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Abstract: Background: The idea of remotely manipulating other people or animals without contact or invasion has existed 

long time ago. Many people have tried, but no one really make it happen. Recently, the technique of Brain-Computer interfacing 

is mushrooming. It was said researchers had partially realized the direct communication with brain and even the manipulation of 

the subject's behavior via a chip embedded in the brain. Nevertheless, for the trauma of implantation, such chip-intrusive 

method is not favorite to the healthy people. Objective: To explore a contactless and noninvasive technique to remotely 

manipulate the consciousness and behaviors of animals or humans. Methods: The anesthetized mice or sciatic nerve samples 

were caged in an air-filled bottle and set as the target. A pulsed intense-field laser (PIFL) beam (λ=532 nm; P=20 TW; E=0.1 

J/cm
2
; pulse width=30 fs; f=1 Hz) was emitted to the targets 1.2 m away. Results: θ-Rhythm mouse brain waves were evoked and 

recorded, and potentials in the detached frog sciatic nerve were stimulated without contact or invasion. Conclusion: The 

experiments shown that Pulsed Intense-field Lasers can evoke EEG and potentials in nerves contactlessly and noninvasively. It 

inspired us that we can remotely manipulate consciousness or behaviors on animals or humans by PIFL, which might bring 

about development to the Information Science and provide new medical treatment. 
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1. Introduction 

Whether fantasy or reality, for justice or for evil, the idea of 

remotely manipulating other people or animals without 

contact or invasion has existed since time immemorial [1-5], 

and many people have tried to make it happen. Legends have 

that Chinese Qigong (a mysterious Chinese Kung Fu) masters 

could cure diseases with their minds or drive the people lived 

thousands miles away to move [6-11]. However, no one has 

ever witnessed such an event. 

Physiologically, the movements of ions and transmitters 

intra and inter neurons are the basis of nerve excitation, and 

the transmission of ions and transmitters may result in muscle 

contraction, organ function or consciousness [12, 13]. In 

recent years, scholars have tried manipulating the flight 

direction of pigeons or the limb activity of patients by 
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transmitting electrical signals to chips embedded in the brain 

[14-16]. Others have activated cortical neurons and 

accelerated associative learning in mice via an opening in or 

thinned area of the skull using mid-infrared rays [17]. 

However, the risk to life of traumatic craniotomy instrument 

implantation is unfavorable for treatment. Noninvasive and 

remote manipulation techniques in animals and humans are 

urgently needed but have not yet emerged. Magnetic and 

electric fields have been used to evoke potentials in detached 

nerves or tissues in vivo [18-21]. However, emitted magnetic 

fields diverge, which limit their use for precise neuron control. 

A pulsed intense-field laser (PIFL) can excite proton waves 

and electromagnetic pulses (EMPs) [22, 23]. Particularly, the 

excited protons can drive the ions in the target to move with 

little disturbance to the objects in the pathway [24-26], much 

less to the low-density skeleton. Here, an IFPL device at the 

Shanghai Institute of Optic Mechanics (SIOM, Chinese 

Academy of Sciences) was used to induce potentials in a 

detached frog sciatic nerve from 1.2 meters away. θ-rhythm 

brain waves in mice were succesfully evoked contactlessly 

and implantlessly for the first time, which greatly inspired us 

to explore methods to remotely manipulate the behavior and 

conscious of humans and animals. 

2. Materials and Methods 

2.1. Materials 

Toads were purchased from the market, and the sciatic 

nerve-gastrocnemius model was prepared according to animal 

welfare and ethics guidelines. Four-week-old BALB/c mice 

were obtained from the Experimental Animal Center of 

Wenzhou University. 

2.2. Instruments 

An electrophysiological recorder (BL-420N, Techman Soft, 

Inc., Chengdu, China) was used to record the neuronal electrical 

signals. A digital electroencephalography (EEG) topographic 

map recorder (EK-8200, Ekane Electronic Technology Co., Ltd., 

Xuzhou, China) was used to record EEG signals from the scalp. 

The IFPL (Alpha 5/XS Ti Sapphire Laser; λ=532 nm; P=20 TW; 

E=0.1 J/cm
2
; pulse width=30 fs; JADE2 pumping; frequency=1 

Hz) at SIOM was used to excite the potentials in the sciatic nerve 

and elicit the brain EEG signals. 

2.3. Sample Container and Signal-recording Circuit 

Preparation 

The target chamber was under vacuum (1.0 × 10
-9

 Pa) 

during the experiment. To prevent death of the biological 

samples, the sciatic nerve-gastrocnemius model or mouse was 

placed in a tightly sealed and atmosphere-filled glass bottle, 

and the signals were acquired by electrodes linked to the 

extravehicular EEG or neuronal electrical signal recorder 

(Figure 1). An infrared camera was placed near the glass bottle 

to observe the state and behavior of the samples. 

The electrode set was placed on the scalp of the mouse, 

which was sealed in an air-filled bottle, and was connected to 

the extravehicular scalp EEG signal recorder through the 

flange on the wall of the vacuum chamber. 

 

Figure 1. Sample container. 

2.4. Stimulating the Sciatic Nerve-gastrocnemius Model 

with the PIFL 

The sciatic nerve-gastrocnemius of the toad was stripped 

and moistened with Ren's solution to maintain activity. Then, 

it was laid on the recording electrode linked to the 

extravehicular physiological signal acquisition system (PSAS) 

and tightly sealed in an air-filled bottle in the vacuum target 

chamber. A single laser pulse was emitted. The laser-induced 

electrical signals in the nerve were recorded by the PSAS, and 

the sciatic nerve-gastrocnemius was photographed by a 

camera. 

2.5. Evoking Mouse EEG Signals with the PIFL 

Five mice were individually anesthetized by an 

intraperitoneal injection of 20 µl of 2% uratan to ensure that 

they did not move during the test. The first electrode was 

placed in the upper right position of the skull (C3, shown in 

Figure 3-A); the second electrode was connected to the middle 

position above the skull (central zone, CZ), and the third 

electrode was clamped to the left ear (A1). After the 

electrode-connected head cover was fastened to the mouse and 

the mouse was placed into the well-sealed, air-filled glass 

bottle, the electrodes were connected to the scalp EEG signal 

recorder outside of the chamber, as shown in Figure 1. After 

the vacuum was achieved in the target chamber, a single 

intense-field laser pulse was emitted. The laser-evoked scalp 

electrical signals were recorded. 

3. Results 

3.1. PIFL-stimulated Potentials in the Sciatic Nerve 

As shown in Figure 2-A, no signals were recorded from the 

electrode not connected to the nerve fibers even after the laser 

pulse was emitted (the peak at 0 ms is an artifact stimulated by 
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the laser pulse). 

 

Figure 2. PIFL-stimulated neuropotentials. 

A) The vacant electrode recorded only a laser-triggered perturbation pulse at 

0 seconds, and no signals were. B) From the nerve fiber-connected electrode, 

a 27-mV evoked potential (lasting 0.8 ms) was recorded at 1.6 ms after the 

pulse was emitted (n=6). 

In contrast, from the nerve fiber-connected electrode, a 

27-mV evoked depolarized and overshoot potential (lasting 

0.8 ms) was recorded at 1.6 ms after the laser pulse (Figure 

2-B, indicated by the red arrow “↓”). The test was repeated on 

6 toads, and all tests were successful. Obviously, the laser 

pulse stimulated potentials in the sciatic nerves, and the more 

alive the tissue was, the more intense the signal. 

3.2. PIFL-evoked EEG Signals 

As shown in Figure 3, before the laser pulse was emitted, 

only a low-amplitude chaotic resting potential (the frequency 

was approximately 20 Hz) was recorded by the electrodes 

connected to the mouse scalp (lane 3 in Figure 3-B). After the 

laser pulse was emitted (indicated by “P” and the red arrow 

“↓”at 1.9 seconds), the 4
th

, 5
th

 and 6
th

 electrodes, which had no 

contact with the scalp, recorded first a positive and then a 

negative fluctuation. The whole procedure lasted 0.15 seconds, 

after which the resting state returned. No further evoked 

signals were recorded. 

In detail, lane 1, which was connected to the brain via the 

middle of the scalp (CZ), under which is the nerve-free 

superior sagittal sinus, recorded the same positive and then 

negative wave as that from the nonloaded electrodes (4, 5 and 

6), except that it was a slightly stronger wave. 

The signal from lane 2, which was connected to the left ear 

(A1), remained constant most of the time, except for a weak 

negative fluctuation at the moment of the laser pulse. 

Lane 3, which recorded the signal from the electrode 

making contact with the left central scalp (C3), displayed a 

negative overshoot wave at the moment of the laser pulse and 

then depolarized. It should be noted that, 0.8 seconds after the 

laser pulse (at 2.57 seconds, indicated by the green arrow “↑”), 

the voltage overshoot reversed. When the maximum (+3 µV) 

was reached, a θ-rhythm brain wave with an amplitude of 5 

µV and frequency of 5 Hz followed. That is, the IFPL excited 

the brain without contact or an implanted apparatus, showing 

potential for use as a remote interventional method. 

 

Figure 3. PIFL excites EEG signals via a contactless and implant-free method. 

A) Location of the electrodes on mouse skull. The red spots indicate the connections to the scalp, where EEG signals were individually recorded. The other 

spots were vacant. B) PIFL-excited EEG signals in the mouse brain from 1.2 meters away elicited without contact or an implanted apparatus. Lane 3 (C3) 

shows the PIFL-excited 5-Hz θ-rhythm brain wave in the mouse brain. Lane 1 was connected to the central zone (CZ) of the mouse brain, lane 2 was 

connected to the left ear (A1), and lanes 4, 5 and 6 were connected to the vacant electrodes; these lanes recorded only low-amplitude chaotic resting signals. All 

mice survived after the tests (n=5). 
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4. Discussion 

It is well known that K
+
 and organic A

-
 ions are abundant in 

the intracellular fluid, while Na
+
 and C1

–
 ions are abundant 

extracellular. The ion concentration between the inner and 

outer parts of the cell is uneven, and due to the concentration 

difference, there is a difference in potential across the cell 

membrane [27, 28]. Without external stimulation, the resting 

potential will remain relatively stable [27-29]. 

PIFLs can excite proton waves and EMPs, and the induced 

EMPs can drive ions to move [22, 23, 30]. Therefore, it is 

reasonable that when the laser pulse is strong enough and by the 

channels on the nerve membrane, the ions inside and outside the 

neuron membrane will be caused to flow to the opposite side, 

which consequently produce a transient potential fluctuation 

that spreads along the neuron, and finally excite the neuron 

[31-33]. The potentials can be recorded by a PSAS or EEG 

system [31-33]. In particular, PIFLs can drive the ions in the 

target cell via the Bragg effect without disturbing objects in the 

pathway [24-26], this ensured the target be stimulated 

effectively with enough energy. At present, the IFPL-based 

contactless and noninvassive EEG evoken techenique we 

explored is just the begining, much developments need to be 

furthered. For example, we can try to use multi miniaturized 

PIFL terminals to synchronously stimulate neurons under the 

cranium in different regions and at different depths. By 

stimulating each neuron with signal-coded laser pulses, can 

there appear an artificial illusion or something else such as 

artificial memories or artificial ideas. With it, may the directly 

transmit information to the brain from outside be realized, if this 

works, it will greatly promote the progress of Information 

Science. In any case, with this method, brain activity can 

undoubtedly be intervened. 

Health is always a concern for people. Patients who suffer 

from spinal cord or motor neuron injuries (for example, 

Stephen Hawking, the greatest theoretical physicist in 

contemporary Britain, suffered from amyotrophic lateral 

sclerosis), are confined to wheelchairs or beds for their entire 

lives. Physiotherapy has been employed for their 

neuromuscular functional recovery, for physical (magnetical, 

electrical, thermal) stimulation can induce the production of 

neurokines [31] which prevents their neuromuscular atrophy 

[32]. Guan and Austin described that a laser pulse can induce 

electrical signals in nerves and evoke muscle contractions [33, 

34]. If such a method is applied in the clinic, it might do help 

to the patients with spinal injury for their recovery. 

However, in addition to the limited maturity of the 

technique, PIFLs may be somewhat ionizing and may cause 

damage to the body [35-38]. Although all of the mice survived 

after our tests, to ensure the safety of this method in the clinic, 

more intensive investigations (including of safe doses and 

targeted stimulation) are needed. 

5. Conclusion 

Pulsed Intense-field Lasers can evoke EEG and potentials 

in nerves contactlessly and noninvasively. It provided an 

potential method to remotely manipulate consciousness or 

behaviors on animals or humans, which might bring about 

profound development to the Information Science and 

medical treatment. 
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