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Abstract: The support vector machine (SVM) has become very popular within the machine learning literature. Recently, SVM 

has received much attention from statisticians. It is well known that for multicategory classification problem, the commonly used 

multicategory SVM is based on the frequentist framework. In this paper, we develop a multi-class support vector machine under 

the Bayesian framework. Numerical studies were performed by EM and the Bayesian algorithm Gibbs sampler. Our results have 

shown that the classification accuracy of the Bayesian approach is comparable to that of frequentist approaches, while Bayesian 

approach also has the advantage of providing estimates of uncertainty in predictions. 

Keywords: Multivariate Classifcation, MSVM, MCMC, EM 

 

1. Introduction 

Recently, Support vector machine has drawn attention from 

the statistics community during the high popularity of SVM 

rising in machine learning literature. The well-known two 

category SVM for the binary classification problem can be 

interpreted geometrically with a hyperplane which gives the 

maximum margin of discriminating one class from the other. 

See Boser, Guyon, & Vapnik [1], Vapnik [2], and Burges [3]. 

In two category SVM, the separation is achieved by a 

hyperplane which has the largest distance to the data of the 

two groups.  

Bayesian approach, which has been developed rapidly 

during the past thirty years, plays a very important role in 

statistics. Nicholas G and Steven L [4] applied the Bayesian 

approach to SVM classification problem. In their paper, they 

developed a latent variable representation of original SVM, 

which enable to use EM or MCMC algorithms do parameter 

estimation. In their method, data augmentation methods can 

be formulated in terms of complete data sufficient statistics, 

which is a considerable advantage when working with large 

data sets, where most of the computational expense comes 

from repeatedly iterating over the data. Methods based on 

complete data sufficient statistics need only compute those 

statistics once per iteration, at which point the entire parameter 

vector can be updated. [4] 

Recently, it was shown that the support vector machine 

(SVM) [5] admits a Bayesian interpretation through the 

technique of data augmentation. However, existing inference 

methods for the Bayesian support vector machine [6] can only 

handle two-category classification problem under Bayesian 

framework. Based on stochastic variational inference [7] and 

inducing points [8], we develop a Bayesian support vector 

machine for multicategory classification problem in this paper. 

The proposed Bayesian multicategory SVM not only inherits 

the advantage of robustness against outliers, advanced 

accuracy [9], and guaranteed error rate [10] from the 

frequentist formulation of the SVM, but like all Bayesian 

methods, it also has the advantage of modeling with high 

flexibility, automatic parameter tuning, and providing 

estimates of uncertainty in predictions.  

This article is organized as follows. Section 2 states the loss 

function and Bayesian models for multi-SVM. Section 3 describe 

the Point estimation by EM and other related algorithms. Section 

4, present the MCMC for SVM. Finally, Section 5 gives 

concluding remarks and discussion of future directions. 

2. Multicategory Support Vector 

Machines 

Recall that the standard support vector machines for the 
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binary case based on a k-dimensional predictors,where the 

class labels ��  are either 1 or -1. And the ��-norm regularized 

support vector classifier seeks � minimizing: 

∑ 	��	
 max(1 − ������, 0) + ��� ∑ 	��	
 |��/��|�    (1) 

where ��  is the standard deviation of the � ’th predictor 

variable, except that �
 = 1 for the intercept term, and � is a 

tuning parameter. [11] 

2.1. Model and Notations 

In this section, we will extent this model to the 

multicategory case. Consider a k-category classification 

problem with a vector of predictors  � = (1, �
, . . . , �"�
). 

Class labels ��  are defined as follows. If example # falls into 

class �, then ��  is equal to a k-dimensional vector with 1 in 

the �-th coordinate and −1/($ − 1) elsewhere. Accordingly, 

define a % − $ function &(�) = (&
(�), . . . , &�(�)), for any � ∈ ℝ". Where &)(�) = ���)  for r=1,...,k. Let � be a $ − $ 

function that maps ��  to a k-dimensional vector with 0 in the �’th coordinate and 1 elsewhere, if example i is in class j. Now, 

we propose an extension of support vector classifier to choose 

a set of coefficients � to minimize: 

*�(�, �) = ∑ 	��	
 �(��) × (&(��) − ,�)- + ��� ∑ 	�)	
 ∑ 	"�	
 |�)�/��|� (2) 

The scaling variable �� is the standard deviation of the �-th 

predictor variable, except that �
=1 for the intercept term. 

And � is a tuning parameter. It can be shown that minimizing 

(2) is equivalent to maximize the following pseudo-posterior 

density  

%(�|�, ., �) ∝ 0�%{−*�(�, 2)}∝ 4�(�)�(�|�)%(�|�, .)       (3) 

where 4�(�)  is a pseudo-posterior normalization constant. 

The pseudo-likelihood �(�|�) can be written as  

�(�|�) = ∏ 	��	
 ��(��|�) = exp{−2∑ 	��	
 �(��) × (&(��) −��)-}                     (4) 

For simplicity, define 9)(��) = (&)(��) − ��)), then 

�(��) × (&(��) − ��)- = ∑ 	�)	
,):� ;<�(9)(��),0)    (5) 

if example i is from class j.  

Therefore, the pseudo-likelihood for example # is rewritten 

as  

��(��|�) = exp=−2∑ 	�)	
,):� max(9)(��),0)>= ∏ 	�)	
,):� 0�%{−2max(9)(��),0)}
= ∏ 	�)	
,):� ? 	@A 


BCDEFG exp H− (IG(JF)-EFG)KCEFG L *M�)
    (6) 

The last step is from Theorem in [12] where M� is a vector 

of latent variables paired with ��. 
Denote N�  as the class label of example i, then the 

pseudo-likelihood can be rewritten as  

�(�|�) = ∏ 	��	
 ��(��|�)
= ∏ 	��	
 ∏ 	�)	
,):OF ? 	@A 


BCDEFG exp H− (IG(JF)KCEFG L *M�)
= ∏ 	��	
 ∏ 	�)	
 ? 	@A P 


BCDEFG exp H− (IG(JF))KCEFG LQR(OF:))
   (7) 

Based on the objective function in (2), consider the 

exponential power prior distribution for � which contains the 

regularization penalty as follows  

%(�|�, .) = ∏ 	�)	
 ∏ 	"�	
 %(�)�|�, .) =
∏ 	�)	
 H �

ST(
-�UV)L" exp W−∑ 	"�	
 XYGZS[ZX
�\         (8) 

In general, consider . ∈ (0,2] where . = 2 corresponds 

to the “ridge regrssion" and . = 1 corresponds to the “lasso". 

Then the prior regularization penalty can be expressed as a 

scale mixture of normals.  

%(�)�|�, .) = ? 	@A ^(�)�|0, �C_)���C)%(_)�|.)*_)�   (9) 

where %(_)�|.) is exponential with mean 2 for the special 

case of . = 1.  

2.2. Conditional Distribution 

According to the above computations, especially equations 

(7) and (9), the support vector machine pseudo-posterior 

distribution can be expressed as the marginal of the complete 

data pseudo-posterior distribution as follows: 

%(�, M, _|�, �, .) ∝ ∏ 	��	
 ∏ 	�)	
 PM�)�A.`exp W− (JFaYG�bFG-EFG)KCEFG \QR(OF:))
×∏ 	�)	
 ∏ 	"�	
 _)��A.`exp W− YGZKCSKcGZ[ZK\ %(_)�|.)

                        (10) 

Define d�) ≜ {#: N� ≠ h} as the set of all subjects who does not fall in class r. Rewrite the complete data pseudo-posterior 

distribution as  

%(�, M, _|�, �, .) ∝ ∏ 	�)	
 ∏ 	�∈iUG M�)�A.`exp W− (JFaYG�bFG-EFG)KCEFG \
× ∏ 	�)	
 ∏ 	"�	
 _)��A.`exp W− YGZKCSKcGZ[ZK\ %(_)�|.)                        (11) 

The full conditional distribution of � given M, _, �  

According to equation (10), the full conditional distribution of �) for any r=1,...,k is  
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%(�)|�, M) , _) , �) ∝ ∏ 	�∈iUG ∏ 	"�	
 exp W− (JFaYG�bFG-EFG)KCEFG \ × exp W− YGZKCSKcGZ[ZK\                    (12) 

Define the matrices Λ) = *#<k(M)), Ω) = *#<k(_)) , 

where the diagram elements of Λ)  and Ω)  are the elements 

of M) and _), respectively. And � = *#<k(�
C, . . . , �"C). Also 

let m) denote a matrix with row # equal to, ���, the predictor 

vector of the #’th subject in Θ�) .  

This model can be written in hierarchical form: 

�) − M) = m)�) + Λ)
CoEG
�) = 1� Ω)


CΣ
CoYG  

where oYG  and oEG  are vectors of iid standard normal 

deviates with dimensions matching �) and M). 

Thus, for �) has a conditional normal posterior distribution 

given by: 

%(�)|�, M) , _) , �) ∼ r(s) , t))        (13) 

where = 

t)�
 = ��C��
_)�
 + m)�Λ)�
m)	<u*	s) = t)m)�(�) × M)�
 − 1)  (14) 

The full conditional distribution for M�)  and _)�  given �, �, �  Consider the conditional distribution of M�)  for 

r=1,..,k and # ∈ Θ�) . Note that from the complete 

pseudo-posterior distribution we can get: 

%(M�)|�) , ��)) ∝ 1
B2vM�) exp w−

12x(��
��) − ��))CM�) + M�)yz

∼ {ℐ{ }12 , 1, (����) − ��))C~
 

This implies that: 

	(M�)�
|�) , ��)) ∼ ℐ{(|����) − ��)|�
, 1)      (15) 

For the full conditional distribution of _)� , it is 

proportional to the integrand in equation (9). In general this is 

complicated because its prior density %(_)�|.) is generally 

not available. However, for the two special cases of . = 1 

and . = 2  closed from solutions are available. When . = 2, %(_)�|�)�) is a point mass at 1. For . = 1, the full 

conditional distribution of _)� is: 

%(_)�|�)� , �) ∝ 1
B2v_)� exp w−

12x
�)�C /�C��C_)� + _)�yz

∼ {ℐ{ x12 , 1,
�)�C�C��C)y

 

Thus similarly 

	(_)��
|�)� , �) ∼ ℐ{(���/|�)�|,1)       (16) 

Later we will use these distributions to develop learning 

algorithms. 

3. Point Estimation by EM and Other 

Related Algorithms 

In this section, we use the distributions obtained in Section 

2 to construct EM-style algorithms to estimate the coefficients. 

First, an EM algorithm for learning � with a fixed value of 

the tuning parameter �  is developed. Then we develop an 

ECME algorithm to learn � and � simultaneously. 

3.1. Learning � with Fixed � 

With the augmented data M and _, the EM algorithm is a 

iterative method for finding posterior modes or MLEs. From 

equation (12), we know that the posterior distribution of the �)’s for r=1,...,k are independent. So we can estimate them 

separately using the EM algorithm. For �) , the E-step and 

M-step are defined by  

	� − ��0%	�(�)|�)(�)) = ? 	log%(�)|�, M) , _) , �)%(M) , _)|�)(�), �, �)*M)*_)	� − ��0%	�)(�-
) = argmaxYG �(�)|�)(�))                 (17) 

Note that any term in log%(�)|�, M) , _) , �) that is free of �) can be absorbed to the constant. This leaves us only the 

linear function of M�)  and _)�. Thus, we only need to replace 

them with their conditional expectations M��)�
(�) and _�)��
(�) 
for the calculation of function �(�)|�)(�)), given �) and the 

observed data. 

As we discussed before, the result for _)� would depend 

on the value of . . Focus on the case where . = 1 . And 

according to equation (16), we can obtain that: 

_)��
(�) = ���|�)�|�
 

Recall that the conditional posterior of ��  follows a 

multivariate normal distribution. Thus, the posterior mode 

will be the same as the posterior mean. By equations (13) and 

(14), we can get the following algorithm. 

Algorithm: EM-SVM 

Repeat the following until convergence  

E-Step Given a current estimate �) = �)(�), compute: 

M��)�
(�) = |����) − ��)|�
, 
Λ�)�
(�) = *#<k�M�)�
(�)�, 
Ω�)�
(�) = *#<k�_�)�
(�)�, 

M-Step Compute �)(�-
) as  
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�)(�-
) = H��CΣ�
Ω�)�
(�) + m)�Λ�)�
(�)m)L�
 m)�(�) × M�)�
(�) − 1) 
3.2. Learning � and � Simultaneously 

In order to learn �  and 2  together, the generalized 

expectation-conditional maximization algorithm (ECME) is 

used, where the last“E" represents the conditional 

maximization of either function. To implement the ECME 

algorithm, we assume a inverse gamma prior distribution for ��: 

%(���) ∝ (���)���
exp(−sS���) 
Combine this prior with equation (8), we can find the 

conditional posterior density of � given � and .  

%(���|�, .) ∝ (���)"�� -���
exp �−��� �sS +�	
�

)	

�	
"

�	

��)��� �

��� 
The following algorithm can be obtained with minor 

modification of the EM-SVM algorithm.  

Algorithm: ECME-SVM  

E-Step Identical to the E-step of EM-SVM with � = �(�).  

CM-Step Identical to the M-step of EM-SVM with � = �(�).  

CME-Step Set 

	(��)(�-
) = sS + ∑ 	�)	
 ∑ 	"�	
 |�)�(�)/��|�%$/. + <S − 1  

4. Fully Bayesian Multicategory Support 

Vector Machines 

In the MSVM framework of [15], following [12, 13], we 

can find f(. ) by minimizing the following penalized function 

when . = 1, 

*(β, �) = ∑ 	��	
 L(y�) ⋅ (f(x�) − y�)- + ��
∑ 	�)	
 ∑ 	"�	
 | YGZ[Z |  (18) 

or equivalently, 

*(β, �) = ∑ 	�)	
 ∑ 	�∈⊝UG (&)(x�) + 

��
)- + ��
∑ 	�)	
 ∑ 	"�	
 | YGZ[Z |  (19) 

with constraints ∑ 	�)	
 &)(��) = 0 for # = 1,⋯ , u. 

where �� is the standard deviation of the �′element of �, � is 

a tuning parameter and ⊝�)= {#: N� ≠ h} , N�  is the 

classification number of observation #. 
The minimization problem (19) can be viewed to find the 

mode of pseudo-posterior distribution from the Bayesian 

perspective. That is  

%(β|�, y) ∝ exp(−*(β, �)) ∝ 4(�)�(y|β)%(β|�)    (20) 

where 4(�) is a normalization constant. According to the 

form of the objective function, we can adopt the following 

likelihood function for the data and assume a exponential 

power prior for β as follows;  

�(y|β) = ∏ 	��	
 ��(��|β) = exp{−2∑ 	��	
 L(y�) ⋅ (f(x�) − y�)-}  (21) 

%(β|�) = ∏ 	�)	
 ∏ 	"�	
 %(�)�|�) = (∏ 	�)	
 ∏ 	"�	
 

CS[Z)exp(−∑ 	�)	
 ∑ 	"�	
 |YGZ|S[Z )                  (22) 

where [�)�|�] follows the Laplace distribution. 

Now,following [14], we assume a gamma prior on ��
, i.e.  

%(��
) ∝ (��
)£��
exp(−sS��
)           (23) 

with hyper-parameters (<S , sS). Then we use the independent 

Jeffreys noninformative prior, called the invariance prior, on ��,  

%(��) ∝ 

[Z                     (24) 

for � = 1,⋯ , %. 

Theorem 1 Under the penalized function (19) and the priors 

(23) and (24), following the data augmentation approach 

proposed by [15], we have the following full conditional 

posterior distributions  

	[β)|�, λ) , w) , y] ∼ r(b) , B))            (25) 

	[M�)�
|β) , ��)] ∼ ℐ{(|x��β) − ��)|�
, 1)         (26) 

[¨)��
|�)� , �, ��] ∼ ℐ{(���/|�)�|,1)          (27) 

[��
|β, ��] ∼ Gamma(%$ + <S − 1, sS +∑ 	�)	
 ∑ 	"�	
 |YGZ|[Z )   (28) 

	[��|�, β] ∼ Inv. Gamma($, 
S∑ 	�)	
 |�)�|)        (29) 

for # ∈⊝�); h = 1,⋯ , $  and � = 1,⋯ , % . Where B)�
 =��CΣ�
Ω)�
 + X)�Λ)�
X)  and b) = B)X)�Λ)�
(y) − λ)) . And y) = {��)}�∈⊝UG , λ) = {M�)}�∈⊝UG , Λ) = *#<k(λ)) , Ω) =*#<k({¨)�}�	
" ), Σ = *#<k({��C}�	
" ), 1 is the vector of 1’s. X)  is a matrix with row # is �� , # ∈⊝�).  

Then the MCMC algorithm is developed from Theorem 1. 

Algorithm: MCMC-MSVM  

Draw β)(�-
) from r(b)(�), B)(�)) for h = 1,⋯ , $; 

Draw M�)�
(�-
)  from ℐ{(|x��β)(�-
) − ��)|�
, 1) 
independently, for h = 1,⋯ , $; # ∈⊝�); 

Draw )̈��
(�-
)  from ℐ{(�(�)��(�)/|�)�(�-
)|,1) 
independently, for h = 1,⋯ , $ and � = 1,⋯ , %; 

Draw ��
(�-
)  from Gamma(%$ + <S − 1, sS +
∑ 	�)	
 ∑ 	"�	


|YGZ(¯°V)|
[Z(¯) );  
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Draw ��(�-
)  from Inv. Gamma�$, 
S�¯°V�∑ 	�)	
 |�)���-
�|� 
for � � 1,⋯ , %. 

5. Application 

5.1. Data Introduction 

TIMSS represents the Trends in the International 

Mathematics and Science Study, which is one of the most 

important and largest global studies in education achievement. 

TIMSS was first conducted in 1995, and it collected data 

every four years on the achievement of fourth and eighth grade 

students internationally. TIMSS 2011 is the fifth in the series 

of assessments. 32 countries participated in the TIMSS 2011 

assessments. There is enormous diversity among the TIMSS 

countries—in terms of economic development, geographical 

location, and population size. Countries participating in 

TIMSS aim for a sample of at least 4,500 students to ensure 

that there are enough respondents for each item. This study 

dedicates to improving teaching and learning in mathematics 

and science by comparing different country and exploring the 

environmental factors that predict students’ achievement.  

The TIMSS 2011 International Database includes the data 

from instruments that were administered to the students, their 

parents, their teachers, and their school principals. These 

include the student responses to the achievement items:  

TIMSS mathematics and science and students, teacher and 

principals’ responses to the student, home, teacher, and school 

background questionnaires. This is a large dataset with six 

files in it: school background data files, student background 

data files, student achievement data files, home background 

data files, student-teacher linkage files and teach background 

data files.  

We used the 4²³ grade USA data in the dataset. 12569 U.S 

students participated in this study. Students were administered 

a background questionnaire with questions related to their 

home background, school experiences, and attitudes toward 

reading, mathematics, and science. An example question is 

“About how many books are there in your home? (Do not 

count magazines, newspapers, or your school books.” The 

student background data files contain students’ responses to 

these questions. It includes 15 variables. Each variable may 

have multiple items. For example, mathematics self-concept 

has 7 items. We will use the mean of the items of a variable as 

the score. Except those questions especially designed for 

learning science, 13 potential predictors from the student 

background data files were used in the model. There are two 

demographic variables: sex and age; six environmental 

variables about recourses and parental support; five 

psychological variables about students; feeling and 

experiences. Figure 1 shows the description of the predictors 

and their descriptive statistics. 

 

Figure 1. Predictors and descriptive statistics. 

 

Figure 2. Frequency of each group. 
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Figure 3. Percent of each group. 

Since the data we used are from the U.S which is a 

developed country, some of the measures might be skewed or 

reaching a celling effect. For example, ASBG05S ranges from 

0 to 2 with a mean at 1.57. It is negatively skewed. 

The predictor is student’s achievement level. Students of 

highest achievement are in group 5 which the students of the 

lowest achievement are in group 1. Figure 2 and 3 shows the 

frequency and percent of each group. 

5.2. Traditional Methods 

Before applying the new method, three traditional methods 

were used to classify the current data.  

Firstly, we used Linear Discriminant Analysis (LDA). Two 

types of prior were used: proportional and equal. The results 

showed that when proportional prior were used, the total error 

rate was 57.67%. The error count estimates were highest at the 

two ends. For group 1 and group 5, then error rate were both 

larger than 90%, while for group 3 and group 4, the error rates 

were about 40%. When equal prior were used, the total error 

rate was 62.16%, but the error rate were highest in the middle 

groups (all three groups had an error rate that was larger than 

75%). The error rates at the ends were smaller, 47.80% for 

group1 and 34.62% for group 5.  

Secondly, apply QDA on this data. As LDA, Two types of 

prior were used: proportional and equal. The results showed 

that when proportional prior were used, the resubstitution 

error rate was 56.23%. The error count estimates were highest 

at group1 (95%), while for group 3 and group 4, the error rates 

were about 50%. When equal prior were used, the total error 

rate was 58.76%, but the error rate were highest in the middle 

groups (all three groups had an error rate around 70%). The 

error rates at the ends were smaller, 43.40% for group1 and 29% 

for group 5. Comparing with LDA, QDA seems to perform a 

little better. Finally, we used a One-against-one (pairwise) 

SVM technique to analyze the current data. We used the ksvm 

function in the kernlab package. The training error was 

63.96%, and the 10-fold cross-validation error rate was 

74.93%. This error rate is larger than LDA and QDA. This 

indicates that the one-against-one (pairwise) SVM technique 

may not be appropriate for this dataset. 

5.3. EM-algorithm 

Two parts in EM algorithm were studied. We first consider 

fixed � and study the relationship between different value of 

�  and number of non zero parameter estimates. When _�
 = ∞, it follows that �� = 0, in which case we can simply 

ignore the �th column of covariate matrix. Figure 4 shows 

how the value of � affect number of non zero parameters.  

 

Figure 4. Relation between � and non zero parameters. 

 

Figure 5. Convergence of log-likelihood. 
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Value of � in Figure 1 are chosen as 0.001, 0.05, 0.1, 0.2, 

0.3, 0.5, 0.6, 0.8, 0.9, 1.2. When � = 0.9 or 1.2, the number 

of non zero parameter are all included in classification. 

Vertical values are mean based on ten times computation. To 

study point estimate of �, we select � � 0.9. In our data set, 

there are 13 different covariates included, which is not too 

many. However, in some dataset, dimension of X could be 

very large. We consider a new convergence criteria, which can 

be called as likelihood convergence. We identity the 

convergence when likelihood does not change too much in 

iteration.  

Figure 5 shows the convergence of log-likelihood. The 

log-likelihood increase very fast within first 20 iterations and 

slow after. 

When estimating, �  is a vector includes ��
) , … , �
·)� . 

We let M � 1 and estimate of � are computed from dataset 

directly. Log-likelihood convergence is one way to meet our 

goal, however, this criteria can not guarantee the stability of 

parameter estimates. Table 1 gives the results of estimation 

and Figure 3 shows the variance of parameter estimates. All 

variance are obtained based on 10 time computation. In group 

1, 3, 4, �

 have largest variance. Variance of �¸ and �¹ in 

group 4 are large compared with other estimate. In group 4 and 

5, variance of �
 and �C are large. 

Table 1. Parameter estimation with � � 0.9, M � 1. 

 �º» �º¼ �º½ �º¾ �º¿ �
) 0.000 0.000 0.000 0.000 -0.160 �C) 0.000 -0.503 0.560 -0.013 0.867 �·) -0.655 0.000 1.015 -0.079 0.245 �À) 0.000 0.000 -0.693 -0.002 -0.643 �`) -1.037 -1.001 0.820 -0.019 0.337 �Á) -0.135 -1.093 -1.310 -0.055 -0.951 �¸) 0.178 0.000 -0.063 0.060 0.000 �¹) -2.020 0.004 -0.030 0.039 -0.103 �Â) -0.896 1.118 -1.456 0.000 -0.003 �
A) -0.148 0.471 -0.433 0.000 0.000 �

) -1.835 0.000 -0.002 0.032 0.000 �
C) 0.000 -0.393 0.000 0.000 -0.216 �
·) -0.509 0.168 -0.166 0.000 0.000 

 

 

Figure 6. Variance of Estimate. 

5.4. Bayesian MSVM 

First, we test our Bayesian MSVM on a dataset , named 

wine, in the UCI data repository. It classifies a given silhouette 

as one of four types of vehicle based on 18 predictors. 500 

training samples were selected and the remaining 346 samples 

as the testing set. All the 18 predictors were used as input 

variables and all the inputs are normalized to have zero mean 

and unit variance. We ran our MCMC algorithm for 1000 

iterations and burn in 500. Figure 7 is the sample paths for the 

coefficients for two predictors, there is no trend among them. 

In fact, the sample paths of all the parameters are stationary, 

which indicates our MCMC is convergence. The classification 

error on the training set is 39% � 195/500 , and the 

prediction error for the testing set is 36.99% � 128/346. 

Then, apply our Bayesian model to the TIMSS data set, we 

randomly select a subset with sample size of 1000. In our 

procedure, 13 predictors were used as input variables and all 

the inputs are normalized to have zero mean and unit variance. 

We ran our MCMC algorithm for 1000 iterations and burn in 

500. Figure 8 is the sample paths for the coefficients for two 

predictors, there is no trend among them. In fact, the sample 

paths of all the parameters are stationary, which indicates our 

MCMC is convergence. The classification error for the 

training set is 22% � 220/1000, and the prediction error for 

the testing set is 26.6% � 133/500 . It indicates that the 

variable selection works pretty well. 
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Figure 7. The sample paths for the coefficients of the first two predictors. 

6. Discussion 

In the Bayesian MSVM framework, we need to use the 

truncated multivariate normal distribution to satisfy the sum to 

zero constraint on f�. �,i.e. ∑ 	�)	
 &)�x�� � 0 for # � 1,⋯ , u, 

but it sacrifices the efficiency of the computation. In our ca 

suppose  &)�x�� � x�β)                    (30) 

If we let 
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X � Èx

�xC�⋮x��Ê ,D � Ì

ÍÎ
�

 �C
 ⋯ ��
�
C �C
 ⋯ ��C⋮ ⋮ ⋯ ⋮�
" �C
 ⋯ ��"Ï

ÐÑ        (31) 

then the sum-to-zero constraint is equivalent to X∑ 	�)	
 β) �0�. If the design matrix X is of full rank, then ∑ 	�)	
 β) � 0" 

or D1� � 0" can guarantee the constraint. 

Following [14], one possible solution could be taken the 

reparameterization procedure below  D � BH                       (32) 

where H � I� � 
� 1�1�� . However, since the matrix H  is 

singular, it is impossible to get the density distribution for the 

parameters B from the distribution of D by using the density 

transformation formula. One possible solution for this issue 

could be solved by looking for a kernel function 

corresponding to the �
-normal penalty in (18). 

 

Figure 8. The sample paths for the coe_cients of the predictors "ITSEX" and "ASBG04". 
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7. Conclusion 

This paper considered the Bayesian multicategory support 

vector machine (MSVM). For the problem, a Bayesian 

framework for MSVM was developed based on stochastic 

variational inference and inducing points. The proposed 

Bayesian approach is robust against outliers with advanced 

accuracy and guaranteed error rate similar to the frequentist 

formulation of the SVM. The Bayesian method also has the 

advantage of modeling with high flexibility, automatic 

parameter tuning, and providing estimates of uncertainty in 

predictions. The numerical studies suggested that the 

proposed method has good predication accuracy and works 

well for practical situations. 
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