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Abstract: Our working group has worked to find methodologies that can relate the CoMFA and CoMSIA calculations with 

density functional theory, considering the mathematical context that it represents in terms of chemical reactivity indices. 

Currently, the three-dimensional quantitative structure-activity relationship (3D QSAR) models have many applications; 

however due to the complexity to understand its results is necessary postulate new methodologies. In this sense, this work 

postulates a generalized version joining the quantum similarity field and chemical reactivity descriptors within the framework 

of density functional theory. One of the advantages of Quantum Molecular Similarity is that it uses electronic density as object 

of study. The CoMFA and CoMSIA results can be modeled joining MQS and chemical reactivity; in this context these 

outcomes can be applied in QSAR correlations and docking studies to understand the biological activity of some molecular set. 

This generalized methodology can be applied to understand the biological activity on a molecular set taking a reference 

compound. In order to understand its corrections from the structural and electronic point of view. 
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1. Introduction 

In two recent publications our researcher group shown as 

the Comparative Molecular Field Analysis (CoMFA) and the 

Comparative Molecular Similarity Indexes Analysis (CoMSIA) 

can be understood in terms of Molecular Quantum Similarity 

(MQS) and Density Functional Theory (DFT)-based reactivity 

descriptors [1-8]. Taking into account that the CoMFA and 

CoMSIA analysis have many applications in the three-

Dimensional Quantitative Structure-Activity Relationships (3D 

QSAR) studies, in this work are presented a new 

considerations about these methodologies into the DFT context. 

In the DFT framework, the MQS is a field very applied, was 

introduced by Carbó and co-workers [2-6]. In the MQS field the 

key variable is the density function [9-11]; therefore it 

reasonable think that can be related with the chemical reactivity 

descriptors such as chemical hardness (ɳ), softness (S), 

electrophilicity (ω) and Fukui Functions. Therefore, employing 

this hybrid methodology (joining the MQS and chemical 

reactivity) we hope show new insight on the understanding of 

the CoMFA and CoMSIA results within the DFT context. In this 

form, the main aim of this work is presents new relationship 

between the MQS and Chemical reactivity that can be applied 

on the CoMFA and CoMSIA analysis. 

2. Theoretical Details 

2.1. Quantum Object Sets (QOS) 

Considering the follow set: { }1,IZ z I N= = , being N the 

set cardinality, is the Cartesian product of two sets: 

{ }Z P M= × , where { }1,IP p I N= =  is the set of the objects 

and { }1,IM m I N= =  the set of tags. Therefore, we can write: 
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( )1,  N:z ;I I II p m Z∀ = = ∈ [12-16]. In this sense, a (QOS) is a 

tagged set: Q P S= ×  made by a set of submicroscopic objects 

and a set of quantum mechanical Density Function (DF): 

{ }1,IS I Nρ= = , as elements of the tag set.
 

Of this form, we can use the Hilbert semispace tag set S 

and define a central averaged DF using the expression: 

1 1 1
C I C I I C

I I I

N N Nρ ρ ρ ρ υ υ− − −= → = = =∑ ∑ ∑  (1) 

with the DF Minkowski norms being define as: 

1, : ( )I I I

D

I N r drρ ρ υ∀ = = =∫                 (2) 

Therefore, the centroid DF can be seen as a function 

describing the arithmetic average of the number of particles 

Cυ  of all quantum objects involved. To relate the shape 

functions associated to the quantum set, we define tag set H 

associated to the DF set S, therefore we have: 

{ } { }11, 1 1,I I I I I I I IS I N H I Nρ ρ υ σ υ ρ σ σ−= = → ∀ = ∧ = ∧ = → = =                                  (3) 

From this equation (3), we can write the shape centroid function as: 

1 1 1 1C I C I

I I

N N N Nσ σ σ σ− − −= → = = =∑ ∑                                                   (4) 

2.2. Local Molecular Quantum Similarity Measure: A Generalized Version 

The quantum similarity measure ZAB between compounds A and B, with electron density 1( )A rρ  and 2( )B rρ  respectively, 

can be understood using the minimizing of the expression for the Euclidean distance as [12-15]: 

( )
( )

1/2
2

1/2
2 2

1 1 2 2 1 2 1 2

( ) ( )

( ( )) ( ( )) 2 ( ) ( )

2

= −

= + −

= + −

∫

∫ ∫ ∫

AB A B

A B A B

AA BB AB

D r r dr

r dr r dr r r dr dr

Z Z Z

ρ ρ

ρ ρ ρ ρ                                        (5) 

Where ZAB is the overlap integral between the electron 

density of the compound A and B into the (QOS), ZAA and 

ZBB are the self-similarity of compounds A and B [16]. 

In this researcher we have used the Carbó index due to that 

is very used in the quantum similarity context [12-15]: 

( ) ( )
1 2 1 2

2 2
2

1 1 2 2

( ) ( )

( ) ( ( ))

A B

AB

A B

r r dr dr
I

r dr r dr

ρ ρ

ρ ρ
= ∫ ∫

∫ ∫
          (6) 

As the main structural difference on the molecules used by 

our group in the previous work are local differences [1]; the 

similarity features can be associated from the local point of 

view, in this order of ideas is used the Hirshfeld approach to 

study the local quantum similarity. 

With the aim to obtain a generalized Hirshfeld approach to 

our systems, considering the electron density ( )rρ in 

contribution 1 ( )
x

rρ , where x=is an atom. These contributions 

allow define a concept of atom in a reference system and study 

its (dis)similarity on a molecular set (i.e.; substituent effect 

analysis). On the other hand, these contributions are 

proportional to the weight wC(r) of the electron density of the 

isolated compound in the so-called promolecular density [17-

20]. The promolecular density is defined as: 

1
Pr 0( ) ( )om

yx
y

r rρ ρ=∑                             (7) 

To calculate the contribution of an atom (x) in the electron 

density in a molecule A ρA(r) we have: 

1 1( ) ( ) ( )Ax x
r w r rρ ρ=                            (8) 

In this form, the weight (wx(r)) is obtained as: 

1

1

0

0
( )

( )

x

x
y

y

w r
r

ρ

ρ
=
∑

                            (9) 

Here 1
0 ( )
x

rρ  is the electron density of the isolated carbon 

atom x
1
, (i.e.; the reference electron density) [21]. In this 

sense, the contribution atomic of other carbon atom (x
2
) in a 

molecule B is obtained as: 

2 2,
( ) ( ) ( )Bx B x
r w r rρ ρ=                       (10) 

with 

2

2

0

,

, 0

( )

( )

x B

x B
y

y

r
w

r

ρ

ρ
=
∑

                          (11) 

So we can write the contribution of the asymmetric carbon 

atom products ( ) ( )A Br rρ ρ  as: 
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, ,( ) ( ) ( ) ( )x AB x AB A Br w r r rρ ρ ρ=                (12) 

Using the equations (7-12) we can write the numerator ZAB 

in the Carbó index (equation (6)) as: 

( ) ( )

,
,

,

2 2

, ,

( ) ( )

( ) ( ) ( ) ( )

=

= ∫∫

∫ ∫

Local x AB
A B

AA BB

x AB A B A B

x A A A x B B B

Z
Z

Z Z

w r r dr dr

w r r dr w r r dr

ρ ρ

ρ ρ

   (13) 

The equation (10) is a generalized Hirshfeld approach to 

our systems [1], where x= is an atom, therefore we can write 

the global index (equation (6)) as local contributions. In this 

context, is possible study the local similarity and the 

substituent effects on some reference compound into the 

(QOS). 

2.3. Reactivity Descriptors 

The CoMFA and CoMSIA analysis are understand in 

terms of physical-chemistry properties such as electrostatic, 

hydrophobic and hydrogen-bond donor or acceptor 

properties, these properties can be related with global 

chemical descriptors as chemical potential, hardness, 

electrophilicity index and local reactivity descriptors as the 

Fukui Functions. In the DFT context, the global reactivity 

indexes give information about the reactivity or stability of a 

chemical system front to external perturbations. 

The chemical potential (µ) can be understood as the 

tendency that have the electrons to exit of the electron cloud 

and is calculate according to the equation: 

2

H Lε εµ +
≈                                (14) 

Where (εH) is the energy of the (HOMO) and (εL) is the 

energy of the (LUMO) [22, 23]. Using the equation (14) the 

chemical hardness is defined according to Pearson et. al. [24]. 

L Hη ε ε≈ −                                (15) 

From the equation (12), we obtain the softness [25] as: 

1
S

η
=                                      (16) 

Finally, using the equations (14) and (15) is defined the 

electrophilicity index (ω) [25, 26]. This index is understood 

as the measure of the stabilization energy of the system when 

it is saturated by electrons from the external environment and 

is calculated as follows: 

2

2

µω
η

=                                    (17) 

Finally, the Fukui Functions (equations (18) and (19), 

( )f r ) are defined as the derivative of the electronic density 

with respect to the number of electrons at constant external 

potential: 

( ) ( ) ( ) ( )1 1k N N k k

k

f r r q N q Nρ ρ+
+   ≈ − = + −   ∫
� �

  (18) 

( ) ( ) ( ) ( )1 1k N N k k

k

f r r q N q Nρ ρ−
−   ≈ − = − −   ∫

� �
  (19) 

Where qk refers to the electron population at k
th

 atomic site 

in a molecule. ( kf
+

) governing the susceptibility for 

nucleophilic attack and ( kf
−

) governing the susceptibility for 

electrophilic attack [27-30]. 

2.4. Quantum Operators to Calculate Local Similarity 

One the most operator used in quantum similarity is the 

Dirac delta distribution 1 2 1 2( , ) ( , )r r r rδΩ =  [31] so called 

overlap molecular quantum similarity measure and relates the 

volume associated with the overlap of the two densities 

( )A rρ  and ( )B rρ : 
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ρ ρ

ρ ρ

ρ ρ

 (20) 

Using this equation 20, is possible obtain information 

about the electron concentration in the molecule and 

indicates the degree of overlap between the compared 

compounds. 

Another operator very used in quantum chemistry is the 

Coulomb operator 1 2( , )r rΦ , defined as 
1

1 2 1 2( , )r r r r
−Φ = − , 

this operator represents the electronic coulomb repulsion 

energy between molecular densities ( )A rρ  and ( )B rρ  as: 

( )
( ) ( )

( ) ( )

,
,

, 1 2

2 2

, ,

,

2 2

, ,

( )
( )

( ) ( )

( ) 1/ ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

Φ
Φ =

Φ Φ

−
=

=

∫∫

∫ ∫

∫∫

∫ ∫

Local x AB
A B

AA BB

x AB A B A B

x A A A x B B B

x AB A B A B

x A A A x B B B

Z
Z

Z Z

w r r r r dr dr

w r r dr w r r dr

w r r dr dr

w r r dr w r r dr

ρ ρ

ρ ρ

ρ ρ

ρ ρ

 (21) 

The Carbó index is restricted to the range (0,1) where 

CAB=0 means dis(similarity) and CAB=1 self-similarity, 

according to the Schwartz integral. 
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2
2 2( ) ( ) ( ) ( )A B A Br r dr r dr r drρ ρ ρ ρ  ≤  ∫ ∫ ∫          (22) 

2.5. Quantum Similarity Matrix 

The quantum similarity Matrix can be associated to a 

[ ]N N×  metric associated to a (QOS) tag set made of 

quantum mechanical density function { }1,IS I Nρ= =  as: 

1

2
1 2 N

N

z

z
Z z z z

z

 
 
   = =   
 
  

⋯
⋮

                 (23) 

In the equation (23) there are equivalence between rows 

and columns. In this sense, we have: 

{ }
{ }
{ }

Z , 1,

1,

1,

IJ I J

I JI

I IJ

Z I J N

z Z J N

z Z J N

ρ ρ= = =

∧ = =

∧ = =

               (24) 

Another property important of the matrix Z is its 

symmetry, according to: 

Z Z , :
T

IJ JII J Z Z= → ∀ =                   (25) 

Taking in account these properties associated to the 

similarity matrix, we can express the local molecular 

similarity measures using the overlap and coulomb operators 

(equations (20) and (21)). 

2.6. Joining QS and Chemical Reactivity 

According to Carbó et al. [32] it is possible to consider a 

set of specific vectors and to associate a center for this QOS. 

Therefore a QOS represented by Fukui Funtions can be 

defined as: 

{ }1,M I I N= =                             (26) 

In eq. 23, the first order densities can be constructed by a set 

of molecular orbital (MO) of shape funtions contributions as: 

{ }1,IP I I I Nσ= = =                      (27)
 

The P elements correspond to the squared MO modulos. 

Using these consideration we can relate the frontier orbital 

(HOMO and LUMO) on the QOS. Defining { }Iw as the 

number of occupations in the MOs, we can construct a linear 

combination of P to the first order density functional as [33]: 

I I

I

wρ σ=∑                                (28) 

with 

i. ν  is the number of electrons: I

I

w ν=∑  

ii. where the Minkowski norms of the elements of the 

shape funtion set P are normalized to unity, belonging 

to the MO set normalization ( ): 1II σ∀ = . 

Therefore we can define a centroid shape function using an 

average function. 

1 1C I C

I

Nσ σ σ−= → =∑                  (29) 

In this sense, each elements of set P can be compared with 

the centroid function and can be built as: 

{ }: 1,I I C II Z I Nθ σ σ θ∀ = − → = =           (30) 

Finally the Minkowski pseudonorm of the centroid shape 

function set Z can be written as: 

: 0I I C I CI θ σ σ σ σ∀ = − = − =         (31) 

Therefore the shifted elements have a null Minkowski 

pseudonorm. Where the shape function is comprised of N 

linearly independent elements. Using these relations we can 

make quantum similarity using the Fukui Functions on the 

QOS taking in account a reference compound. 

/ /

/

2 2
/ /

( ) ( )
( ( ))

( ) ( )

A B
AB

A B

f r f r
Z f r

f r f r

+ − + −
+ −

+ − + −

   
   =
   
   

        (32) 

Using the equation (32), we can built scales of convergence 

quantitative see reference 1, among other. This equation shows 

a possible join between quantum similarity and chemical 

reactivity and can be used to calculate the quantum similarity 

on the local chemical reactivity (Fukui functions). 

3. Conclusions 

In this work are reported new insights about the 

relationship between quantum similarity and chemical 

reactivity in a generalized form. This hybrid methodology, 

allow us study the steric and electrostatic effects in form of 

the scales of convergence quantitative; substituent effects 

among others (see reference 1). 

In this sense, the CoMFA and CoMSIA results can be 

modeled joining MQS and chemical reactivity; in this context 

these outcomes can be applied in QSAR correlations and 

docking studies to understand the biological activity of some 

molecular set. Taking into account that this methodologies 

can be used when the receptor is known or even when it is 

not known. 
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