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Abstract: Estimating physical activity in the elderly from wrist-gathered acceleration data was studied. Thirty individuals 

(65+ years) were video-recorded while wearing a wrist device and going about their normal activities within their regular living 

environment for four hours each. Acceleration data were summarized into an activity value [via the “differential signal 

magnitude” (DSM) method] and compared to metabolic equivalent of task (MET) values determined by video analysis for each 

time period (“epoch”). Different sampling rates and epoch sizes were evaluated. Sampling at 4 Hz and using 60-second epochs 

provided the best results, with a moderate Pearson’s correlation coefficient of 0.58 between DSM activity values and MET values. 

The area under the receiver operating characteristic curve (AUC) for classifying each minute of data as active (MET >= 2.0) 

versus moderately active (MET > 1.2 and < 2.0) was 0.87 (sensitivity 80%, specificity 79%). DSM activity values (sampling at 4 

Hz) were compared to the widely known signal magnitude area (SMA) values (requiring low-pass filtering and sampling at 40 

Hz), with an excellent correlation of 0.994. 

Keywords: Accelerometer, Activity Level, Differential Signal Magnitude, MET Values, Metabolic Equivalent of Task, 
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1. Introduction 

A substantial amount of research on human activity 

monitoring has been undertaken. Various systems have been 

tested—ranging from accelerometer and gyroscope sensors to 

video camera—to detect dangerous situations (e.g., falls) and 

signal help if necessary. Physical activity monitoring can 

provide a great deal of health-related information about an 

individual; in fact, Healthy People 2020, an organization 

under the U.S. Department of Health and Human Services, 

identified physical activity as a leading health indicator [1]. 

The health of a person can be evaluated on the basis of his/her 

activity levels in comparison to baseline values or on his/her 

ability to perform basic actions. To be practical for elderly 

patients living independently, such systems cannot be 

cumbersome or expensive, and should require little to no 

self-maintenance. 

Surveys of activity are perhaps the simplest health and 

activity evaluation method, but they are limited in scope and 

are prone to biased reporting, which can lead to inaccurate 

results. The National Health and Nutritional Examination 

Survey from 2003-2004 noted as much when they paired 

survey data with week-long accelerometer trials for over 7000 

participants aged 6-60+ in order to determine adherence to 

recommended activity levels. Although the study did not 

focus on monitoring methods, data collected did show the 

mentioned weaknesses of stand-alone surveys [2]. 

The earliest use of an accelerometer for measurement of 

human energy expenditure was by Wong et al in 1981 [3].  

They conducted a study to determine whether or not 

acceleration data from a uni-axial accelerometer integrated 

over 24 hours would properly correlate to oxygen 

consumption, from which energy expenditure can be 

calculated. When compared to other available technologies, 

the accelerometer showed the greatest efficacy in correlating 

with measured oxygen consumption, leading the researchers 
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to conclude that accelerometer-based devices are prime 

candidates for measurement of physical activity and energy 

expenditure. 

More recently, researchers have looked at using multiple 

sensors and/or sensors at multiple locations on the body when 

analyzing activity. For example, Gjoreski et al [4] attempted 

to use different combinations of four tri-axial accelerometers 

together with a location sensor system to determine posture as 

a way of detecting increased probability of falls. Nine 

combinations of accelerometer placements (on the chest, waist, 

right ankle, and thigh) in addition to four location tags were 

tested for their ability to correctly determine posture. Likewise, 

Yeoh et al [5] used three bi-axial accelerometers, one on the 

waist and one on each thigh, to determine posture and walking 

speed as a means of identifying activity. When determining 

posture, an Extended Kalman filtering algorithm was used in a 

heuristic classification system. With five test subjects, the 

system correctly identified walking, sitting, standing, and 

lying 100% of the time in 40 tasks ordered randomly 

Even though many studies focus on multiple sensor systems, 

these arrangements are not practical. Systems with multiple 

sensors across the body are more complicated than 

single-sensor systems, and are more likely to deter patients 

from using them. Based on the need for convenience, Bieber et 

al [6] conducted a study using the accelerometers embedded 

within the Sony Ericsson w715 mobile phones; they were able 

to successfully detect stand-up and sit-down transitions. 

Similarly, Kang et al [7] conducted a study that used a single 

tri-axial accelerometer mounted on a belt around the waist. 

Ten subjects performed a range of activities (falls, 

walking/running, and posture transitions) while wearing the 

device; an algorithm was then used to differentiate amongst 

the different activities. The system had an overall recognition 

rate of 96.1%. While these studies produced good results, 

Bassett et al [8] stated that energy expenditure (in activities 

other than walking) is typically under-predicted by motion 

sensors due to their inability to measure arm movement. A 

sensor placed at the wrist, however, would not have this same 

limitation.  In addition, a wrist device would be socially 

acceptable due to its resemblance to watches, wristbands, etc., 

unlike the devices suggested for placement on the waist, legs, 

or trunk. 

Stiles et al [9] studied the use of accelerometers worn at 

either the hip or wrist and found either location can be used to 

classify activity that is beneficial to bone in premenopausal 

women. Zhang et al [10] experimented with various sampling 

frequencies and number of axes when using accelerometer 

data from the wrist to classify activity level in adults (average 

age 49.4). Ekblom et al [11] reported on promising results for 

using wrist accelerometry to estimate energy expenditure and 

physical activity in children aged 8 to 10 years. 

The method used for analyzing the data is just as important 

as the device itself, and likewise there are many techniques for 

performing such analysis. Figo et al [12] recently sought to 

evaluate competing methods both qualitatively and 

quantitatively on the basis of algorithmic complexity, memory 

requirements, and accuracy of identifying activity in an 

experimental setting. The methods were grouped into three 

categories: time domain, frequency domain, and discrete 

domain. It was found that frequency-domain techniques were 

more suited for identifying walking, running, and jumping 

when the three activities were performed consecutively, but 

that time-domain techniques were simpler and yielded higher 

accuracy when only discriminating between two such events. 

Bouten et al [13] was the first to introduce a technique 

known as the signal magnitude area (SMA) method, which 

uses the area under the acceleration curve as a measure of 

activity. SMA has become widely used as a processing 

technique for accelerometer data. The values it generates can 

be used to distinguish different levels of activity, as well as 

relate to energy expenditure [14, 15, 16]. Khan et al [17] 

showed that by using SMA to augment the Autoregressive 

model (AR), the accuracy of characterizing both posture and 

physical activity dramatically increases. Furthermore, Bassett 

et al [8] studied the validity of using SMA in real-time activity 

monitoring by applying SMA to data collected from a 

waist-mounted accelerometer and comparing the results to 

metabolic equivalent (MET) values determined through use of 

a device that measured oxygen consumption. 

During this study, as a means of validating classification 

and characterization of an older adult’s activity in real time 

using a nonintrusive wearable wrist sensor, data analysis was 

performed on activity and video data collected during an 

IRB-approved protocol. The study goal was to create an 

automated algorithmic classification of activities performed 

by the elderly in routine daily life (running, sitting, sleeping, 

reading, eating, etc.) into one of three activity level groupings 

(inactive, moderately active, active). The approach uses an 

algorithm similar to—but more efficient than—SMA, 

requiring fewer samples and not requiring use of a low-pass 

filter. The activity values determined using this algorithm 

were compared to MET values assigned by manual video 

analysis as well as to the values determined using the 

well-established SMA method. 

2. Methods 

2.1. Data Collection 

Thirty elderly (aged 65 and over), ambulatory volunteers 

residing in an independent living facility were recruited and 

gave their consent to an IRB-approved protocol. The 

volunteers were asked to engage in normal activities of daily 

living (ADLs) while each being monitored over a four-hour 

time period (from 11 a.m. to 3 p.m.). The volunteers were 

video-recorded while data from a noninvasive, wireless wrist 

device containing a tri-axial accelerometer were recorded (see 

Fig. 1). There were no limitations on the activities in which the 

participants were allowed to engage other than that they were 

asked not to ride in a bus, car, or other vehicle, and not to 

engage in water-submersion activities (e.g., swimming). 

The wrist accelerometer was sampled at 125 

samples/second. Each sample consisted of three bytes of data.  

Each byte represented data from one of the three 



 International Journal of Biomedical Science and Engineering 2014; 2(5): 38-44  40 

 

accelerometer axes. The range of the samples was +/- eight 

times the acceleration due to gravity (g). The accelerometer 

functionality was such that when no movement was present, 

the normalized magnitude would be 1g. A timestamp, which 

was to the nearest second, was available for the beginning and 

ending of data collection. 

 

Figure 1. Data collected for each study participant consisted of 

accelerometry data from a watch device worn on the wrist and videorecording 

data from a research assistant-held videocamera over a 4-hour period as the 

participant went about his/her normal activities of daily living. 

2.2. Video Summaries 

De-identified video summaries that could be read into 

MATLAB for analysis were manually created for each video, 

with times in the summary given relative to the beginning of 

each video and provided to the nearest second. The summaries 

included a number of items that were used to help synchronize 

the video with the wrist data, such as the second when the data 

capture was started and stopped. In addition, each summary 

had rows for standing and sitting that represented the second 

the person reached either a standing or sitting position. 

Subcategories under standing and sitting were also included 

and listed when specific activities started and stopped. Some 

activities—which were of short duration, hard to define, or 

very infrequent—were marked as “standing other” or “sitting 

other.” If the person was not doing something that fit into one 

of the subcategories, that second of data was not specified 

separately. Periods of sitting or standing that were not marked 

as any particular type of activity were spent in conversation or 

indicated sitting or standing still. 

Activities that were included as subcategories of standing 

were: walking, going up stairs, going down stairs, working in 

the kitchen, doing carpentry, ironing, dressing, doing the 

laundry, washing, talking on the phone, bending down, 

watering plants, and making the bed. Activities that were 

included as subcategories of sitting were: doing paperwork, 

doing a puzzle, reading, writing, using a computer, eating or 

drinking, talking on the phone, playing the piano, knitting, 

sleeping, shining shoes, wrapping gifts, doing electrical 

repairs, sewing, and getting a massage. 
A list of MET values published by Ainsworth et al [18] was 

used to determine the MET value associated with each activity 

listed as a subcategory, as well as with the general categories 

of sitting and standing. A MET is a standard physiological 

measure describing the amount of energy required by specific 

activities. One MET is defined as the amount of energy 

required to sit still (i.e., the resting metabolic rate obtained 

during quiet sitting). The MET values associated with each 

activity were used to assign a MET level to each time period 

(‘epoch’) of activity. When multiple activities were present in 

an epoch, the single activity type present for the greatest 

number of seconds was used as the activity type for that 

epoch. 

2.3. Data Analysis 

The activity data gathered and stored by the wrist device 

were manipulated using MATLAB to create a single 

measurement of activity for each epoch. During the analysis, 

the optimal epoch length was also evaluated. The lengths 

considered were 30, 60, 90, and 120 seconds. The lengths 

under consideration were selected to be the same as the 

periods already available on the wrist device for 

communication with the database server. In order to preserve 

network bandwidth, the goal was to develop an activity 

measurement that could be inserted into an already existing 

message being sent between the measurement device and the 

server. 

In addition, the optimal number of samples per second used 

to determine the activity measurement was evaluated.  While 

the data were sampled at 125 samples per second during data 

collection, this sampling rate would not be reasonable for 

constant use in a real-time, data-streaming application without 

creating performance issues. Higher sampling rates would be 

detrimental to the battery life of the wearable device, which 

was designed to be worn for many days between charges in 

order to be practical, socially acceptable, and less burdensome 

for the wearer. Lower sampling rates, on the other hand, might 

not provide enough information. The sampling rates 

considered during the project were one, two, four, and eight 

samples per second, and one sample per every four and eight 

seconds. 

The only pre-processing step used was a median filter of 

length five samples. The method used to aggregate the data 

combines the ideas behind SMA and the differential signal 

vector magnitude (DSVM) method [9]. The equation, which 

can be referred to as the differential signal magnitude (DSM) 

method, is shown in (1). 

The DSM method was developed so that a low-pass filter, as 

necessary when using SMA, would not be required. 

Additionally, most implementations of the SMA method use a 

higher sampling rate (of about 40 Hz) than the sampling rate 

desired for this application. 

  (1) 

The originally collected data streams were sampled using the 

various sampling rates under consideration as indicated and 

then combined using the DSM method over the various 

epochs under consideration to provide arrays representing 

activity level over time (see Fig. 2). The MET values mapped 

to each epoch were then compared to the calculated DSM 
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activity levels, and Pearson correlation coefficients were 

derived for each of the sampling rate/epoch combinations. The 

Pearson correlation coefficient is a measure of the linear 

dependence between two variables, or in simpler terms, the 

degree to which the two variables form a line in 

two-dimensional space.  Values close to +1 indicate a direct 

relationship between the two variables, values close to -1 

indicate an indirect relationship between the two variables, 

and values close to 0 indicate a weak relationship between the 

two variables. As the absolute value of the correlation 

coefficient moves from 0 to 1, the strength of the linear 

relationship between the two variables under consideration 

increases. 

 

Figure 2. This flowchart outlines the data processing involved, from 

accelerometer measurements (X, Y, Z) to the differential signal magnitude 

(DSM) activity sum value [N = Count, Limit=Number of Samples Per Second 

X Number of Seconds Per Activity Value, DSM = Differential Signal 

Magnitude]. 

The sampling rate and epoch with the highest correlation 

coefficient were selected for further analysis. The ability of 

the DSM method to differentiate between different levels of 

activity was tested by creating a receiver operating 

characteristic (ROC) curve, from which to then calculate the 

area under that curve (AUC). 

In order to determine the best thresholds for distinguishing 

between inactivity, moderate activity, and activity, a linear 

regression line representing the relationship between the DSM 

values and the MET values was created. The activity value 

corresponding to 2 METs on the regression line was used as a 

threshold between active and moderately active and the value 

corresponding to 1.2 METs on the regression line was used as 

a threshold between moderately active and inactive. The 

sensitivity and specificity values achieved when these selected 

activity values were used as thresholds were calculated. 

As a means of validating the DSM method, which the 

authors have recently noted was also developed and tested 

completely independently by Carus et al [19], the data were 

processed using the SMA method, both with and without use 

of a low-pass filter, and with sampling at both 4 and 40 Hz. 

These results were then compared to the DSM results. As a 

final step, the correlation coefficient between the values 

resulting from the DSM method with sampling at 4 Hz and the 

values resulting from the SMA method using a low-pass filter 

and sampling at 40 Hz was calculated. 

3. Results 

The correlation coefficients between the DSM values and 

the MET values were calculated for each sampling rate/epoch 

combination (Fig. 3). The correlation coefficients varied 

between 0.38 and 0.60 with a very high level of significance (a 

p-value of < 0.0005). The highest correlation coefficients, in 

the range of 0.54 to 0.60 for all epochs tested, occurred when 

sampling at four samples per second. When considering the 

ideal epoch length, there was very little difference between 

epoch lengths of 60, 90, and 120 seconds. The results for the 

30-second epoch length were not quite as good as those for the 

longer epochs. All of the correlation coefficients when 

sampling at four samples per second for epochs of 60, 90, and 

120 seconds were in the range of 0.58 to 0.60.  These results 

indicate that while using a sampling rate of four samples per 

second and an epoch of 60, 90, or 120 seconds, activity values 

derived by the DSM method indeed correlate with MET 

values. Since there was very little difference between the 

results for epochs of 60, 90, and 120 seconds, an epoch length 

of 60 seconds was used for the remaining calculations. 

After the sampling rate and time period were selected, the 

ability of the DSM method to differentiate between different 

levels of activity was tested by calculating the AUC. The AUC 

when differentiating active (MET >= 2) from moderately 

active (1.2 < MET < 2.0) ADLs was 0.86. There were not 

enough data from the study participants to create an ROC 

curve for differentiating moderately active from inactive 

(MET <= 1.2) ADLs. 
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Figure 3. Effect of sampling rate and epoch size on correlation between DSM 

and MET values [DSM = differential signal magnitude, MET = metabolic 

equivalent, Hz = Hertz, s = second]. 

The linear regression line representing the relationship 

between DSM and MET values is shown in Fig. 4. The 

equation of the line is y = 22.6x – 13.6. Based on this equation, 

the DSM threshold between moderately active and inactive 

would fall at about 14 and the threshold between active and 

moderately active would fall at about 32. Using the value of 

32 to differentiate between active and moderately active 

values using the DSM method, the sensitivity was 71% and 

the specificity was 84%. These numbers improved slightly as 

the threshold was lowered to 28, at which point the sensitivity 

was 80% and the specificity 79%. There were not enough data 

in the inactive category to determine the sensitivity and 

specificity of differentiating between moderately active and 

inactive ADLs. 

 

Figure 4. Relationship between average DSM activity values for specific 

activity types and MET values.  Each data point represents a specific activity.  

The line going through the graph is the linear regression line based on all 

data points and their known MET values [DSM = differential signal 

magnitude, MET = metabolic equivalent]. 

Table 1 shows the results when comparing the DSM method 

to the SMA method. As mentioned, the SMA method is 

usually used after pre-processing data, sampled at 40 or more 

samples per second, with a low-pass filter. When using the 

SMA method with a filter and the suggested sampling rate, the 

correlation with METs is the same as when using the DSM 

method. However, if using the SMA method in the same 

manner as the DSM method, that is, with a lower sampling 

rate and without a low-pass filter, the SMA results are 

significantly worse. Finally, the correlation between the DSM 

method using four samples per second and no low-pass filter 

and the SMA method using 40 samples per second and a 

low-pass filter is 0.994. 

Table 1. Comparison of the DSM and SMA methods with and without use of a 

low-pass filter and using both four and 40 samples per second [DSM = 

differential signal magnitude, SMA = signal magnitude area, MET = 

metabolic equivalent, AUC = area under the receiver operating characteristic 

curve, Hz = Hertz]. 

Calculation Method 
Correlation 

with MET 

AUC Active versus 

Moderately Active 

DSM 4 Hz, no filter 0.580 0.858 

SMA 4 Hz, no filter 0.053 0.560 

SMA 4 Hz, low-pass filter 0.303 0.684 

SMA 40 Hz, no filter 0.055 0.570 

SMA 40 Hz, low-pass filter 0.580 0.859 

4. Discussion 

During this study, data analysis was performed on tri-axial 

accelerometer data gathered from 30 individuals aged 65 and 

over while they were being simultaneously video-recorded in 

their usual living environment in order to determine whether 

data gathered from the socially-acceptable wrist location 

could be used to provide an activity value that correlates with 

physical activity values. The study considered the optimal 

sampling rate and epoch length, as well as made use of an 

algorithm that sums the differences between successive 

samples, referred to as the DSM method, in order to derive an 

activity measure. The results of the study indicate that the 

DSM method offers a means of providing a value for physical 

activity that is moderately correlated with video 

analysis-assigned MET value estimates, and highly correlated 

with the well-established SMA method for estimating physical 

activity and energy expenditure in older adults going about 

their regular ADLs. Different sampling rates were tested, with 

a sampling rate of four samples per second providing the best 

results. Likewise, different epochs were tested, with the 

conclusion that epochs of 60, 90, and 120 seconds all 

produced very similar results. When using four samples per 

second and an epoch of 60 seconds, the correlation between 

the output of the DSM method and accepted MET values was 

0.58. Furthermore, the AUC resulting from differentiating 

between active (MET >= 2.0) and moderately active (1.2 < 

MET < 2.0) ADLs was 0.86. 

There are two limitations of this study. The first is that the 

comparison MET values were based on estimates by 

published activity categories [18] assigned to each second of 

the data by analysis of corresponding video recordings. While 

the analysis was carefully and manually performed on a 

second-to-second basis, the comparison values still represent 

estimates in themselves. This method of determining MET 

values used in the present study was chosen because the video 

summaries and matching acceleration data had already been 

collected for a previous research study. A desirable next step 

would be to confirm the correlation between the calculated 

DSM activity values and MET values in a follow-on study that 
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measures oxygen consumption with a portable measuring 

device. It is worth noting, however, that such an equipment 

setup would likely be considered somewhat intrusive, 

cumbersome, and uncomfortable, making it more difficult to 

recruit the necessary subjects, especially amongst older adults. 

The other limitation of this study is that there were not 

enough data to create an ROC curve for differentiating 

between moderately active and inactive ADLs. A follow-on 

study should be designed to concentrate on activities at the 

lower end of the activity scale, possibly including nap times or 

sleep periods. Future work should also include analysis of 

correlation between DSM values and MET values for 

activities in those younger than age 65. 

Despite these limitations, the results independently confirm 

the findings of Carus et al [19] that the DSM method provides 

values that are highly correlated with the well-established 

SMA values, without the costs associated with the use of a 

higher sampling rate and a low-pass filter.  The correlation 

measured between the two methods on the provided dataset 

was 0.994, indicating near-perfect correlation.  As Carus et al 

mentioned, a number of studies have shown that SMA values 

are correlated with METs (as determined using gold-standard 

techniques for measuring MET values); therefore, the high 

correlation between DSM values and SMA values here 

strongly supports that DSM activity values are likewise 

correlated with MET values. 

5. Conclusion 

There are two aspects of this research that are key to the 

success of systems designed to measure activity in real time as 

individuals go about their normal lives. The first is that the 

data are gathered at the wrist location. A sensor at the wrist 

location, especially one in watch form factor, is much more 

socially acceptable than a sensor placed at the waist, hip, 

and/or trunk. In addition, a wrist sensor in watch form factor is 

likely more comfortable than sensors placed in other body 

locations, allowing a wrist sensor to be worn 24/7, including 

during periods of sleep. The second aspect is that the DSM 

method requires less computation and fewer samples than the 

well-established SMA method, while providing nearly the 

same results. Less computation and fewer samples will result 

in improved battery life, a trait that is necessary for any system 

that hopes to be successful for mobile monitoring of physical 

activity. 
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