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Abstract: Bifurcations of periodic orbits and chaos in the Brusselator chemical reaction with different shape of external 

periodic forces are studied numerically. The external periodic forces considered are sine wave, square-wave, rectified sine 

wave, symmetric saw-tooth wave, asymmetric saw-tooth wave and modulus of sine wave. Period doubling bifurcations, chaos, 

reverse period doubling bifurcations, quasiperiodic bifurcations are found to occur due to the applied forces. Parametric 

regimes where suppression of chaos occurs are predicted. Numerical investigations including bifurcation diagram, maximal 

Lyapunov exponent, Poincare map, Phase portrait and time series plot are used to detect chaos, quasiperiodic and periodic 

orbits. 
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1. Introduction 

The study of nonlinear chemical dynamics (NCD) has 

flourished in the past three decades [1-10]. The prototypical 

phenomenon of NCD is chemical oscillation. Complex 

dynamical behaviours such as periodic, quasiperiodic and 

chaotic oscillations have been observed in certain nonlinear 

chemical systems. For example, in Belousov-Zhabotinsky 

(BZ) reaction, Roux [11] and Swinney [12, 13] and co-

workers revealed a class period doubling sequence leading to 

chaotic behaviour and Hudson and co-workers [14, 15] found 

chaotic behaviour interspersed in sequences of mixed-mode 

oscillations. Another oscillation reaction known as 

Peroxidase - Oxidase (PO) has been extensively investigated 

over the years. In the PO reaction, Yamazaki et al. [16] 

observed damped oscillations and Nakamura et al. [17] found 

sustained oscillations. Recent studies of the PO reaction have 

identified not only a period doubling route to chaos but also 

unstable periodic orbits in the chaotic attractor of the system 

[18-20]. Quasiperiodicity has also been found [21]. Other 

systems exhibiting chaotic behaviour include the chlorite–

thiosulfate reaction [22] and the cobalt / manganese / 

bromide–catalyzed autoxidations of p-xylene and 

cyclohexanone [23]. Although chaos is usually studied in 

open systems, several recent investigations have 

demonstrated that transient chaos may occur in closed 

systems [24, 25], where the changing composition of the 

system as reactants are consumed serves as the bifurcation 

parameter. 

Complex oscillations and chaos have also been studied in 

many types of electrochemical processes. Many of the 

studies of electrochemical chaos have utilized metal electro 

dissolution reaction. For example, Schell and Albahadily [26] 

studied the electro dissolution of copper in H3PO4 in which 

simple period doubling as well as period doubling mixed-

mode oscillations was found. A series of investigations of the 

electro dissolution of copper in NaCl and H2SO4 carried out 

by Hudson and Bassett [27-29] in which a number of routes 

to chaos such as period doubling, quasiperiodicity, 

intermittency and Shil’nikov chaos were demonstrated. 

Studies of the electro catalytic oxidations of formaldehyde, 

formic acid and various alcohols have also yielded 

information about mixed-mode, quasiperiodic and chaotic 

behaviours [30, 31]. Experimental studies by Koper et al. [32, 

33] have characterized the mixed-mode and chaotic 

oscillations found in the system such as the reduction of an In 

(III) at a hanging mercury electrode in solutions containing 
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thiocyanate ion. 

In the past few years much attention has been focused on 

the study of transition from periodic to chaotic motion in 

many dynamical systems with external force being of the 

form f sinωt [3-5, 34, 35]. Recently many studies have shown 

that the effect of different kinds of periodic forcing on these 

systems is considerable and they can change the dynamical 

behaviours drastically. For example, onset of homoclinic 

chaos by a periodic string of pulses modulated by Jacobian 

elliptic function and periodic δ-function [36], generation of 

chaotic behaviour by a distorted force [37], anti-control of 

chaos by certain periodic forces [38], suppression of chaos by 

δ-pulse [39], stochastic resonance [40, 41], nonescape 

dynamics [42] and the occurrence of horseshoe chaos [43] 

with different form of periodic forces have been reported. 

In this paper, we numerically study the effect of different 

shape of periodic forces on chaotic oscillation in Brusselator 

chemical system. The text of the paper is organized as 

follows. In section II, we analyzed the mathematical model, 

fixed point and stability analysis of the Brusselator chemical 

system. The mathematical form of various periodic forces 

considered in our present work is presented in section III. We 

analyzed the bifurcation structures due to the applied periodic 

forces such as sine wave, square-wave, rectified sine wave, 

symmetric saw-tooth wave, asymmetric saw-tooth wave and 

modulus of sine wave in section IV. For a particular set of 

values of the parameters of the system, we numerically 

integrated the system separately for each periodic force we 

show the occurrence of various routes to chaos, crises and 

chaos. Finally section V contains the conclusion of the 

present work. 

2. Forced Brusselator Chemical System 

The Brusselator is one of the simplest models in nonlinear 

chemical systems. It has six components, four of which retain 

constants and the other two permit their concentrations vary 

with time and space. The classical Brusselator chemical 

reaction consists of four irreversible steps, given by 
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Where A and B are constant components, D and E are 

products and X and Y are the two components variable in 

time and space. The dynamics of the Brusselator chemical 

reaction can be described by a system of two ordinary 

differential equations (ODE’s). In dimensionless form, they 

are 
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 	 x�	y	 
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where a and b are constants with a, b > 0, x and y represent 

the dimensionless concentrations of two reactants. F(t) is the 

time dependent external periodic driving force. Over the 

years, there have been extensive studies in the Brusselator 

system (Eq.2) [44-48] and the references there in. Recently, 

Ali Sanayei [49] studied the effect of sinusoidal force in the 

Brusselator chemical reaction. The unperturbed system (ie 

F(t) =0 ) has only one equilibrium point (x* , y* ) = (a , b/a) . 

From the linear stability analysis, the eigenvalues of the fixed 

point (a , b/a) are obtained as 

#$,� 	 � 	 %	&'�%()$*+	,�'�%()$��%	��'��

�
                 (3) 

If b > (a2+1) then the eigenvalues of the fixed point λ1 and 

λ2 are complex conjugate with real part greater than zero and 

hence is a unstable. If b < (a2+1) the corresponding 

eigenvalues λ1 and λ2 are complex conjugate with the real 

part less than zero and hence is a stable. For b > (a2+1), a 

limit cycle behaviour occurs and is shown in Fig. 1(a). At b = 

(a2+1), the eigenvalues λ1 and λ2 of the fixed points are 

purely imaginary that is, λ1,2 �%
) ia and hence is a center or 

elliptic. We have observed Andronov – Hopf bifurcation at 

b=a2 +1 which is shown in Fig. 1(b). 

 

Fig. 1. Phase portraits of the unperturbed Brusselator system (ie. F(t) = 0) 

(a) limit cycle behaviour at b > a2 +1 with a = 1 and b = 3 (b) Andronov – 

Hopf bifurcation at b = a2 +1 with a = 1 and b = 2. 

3. Types of Periodic Forces 

Figure 2 depicts various periodic forces considered in our 

present work. The period-T of all the external periodic forces 

considered in our study is fixed as 2π/ω, where ω is the 

angular frequency of the forces. The mathematical form of 

the periodic forces such as sine wave, square-wave, rectified 

sine wave, symmetric saw-tooth wave, asymmetric saw-tooth 

wave and modulus of sine wave are given by, 

            (4) 

  (5) 

                    (6) 
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       (7) 

         (8) 

                         (9) 

Where T0 = 2π/ω and t is taken as mod (T0). 

 

Fig. 2. Shape of various periodic forces (a) sine wave (b) square-wave (c) rectified sine wave (d) symmetric saw-tooth wave (e) asymmetric saw-tooth wave (f) 

modulus of sine wave. For all the forces period is 2π/ω , ω = 1 and amplitude f is 1. 

4. Analysis of Bifurcation Structures Due 

to the Applied Periodic Forces 

In this section, we analyze the bifurcation structures due to 

the different shape of periodic forces applied on the 

Brusselator system (Eq.2). For our numerical study we fix 

the parameters values as a = 0.4, b = 1.2 and ω = 0.81. Eq. 

(2) is solved with different periodic forces by fourth order 

Runge-Kutta method with time step size (2π/ω)  / 200. 

Numerical solution corresponding to first 500 drive cycle is 

left as transient. We analyzed the behavior of the Brusselator 

system (Eq. 2) by varying the forcing amplitudes of each 

periodic force. Figure 3 shows the bifurcation diagrams and 

the corresponding maximal Lyapunov exponent (λm) 

diagrams for various periodic forces. The maximal Lyapunov 

exponent (λm) is computed using the algorithm given in Ref. 

[50]. If λmax < 0 , the disturbed trajectory is attracted 

eventually to a stable periodic orbit. λmax > 0 reveals an 

unstable and chaotic trajectory and λmax = 0 means that the 

disturbed oscillation and the original oscillation stay apart be 

a constant mean distance for an indefinite duration until 

perturbed again. When the forcing amplitude f is varied we 

found many similarities and differences in the bifurcation 

patterns which is clearly seen in Fig. 3. The magnification of 

a part of bifurcation diagrams are shown in Fig. 4. Consider 

the effect of the force f sin ωt. Figure 4(a) shows the 

bifurcation diagram of Brusselator system (Eq. 2) driven by 

sine wave force. As f is increased from zero, a quasiperiodic 

orbit occurs, which persists up to f = 0.00955 and then it 

loses its stability giving birth to a period doubling orbit. 

Brusselator system (Eq.2) then undergoes further period 

doubling bifurcations as the control parameter f is smoothly 

varied. For example at f = 0.03345, the period-2T orbit 

becomes unstable and gives birth to period-4T orbit. This 

cascade of bifurcation continues further as 8T, 16T,…, orbits 

and accumulates at f = fc = 0.04578. At this critical value of f 

onset of chaotic motion occurs. When the parameter f is 

further increased from fc one finds that chaotic orbits persist 

for a range of f values followed by reverse period doubling 

bifurcation. At f = 0.481, the reverse period doubling 

bifurcation disappears and the long time motion settles to a 

periodic behaviour. That is the application of sine wave force 

in Brusselator system (Eq. 2) can be used to suppress chaotic 

motion by choosing its value in the interval 0.481 < f < 1.0. 
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Fig. 3. Bifurcation diagrams and the corresponding maximal Lyapunov 

diagrams of Brusselator system (Eq.2) driven by various periodic forces. The 

other parameters values are a = 0.4, b = 1.2 and ω = 0.81. 

When the force f sin ωt is replaced by other forces similar 

behaviour is found to occur, except rectified sine wave and 

modulus of sine wave forces. In rectified sine wave force, 

bifurcation from quasiperiodic orbit to reverse period-2T and 

then again quasiperiodic orbit to period-T is found. But in 

modulus of sine wave force, bifurcation from quasiperiodic 

orbit to reverse period-2T orbit and then to period-T orbit is 

found. Chaotic motion is not observed both in rectified sine 

wave and modulus of sine wave forces. However these 

bifurcations occurred at different values of forcing amplitude. 

The range of values of f at which various bifurcations occur 

for different forms of forces are summarized in table I. From 

table I and Fig. 1, we note that when f is increased from a 

small value period-T orbit is realized much earlier for 

rectified sine wave while it is realized relatively at a higher 

value of f for the asymmetric saw-tooth wave. 

 

Fig. 4. Magnification of a part of bifurcation diagrams in Fig.3. 

The bifurcation structures for sine, square, symmetric and 

asymmetric saw-tooth waves are similar. The bifurcation 

patterns for the modulus of sine and rectified sine waves are 

different from others. To understand the observed difference 

we studied the phase portrait and the corresponding Poincare 

map by varying the forcing amplitude of all the forces. In all 

the forces, for small values of f quasiperiodic orbit occurs. 

Figures 5 and 6 show the phase portraits and the 

corresponding Poincare maps at f = 0.01 for all forces. From 

these figures we can clearly confirm the occurrence of 

quasiperiodic orbit in Brusselator system (Eq. 2). Figures 7 

and 8 show the phase portraits and the corresponding 

Poincare maps at the chaotic orbit for all forces except 

rectified and modulus of sine wave forces. In these two 

forces no chaotic orbit is observed which is clearly seen Figs. 

4 (e) and (f). Examples of time evolution of the system (Eq. 2) 

driven by square-wave force with different f values are 

shown in Fig. 9. The Brusselator system (Eq. 2) exhibits 

qualitatively different behavior with periodic oscillations in 

Figs. 9 (a), 9(b), 9(d) and chaos in Fig. 9 (c). For all the 

forces, from a certain f values, the long time motion settles to 

a periodic behaviour. For f = 1.0, the motion of the system is 

periodic with period-T. Figure 10 shows the phase portraits at 

f = 1.0 for various periodic forces. Cross-well period-T orbit 

is found for sine wave, square- wave and symmetric saw-

tooth wave forces. Cross-well behavior is not found in 

asymmetric saw-tooth wave, rectified sine wave and modulus 

of sine wave forces. The geometrical structures of the 

attractor is different for different forces. 
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Fig. 5. Phase portraits of perturbed Brusselator system (Eq.2) for different periodic forces at f = 0.01. The other parameters values are a = 0.4, b = 1.2 and ω 

= 0.81. 

 

Fig. 6. Poincare maps of perturbed Brusselator system (Eq.2) for different periodic forces at f = 0.01. The corresponding parameters are the same as those in 

Fig.5. 
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Fig. 7. Phase portraits of the perturbed Brusselator system (Eq.2) for different shape of periodic forces such as (a) sine wave (b) square-wave (c) symmetric 

saw-tooth wave (d) asymmetric saw-tooth wave (e) rectified sine wave (f) modulus of sine wave. The other parameters values are a = 0.4, b = 1.2 and ω = 

0.81. 

 

Fig. 8. Poincare maps of the perturbed Brusselator system (Eq.2) for different shape of periodic forces such as (a) sine wave (b) square-wave (c) symmetric 

saw-tooth wave (d) asymmetric saw-tooth wave (e) rectified sine wave (f) modulus of sine wave. The corresponding parameters are the same as those in Fig.7. 
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Fig. 9. Time evolution of the perturbed Brusselator system (Eq.2) driven by square- wave force (a) quasiperiodic orbit (b) periodic orbit (c) chaotic orbit and 

(d) reverse periodic orbit. The values of the parameters are a = 0.4, b = 1.2 and ω = 0.81. 

 

Fig. 10. Phase portraits of perturbed Brusselator system (Eq. 2) for different periodic forces at f = 1.0. The values of the other parameters are a = 0.4, b = 1.2 

and ω = 0.81. 



26 Guruparan S. et al.:  Effect of Different Shape of Periodic Forces on Chaotic Oscillation in Brusselator Chemical System  

 

Table I. Summary of bifurcation phenomena of the Brusselator system (Eq.2) in the presence of different shape of periodic forces for a = 0.4, b = 1.2 and ω = 

0.81. 

Types of forces Value of f Nature of solution 

Sine wave 

0 < f < 0.00955 Quasiperiodic orbit 

0.00955<f < 0.04578 Period doublings 

0.04578<f < 0.09514 Chaos 

0.09514 < f < 0.481 Reverse period doublings 

0.481< f < 1.0 Period-T orbit 

Square wave 

0 < f < 0.00512 Quasiperiodic orbit 

0.00512 < f <0.03751 Period doublings 

0.03751 <f<0.08655 Chaos 

0.08655 < f<0.36476 Reverse period doublings 

0.36476 < f< 1.0 Period-T orbit 

Symmetric saw-tooth wave 

0 < f < 0.01213 Quasiperiodic orbit 

0.01213 < f <0.05552 Period doublings 

0.05552 <f<0.11721 Chaos 

0.11721 < f<0.59284 Reverse period doublings 

0.59284 < f< 1.0 Period-T orbit 

Asymmetric saw-tooth wave 

0 < f < 0.01357 Quasiperiodic orbit 

0.01357 < f <0.0726 Period doublings 

0.07526 <f<0.12373 Chaos 

0.12373 < f<0.63813 Reverse period doublings 

0.63813 < f < 1.0 Period-T orbit 

Rectified sine wave 

0 < f < 0.01622 Quasi periodic orbit 

0.01622 <f<0.05021 Period-2T orbit 

0.05021 < f<0.06434 Quasi periodic orbit 

0.06434 < f < 1.0 Period-T orbit 

Modulus of sine wave 

0 < f < 0.01423 Quasiperiodic orbit 

0.01423< f < 0.17458 Period-2T orbit 

0.17458 < f < 1.0 Period-T orbit 

 

5. Conclusion 

In this paper we numerically studied the effect of various 

periodic forces in the Brusselator chemical system (Eq.2). In 

our present work, we fixed the period of the forces as 2π/ω 

and ω = 0.81. For a particular set of parameters values, we 

have shown the occurrence of periodic, quasiperiodic and 

chaotic oscillations and noticed many similarities and 

differences in the bifurcation structures in the presence of 

various periodic forces. In addition, suppression and 

enhancement of chaos has been found for range of amplitude 

f of the applied periodic forces. 

It is important to study the effect of other types of forces 

such as amplitude and frequency modulated forces both 

analytically and numerically in Eq. (2) to investigate certain 

nonlinear phenomena including resonance, vibrational 

resonance, ghost vibrational resonance, stochastic resonance 

etc. These will be studied in future. 
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