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Abstract: The exact analytical Wyman-Adler’s relativistic solution describing the interior of a charged spherical strange 
star candidate is found under the assumption and existence of two parameters K and m. The interior self-bound star matter, 
pressure, energy density and the adiabatic sound speed are represented in terms of simple algebraic function. The analytic 
solution depicts a unique static charged configuration of quark matter with radius R~9 km and total mass M~2.5M⊙. And 
try to investigate the velocity of sound approximately 1/√3 which is similar to the attitude of SQM (Strange Quark matter). 
Based on analytic model in the recent work, the applicable values of physical quantities have been calculated by accepting 
the estimated masses and radii of some well-known strange star candidates like PSR J1903+327, Her X-1, Cen X-3, EXO 
1785-248. The equation of state of the charge matter distribution may play a major role in the study of the interior structure 
of highly compact charge stellar object in astrophysical study. 

Keywords: Exact Solution, Einstein-Maxwell, Reissner–Nordström, Relativistic Astrophysics, Compact Star,  
Equation of State 

 

1. Introduction 

It is well known that, at the pressure free interface, the 
Reissner-Nordstrӧm solution is interesting to observe 
(present charge) the gravitational collapse of a spherical 
symmetric distribution of the matter to a point singularity 
may be avoided [1] if the matter distribution acquires large 
amount of electric charge. Any compact star is not 
composed of charged perfect fluid and may be used to 
make a suitable model of compact object with charge 
matter for the numerical study of the stellar structure [2, 3, 
4]. Pant, Metha and Tewari showed that radiative 
gravitational radiation (GR) collapse may be contributed to 
formation of the compact non-singular massive hot object 
[5-7]. The black hole is never formed due to the apparent 
horizon formation condition [8]. This could be understood 
as the formation of a naked singularity. But the main reason 
is that the star radiates all its mass before it reaches the 
singularity at r = 0 and t = 0. Nuclear matter is meta-stable 
and it is well known that after releasing a lot of energy 
converts into strange quark matter (SQM) to achieve 

stability. And this QM is more stable matter. The collapse 
of a neutron star may lead to a strange quark star (SQS) or 
a hybrid star [9]. Here we consider only the structure 
properties of SQS. The surface density, 14102 ×=sρ g cm-3, 

is not the most realistic for modeling SQM star [10]. And 
the actual values of SQM density at zero pressure lie 
between 14104 ×  to 141010 × g cm-3 [11-13]. The mass-
radius relation for an SQS is as M ∝ R3 which is different 
from that of a neutron star. This star does not have the 
minimum mass. For an SQS with 1M⊙ ⩽M ⩽2M⊙, the 
radius is about 10 km [14, 15]. Here, we don’t want to write 
the physical condition for a regular and charged fluid 
sphere for interior solution of the gravitational field 
equations of a SQM star because [16] was elaborately 
discussed.  

A self-bound strange quark star belongs to a different 
class compact object than a conventional normal matter 
neutron star. The surfaces of bare strange stars and normal 
matter neutron stars have significant difference. The main 
properties of the quark surface which are strong bounding 
of particles abrupt density change from 314104 −× cmg  to ~ 0 
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in ~ 1 fm. Another striking distinction between a strange 
star and a normal neutron star is their surface electric field 
[17]. A bare strange stars have own ultra-strong electric 
fields on their surface which is around 1018 V/cm [18] and 
for color superconducting strange matter is 1020 V/cm [19-
21]. Ray et al. [22] and Malheiro et al. [23] first inquired 
the influence of energy density of ultra-high electric fields 
on the bulk properties of compact stars. Weber et al.[24-26] 
and [27] also have proposed that electric fields of this 
magnitude increase stellar mass by up to 30% contingent 
on the strength of the electric field which generated by 
charge distributions situated neighbor surfaces of strange 
quark stars. Whereas the strange star’s surface electric field, 
in the case of neutron star, is absent. Actually, these 
characteristics may allow the observationally distinguish 
quark stars from neutron stars. 

Nevertheless, here we study the SQM star which is 
nonlinear electrically charged self-bound stars, SQM star’s 
radius R< 10-12 km [12]. A self-bound strange quark star 
belongs to a different class compact object than a 
conventional normal matter neutron star [12]. For ordinary 
strange matter, the electric field is ~ 1018 V/cm to up to 1019 
V/cm if SQS forms a color superconductor [9]. The electric 
fields are as high as 1019-20 V/cm [27] and its determined 
the electrostatic effects and the surface tension of the 
interface between vacuum and quark matter [28]. And 
interesting things is that our model is exactly matching that 
range [27] of electric field. 

Recently, many authors have proposed authentic 
analytical models of electrically charged compact self-
bound stars considering a framework of linear and 
nonlinear equation based on MIT bag model [29, 30] and 
metric potential [5-7] successively. Self-bound SQM star’s 
modeling requires the use different stellar surface density 
than modeling a neutron star. An SQM star could have 
either bare quark-matter surface with vanishing pressure 
but a large, supernuclear density, or a thin layer of normal 
matter supported by Coulomb forces above the quark 
surface. Neutron stars like a part of “normal” stars, with 
hadronic matter exteriors where the surface pressure and 
baryon density vanish. Strange star, if it exists, has an 
extremely abrupt edge; it probably has the hardest smooth 
surface of any object in the universe. The edge of a neutron 
star is not nearly as abrupt as that of a strange star. Due to 
make from material that has been processed in stellar 
evolution, ordinary iron forms their surface.  

By solving Einstein-Maxwell field equations with help 
of metric coefficient N

N xBe )1( +=υ  and suitable forms of 

electric charge distribution functions [31, 32] to represent 
numerous stellar models of self-bound type. The main 
objective of this work is to present some more relativistic 
stellar models electrically charged compact stars with 
nonzero high surface density by satisfying applicable 
boundary conditions. 

The usual physical boundary conditions taken are 

1) ( ) 0P r R= =  

2) ( 0) 0Q r = =  
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The physical quantities such as total mass (M), radius (R), 
total charge (Q), may be specified by setting one of the 
following: (i) surface density, or (ii) central density as a 
parameter. The analytical equations of state for the model 
charged matter distribution is also obtained in parametric 
form and analyzed numerically. 

A physically acceptable interior solution of the 
gravitational field equations must comply with the certain 
(not necessary) physical conditions [33-36] such as (i) the 
solution must be free from both physical and geometric 
singularities. (ii) Pressure and density are always positive 
i.e. P, ρ ≥ 0. (iii) Density and pressure should be maximum 
at the centre and decreasing monotonically towards the 
pressure free interface (iv) Pressure P should be zero at 
boundary r = R i.e. P(r = R) = 0. (v) In order to equilibrium 
configuration the matter must be stable against the collapse 
of local region. Le Chatelier’s principle state that P must be 
a monotonically non-decreasing function of ρ, 0≥

ρd

dP  . (vi) 

For causality condition,
ρd

dP , the hydrodynamic phase 

velocity of sound waves in the neutron star matter, would 
not exceeds the velocity of light. (vii) the energy 
momentum tensor must be nonnegative, i.e. 

RrP <≤≥− 0,03ρ . This is known as trace condition 

[37, 38, 33, 40, 42]. (viii) Redshift z should be positive, 
finite and monotonically decreasing toward the boundary of 
the sphere. (ix) Allowable mass-to-radius ratio (M/R) for 
isotropic fluid spheres of the form 

9
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For the metric function N

N xBe )1( +=υ the pressure and 

energy density for the charged matter distribution become 
from the Einstein-Maxwell gravitational field equations 
become, 
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The equation of “pressure isotropy” yields the following 
solution, 
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where 
NA  is a constant of integration. 

2. Einstein–Maxwell Field Equations 

for Interior Solutions of Perfect Fluid 

Sphere 

2.1. Field Equations 

We consider a static, spherically symmetric star whose 
interior metric is given in Schwarzschild coordinates 
Tolman [43] ),,,( φθµ rtx = 1 

)sin( 22222)(2)(2 φθθλν ddrdredteds rr +−−=     (2.1) 

For the metric (2.1), the Einstein-Maxwell field 
equations become, 
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where prime (′) denotes the r -derivative and where q(r)  
represents the total charge contained within the sphere of 
radius r  defined by, 

duuerq
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Eq. (2.5) can be interpreted as the relativistic version of 
Gauss’s law. 

To transform the system (2.2)―(2.4) into relatively 
simpler form we assume the following ansatz [40, 44, 45], 

N

N CrBe )1( 2+=ν  

N is a positive integer and 0, >CBN
 are two constants 

to be determined by the appropriate physical boundary 
conditions. Eliminating the pressure P from (2.2) and (2.3) 
one obtain the equation of “pressure isotropy” 
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Equation (2.6) is a second order differential equation in v 

                                                             
1 Throughout the work we will use 1== Gc  except in the tables and figures.  

and first order in λ . At this moment it is convenient to 
introduce the following transformations 2, rCxZe ==−λ  

equations (2.2) and (2.4) become, 
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And the equation of “pressure isotropy” (2.6) can be 
written in terms of auxiliary variable x as, 
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which yields the following solution [10], 
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where NA  is a constant of integration.  

In order to obtain closed form solution one can imagine 
several plausible distributions to integrate the equation of 
pressure isotropy (2.6). Various authors presented variety of 
solutions previously for different suitable choices of charge 
distributions. Some of the solutions will be found 
elsewhere (See Table 1, [31]). In this work we consider the 
following model distributions: 
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Where 0≥K   and m is a nonzero real number. 
These distributions are chosen, in term of x, in such a 

way that electric field intensity vanishes at the center and 
remains continuous and bounded in the interior of the star 
for a wide range of values of the parameters m and K. Thus 
these choices are physically reasonable and useful in the 
study of the gravitational behavior of charged stellar 
objects. It has been shown in Maurya and Gupta [47, 48] 
for the uncharged and charged cases respectively that the 
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ansatz for the metric function N

N xBe )1( +=ν  where N is a 
positive integer produces an infinite family of analytic 
solutions of the self-bound type. Some of these were 
previously known (N = 1, 2, 3, 4, and 5). The most relevant 
case is for N = 2, for which the velocity of sound 31≈   
throughout most of the star, somewhat similar to the 
behavior of strange quark matter [49]. In this work we keep 
our interest particularly on to obtain the charged analogue 
of the case N = 2 and derive corresponding equations of 
state. 

3. New Charged Stellar Models 

For the case N = 2, Einstein–Maxwell system yields 
some new charged analogues of well-known Wyman-
Adler-Kuchowicz exact solution in general relativity, 

Model I: 
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Model II:  
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Equation (3.1d), (3.1e) and (3.2d), (3.2e) constitute the 
equation of state. 

4. Determination of Constants and 

Physical Quantities Using Boundary 

Conditions 

4.1. Determination of the Arbitrary Constant 2A  

To specify 2A  the boundary condition 0)( == RrP can 

be utilized, 
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where, 2CRX = . 

4.2. The Constant 2B  

The constant 2B can be specified by the boundary     

condition )()( RR ee λυ −= , which yields,  
Model I:  
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4.3. Determination of the Total Charge to Radius Ratio 

From Eq. (1.4), using 2CRX = , we obtain the charge to 
radius ratio 
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4.4. Total Mass to Radius Ratio 

Using the boundary condition iii) of Sect. 1 and with the 
help of Eq. (2.3) we can establish the equation of mass to 
radius ratio (compactness parameter). 
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4.5. The Central and Surface Redshift 
sc zz ,  

The central and surface redshifts of the charged fluid 
sphere are given by,  

1
1

1)0( −=−= −

N

c
B

ez υ
 

1
)1(

1
2

)( −+=−=
−

−

N

N

R

s
B

X
ez υ  

5. Physical Analysis 

5.1. Pressure and Density Gradients 

To analyze the analytical equation of state, obtained 
parametrically in equations. (3.1d), (3.1e) and (3.2d), (3.2e), 
we differentiate the pressure and density equations with 
respect to the auxiliary variable x. Due to the complicacy of 
those equations we prefer to choose the following particular 
case for which the pressure and density gradients become, 
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Model II:  
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5.2. Calculating Physical Quantities Using Surface/Central Density as Parameter 

For a given surface density 
Solution I: 
Radius 
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5.3. Physical Analysis of the Models 

Table 1a. Some values of parameters ),,( XKm for which well-behaved charge fluid sphere can be generated using solution I 

m ),( maxXK  
2A  2B  

c

P

c









ρ2

1  

c
d

dP

c









ρ2

1  

)(
)(2

kmR

kmM  

)(

)(

kmR

kmQ  

)(

)(

kmM

kmQ  
cz  

sz  

0.025 (1.12, 0.48) -3.4108 0.1750 0.11646 0.52641 0.865366 0.34551 0.79852 1.390 0.6152 

0.05 (1.11, 0.47) -3.3877 0.1796 0.11692 0.52482 0.858017 0.34008 0.792711 1.3957 0.6053 
0.1 (1.1, 0.45) -3.3566 0.1890 0.11669 0.521439 0.845084 0.33037 0.781863 1.2999 0.5862 

0.5 (0.85, 0.351) -3.0807 0.2505 0.12711 0.520182 0.735008 0.25979 0.706922 0.9978 0.4788 
1 (0.62, 0.39) -2.9523 0.2206 0.13149 0.531199 0.818074 0.308706 0.754713 1.1289 0.5316 

5 (0.05, 0.154) -3.1301 0.4785 0.092773 0.56844 0.509465 0.150312 0.590077 0.4456 0.2527 

10 (0.003, .075) -3.4184 0.6730 0.056708 0.562818 0.29086 0.071756 0.493407 0.2189 0.1338 
20 (0.001,0.021) -3.7968 0.8859 0.01784 0.552522 0.097314 0.020945 0.430468 0.0624 0.0406 

Table 1b. Maximum mass and the various physical variables of charged fluid spheres for given central density 

m ),( maxXK  

)10( 314 −× cmgsρ  

8.4 9.5 

M(M⊙⊙⊙⊙) R(Km) 15,cρ  
20Q  

0.025 (1.12, 0.48) 2.87 2.703 9.873 9.284 2.56 2.89 3.657 3.72 

0.05 (1.11, 0.47) 2.83 2.66 9.805 9.221 2.53 2.86 3.867 3.637 
0.1 (1.1, 0.45) 2.75 2.589 9.686 9.108 2.46 2.79 3.711 3.49 

0.5 (0.85, 0.351) 2.22 2.089 8.981 8.445 2.1 2.38 2.7.6 2.544 

1 (0.62, 0.39) 2.40 2.26 8.731 8.209 2.4 2.71 3.126 2.939 
5 (0.05, 0.154) 1.173 1.197 7.423 6.980 1.41 1.59 1.294 1.217 

10 (0.003, 0.075) 0.6014 0.566 6.1456 5.779 1.09 1.23 0.5114 0.481 
20 (0.001, 0.021) 0.123 0.1157 3.757 3.532 0.91 1.03 0.9125 0.858 
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Where central density 315
15, 10 −×= cmgcc ρρ  and surface density 314

14, 10 −×= cmgss ρρ  and charge CQQ 20
20 10×=  

Table 2a. Some values of parameters ),,( XKn for which well-behaved charge fluid sphere can be generated using solution  

m ),( maxXK  
2A  2B  

c

P

c









ρ2

1  

c
d

dP

c









ρ2

1  

)(
)(2

kmR

kmM  

)(

)(

kmR

kmQ  

)(

)(

kmM

kmQ  
cz  

sz  

0.025 (1.12, 0.48) -3.1465 0.1701 0.12251 0.53352 0.86839 0.34724 0.79973 1.3921 0.6163 

0.05 (1.11, 0.47) -3.1406 0.1791 0.1219 0.53039 0.8640 0.34349 0.79512 1.3628 0.6074 

0.1 (1.1, 0.45) -3.1396 0.1881 0.11965 0.524293 0.856848 0.336976 0.786548 1.3057 0.5901 

0.5 (0.85, 0.351) -3.0481 0.2467 0.11796 0.51208 0.78265 0.28593 0.73069 1.0133 0.4902 

1 (0.62,0.35) -3.0945 0.2395 0.1037 0.51927 0.87997 0.33283 0.75645 1.04327 0.5135 

5 (0.05, 0.084) -3.4257 0.6441 0.05594 0.558605 0.345015 0.092502 0.53622 0.2460 0.1494 

10 (0.003, .039) -3.6603 0.8041 0.03094 0.555909 0.175222 0.041052 0.468576 0.1152 0.0734 

20 (0.001,0.0105) -3.8933 0.9401 0.00914 0.550154 0.050459 0.010474 0.415161 0.0313 0.0206 

Table 2b. Maximum mass and the various physical variables of charged fluid spheres for given surface density 

m ),( maxXK  

)10( 314 −× cmgsρ  

8.4 9.5 

M(M⊙⊙⊙⊙) R(Km) 15,cρ  
20Q  

0.025 (1.12, 0.49) 2.78 2.614 9.4098 8.848 2.72 3.07 3.864 3.633 

0.05 (1.11, 0.48) 2.75 2.589 9.3633 8.805 2.69 3.04 3.806 3.578 

0.1 (1.1, 0.45) 2.671 2.115 9.264 8.711 2.58 2.92 3.62 3.404 
0.5 (0.85, 0.357) 2.424 2.279 8.788 8.264 2.35 2.66 3.137 2.95 

1 (0.524, 0.333) 2.246 2.112 8.469 7.964 2.2 2.49 2.818 2.65 
5 (0.03, 0.098) 0.852 0.801 6.652 6.256 1.19 1.35 0.799 0.752 

10 (0.005, 0.035) 0.2496 0.235 4.658 4.380 0.956 1.08 0.199 0.187 
15 (0.001, 0.019) 0.105 0.098 3.595 3.381 0.90 1.02 0.074 0.069 

Table 3. Physical values of energy density and pressure for different strange stars Model I  

Strange star candidate (m, K, X) M(M⊙⊙⊙⊙) R(Km) Pc,35 15,cρ  14,sρ  

PSR J1614-2230 (0.1, 0.63,0.31) 1.97 9.69 2.04 1.49 10.03 

Vela X-1 (0.1, 0.75, 0.25) 1.78 9.56 1.51 1.561 9.76 

Her X-1 (0.1, 0.2, 0.12) 0.85 8.10 0.788 0.92 0.767 
Cen X-3 (0.1, 0.41, 0.23) 1.49 9.178 1.61 1.24 9.22 

EXO 1785-248 (0.1, 0.245, 0.21) 1.30 8.849 1.58 1.21 9.02 

 
For the particular set of values of ),,( XKm for which 

the fluid distribution satisfies the following 
inequalities 0)(,0)( >≥ rrP ρ , 0/,0/ << drddrdP ρ  and 

0≥ρd
dP   and the speed of sound satisfies 1/0 ≤≤ ρddP  

and monotonically decreasing with increasing radius are 
reported in Table 1a and 2a. A fluid sphere satisfying these 
inequalities will be termed as well-behaved. Though there 
is no explicit relation in among m , K  and X , these inputs 
various charged fluid spheres can be generated. The mass 
and corresponding radius of compact charged fluid spheres, 
obtained by specifying one of the following: i) central 
density or, ii) surface density, is reported in Tables 1b and 
2b. For a particular choice of stellar surface 
density 314104.8 −×= cmgsρ , the total mass and other 

physical quantities are calculated and numerical results 
have been reported in the Table 1a.2 

                                                             
2 The following physical constants, in their conventional values, have been used 
for the numerical calculation: 

Model I: 
For 5=m the range of values 154.0,05.0 ≤≥ XK  are 

obtained over which the fluid distribution satisfies the 
above inequalities. Numerical investigation shows that X 
decreases as K increases. The maximum values of 
compactness parameter is obtain ( ) 509465.02 max =RM , 

using Eq. (4.4a) at 154.0,05.0 max == XK . Corresponding 

to the values of K and X, the total charge to radius ratio, and 
total charge to total mass ratio are 150312.0=RQ  and  

590077.0=MQ  using Eq. (4.3a). We find out the total 

mass and other physical quantities are calculated as M = 
1.173 M⊙ , R = 7.423 Km , 3151041.1 −×= cmgCρ  and 

CQ 2010294.1 ×=  for choosing the stellar surface density 
314104.8 −×= cmgsρ  as parameter.  

Model II: 

                                                                                                      

8 1 11 2 2 301 2.997 10 , 1 6.674 10 1.486 2 10C ms G N m kg M Km Kg
− − −= = × = = × = = ×Θ   
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For arbitrary value of m = 0.5, 375.0,85.0 max == XK , 

corresponding to these values of K and X the compactness 
parameter, the speed of sound is 0.512005 , total charge to 
radius ratio and total charge to total mass ratio are found to 
be ( ) 0.7350082 max =RM  , 0.25979=RQ  and 

0.706922=MQ . In order to choosing stellar surface 

density 314105.9 −×= cmgsρ  as parameter the mass and 

other physical values comes out to be M = 2.089M⊙, R = 
8.264 Km, 315102.66 −×= cmgCρ . 

The maximum mass of charge star depends on the set of 
lowest values of K and corresponding set of highest values 
of X. the values of K and X have been plugged in 
simultaneously as to satisfy  0/,0/ << dxddxdP ρ  and the 

speed of sound satisfy 1/0 ≤≤ ρddP  and monotonically 

decreasing with increasing radius. 
The behaviors of various physical variables in the 

interior of the star have been investigated and found regular 
and well behaved throughout the fluid sphere. It has been 
observed that the speed of sound always remain less than 
the speed of light and the condition of causality is satisfied. 
For large ρ (at center), 34>Γ  and there is a minimum 

value of 
sρρ = the surface value below which Γ becomes 

infinitely large. 

6. Model for Some Well Known Strange 

Star Candidates 

From last few decades astrophysicist has been analysis not 
only theoretical but also observational relativistic stellar 
objects for estimating mass and radius of their known 
compact objects  such as PSR J1903+327, X-ray pulser Her 
X-1, X-ray burster 4U 1820-30, RX  J185635-3754 are not 
compatible with the standard neutron star models [50,51]. 
More recent review is found in Weber [53]. Base on the 
analytic model development so far, to get an estimate of the 
range of various physical parameters of some potential 
strange star candidates we have calculated the values of the 
relevant physical quantities, such as central pressure, and 
central/surface density, by using the refined mass and 
predicted radius of 5 pulsars recently reported in 
Gangopadhyay et al. [52]. The values are reported in Table 3 

 

(a) 

 

(b) 

Fig 1. (a) Pressure-density profile and (b) Behavior of speed of sound for 

a charged fluid sphere for potential strange star candidate PSR 

J1614−2230 with mass 0.673M⊙ and radius 6.146 km generated by the 

input (m, K, X) = (10,0.003, 0.075) 

 

Fig 2. Behavior of the isotropic pressure P   

 

Fig 3. Metric function 
υe   

 

Fig 4. Electric charge distribution within the same fluid sphere 
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7. Conclusions 

In this work we have demonstrated some new interior 
solutions of Einstein-Maxwell field equations for a static 
spherically symmetric distribution of perfect fluid with 
particular forms of charge distribution to construct 
electrically charge stellar models. Our analytical analysis 
shows that, in the presence of charge, the solutions satisfy 
all the physical requirements to construct physically 
acceptable electrically charge stellar models. The charged 
analogues of Tolman IV and VII models, obtained by Gupta 
and Maurya [30], and Kiess [54], as the neutral ones, 
exhibit the physical features required for the construction of 
physically realizable relativistic compact stellar structure. 
However, various authors usually have chosen 2 × 1014 g 
cm-3 as stellar surface density to calculate the mass and 
radius of the charged fluid sphere which may have given 
rise to the stellar configuration as massive as 4-6 M⊙ with 
much lower central density. Such massive configuration 
may not serve as a realistic model for a strange quark star. 

A wide range of values, constant parameters, are allowed 
to specify the maximum mass of charged fluid spheres. 
Numerical studies show that the solutions obtained in this 
work can generate charged fluid sphere with maximum 
mass 2.87 M⊙, radius 9.409 km, central and surface 
densities on the order 3.07×1015 g cm-3 and 9.5×1014 g cm-3 
respectively, with electric charge on the order 1020 C. 
Moreover, the speed of sound is obtained ∼ 1/√3 at the 
center and remains almost the same throughout most of the 
fluid sphere. This behavior is like MIT bag model.  

An analytical stellar model with such physical features is 
most likely to present an approximated realistic model of 
strange quark star. And hence the analytical EOS given by 
our models, besides the usual linear EOS based on 
phenomenological MIT bag model, could play a significant 
role in the description of internal structure of electrically 
charged bare strange quark stars. 
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