r about 3.577, f(x) crosses the axis and 

the system enters a chaotic region. i.e. This figure shown that 

chaos emerges (i.e. f(x)> 0) for r between 3.569944 and 

3.569948. 

 

(i) 

 

(ii) 

 

(iii) 

 

(iv) 

 

(v) 

Figure 8. Graph of (i) f(x) for  3.835r = , [0,1]x ∈ ,(ii) f(f(x)) for  3.2r = , 

[0,1]x ∈ , (iii) [f(x), x, f(f(x))] for [0,1]x ∈ , (iv) f(f(f(x))) for  3.96r = , 

[0,1]x ∈ , and(v)f(f(f(f(x)))) for  4r = , [0,1]x ∈  respectively. 
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For certain values of r  the sequence of nx converges to a 

fixed point value x where ( )x f x= . In figure 9 (i) illustrate a 

fixed point graphically for the case of  3.835r = . The 

sequence towards which the x values converge is called an 

attractor. It will be seen that an attractor may be a fixed point, 

a limit cycle or a chaotic attractor. But mainly, interested in 

the nature of the attractor as a function of r . Fixed-Point 

gives a result when two successive values are exactly the 

same. If convergence is very slow or if round off errors 

prevent exact agreement it is best to put in a less stringent 

test for determining whether convergence has been reached. 

A fixed point is stable i.e. it converge towards it if start off 

not too far away provided ( ) 1f x′ 〈 . Since ( ) (1 2 )f x r x′ = − , 

the fixed point at x = 0 is stable when 1r〈 . For 1r > this 

fixed point is unstable and figure 8 also shown what happens 

instead. 

 

(i) 

 

(ii) 

 

(iii) 

Figure 9. Bifurcation diagram showing the range of behavior for the logistic 

map at various values of r ,(i) [2.99,4]r ∈ , (ii) [3.2,4]r ∈  and (iii) 

[3,4]r ∈ . 

This figure just shows the region for r > 2.82 which is the 

most interesting part. For smaller values of r one always has 

a fixed point which is at 0 for r < 1and at a non-zero value for 

1 < r < 3. This figure just shows the attractors the sets of 

values of x towards which the iterations converge for 

different values of r. There can also be unstable fixed points 

and limit cycles which we don't see. For example the fixed 

point which is stable for r<3 continues smoothly for r>3 but 

it becomes unstable so the iterations don't flow towards it and 

hence it does not appear on the plot for r>3. Instead the stable 

attractor a length-2 cycle appears in the figure for r just 

greater than. Figure-10 shows that the cobweb plot for r= 

3.88 and x= 0.5 and also have taken 100 iterations. 

 

Figure 10. Cobweb plot showing the iterative behavior of the logistic map in 

a chaotic region. 

4. Conclusion 

In this paper, many important features of the simple one 

dimensional logistic map are preserved in the new dimension 

and their behavior is analyzed. Logistic map can be utilized 

to launch interested beginners to the concept of chaos 

diagram a basic concept in nonlinear dynamics and chaos. Its 

parameter 3<r<4 investigated by Lyapunov exponent. It is 

interested to the chaos diagram develop exhibited fractal 

structures by its layers of order within chaos as can be found 

in the bifurcation diagrams of nonlinear dynamical systems. 

The Lyapunov exponent has shown at a glance how the 

structures and features move in control parameters. 

 

References 

[1] Díaz-Méndez A, MarquinaPérez JV, Cruz-Irrison M, Vázquez-
Medina R, Del-Río-Correa JL. Chaotic noise MOS generator 
based on Logistic map. Micro electronics Journal, 2009, 40: 
638-640. 

[2] Siji PD, Rajesh R Takagi-Sugeno Fuzzy modelling of Logistic 
map using genetic algorithm. International Journal of Wisdom 
Based Computing, 2011, 1(3): 9-13. 

[3] George M. Stability areas in Logistic map. Advanced 
Research in Scientific Areas, 2012. 

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Mathematica Logistic Cobweb :

Constant 3.88, Initial Value 0.5



90 Musammet Tahmina Akter and Mohammad Abul Mansur Chowdhury:  Observation of Different  

Behaviors of Logistic Map for Different Control Parameters 

[4] Wei JG, Leng G. Lyapunov exponent and Chaos of Duffing’s 
equation perturbed by white noise. Applied Mathematics and 
Computation, 1997, 88: 77-93. 

[5] Kathira M. A Lyapunov exponent approach for identifying 
chaotic behaviour in a finiteelement based drills string 
vibration model. A thesis submitted to the office of Graduate 
Studies of Texas, A & M University in partial fulfillment of 
the requirements for the degree of Master of Science in 
Mechanical Engineering, 2009. 

[6] Shuichi A, Yoshifumi N. A chaotic cryptosystem using 
Lyapunov exponent. The 15th IEEE International Workshop on 
Nonlinear Dynamics of Electronic Systems, 2007, 
NDE’07Tokushima, Japan. 

[7] Andrzej S, Tomasz K. Estimation of the dominant Lyapunov 
exponent of non-smooth systems on the basis of mass 
synchronization. Chaos, Solitons and Fractals, 2003; 15: 233-
244. 

[8] Andrzej S, Artur D, Tomasz K. Evaluation of the largest 
Lyapunov exponent indynamical systems with time delay. 
Chaos, Solitons and Fractals, 2005; 23: 1651-1659. 

[9] T. A. O. Salau and O. O. Ajide, Development of a Lyapunov 
Exponent Based Chaos Diagram in the Parameter Plane of 
Logistic Map, British Journal of Applied Science & 
Technology, 2014, 4(21): 3096- 3106. 

[10] Nandi A. , Dutta D., Bhattacharjee J. K. and Ramaswamy R., 
2005, Chaos 15, 023107, DOI: 10.1063/1.1914755. 

[11] M. Tahmina Akter, Studies of chaos in non-linear dynamical 
systems, a thesis submitted to the research centre for 
mathematical and physical sciences (RCMPS), University of 
Chittagong, Chittagong-4331, Bangladesh in partial 
fulfillment of the requirements for the degree of Master of 
Philosophy (M. phil.), 2012. 

 

 


