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Abstract: In most research fields, the amount of data produced is growing very fast. Analysis of big data offers potentially 

unlimited opportunities for information discovery. However, due to the high dimensions and presence of outliers, there is a 

need for a suitable algorithm for dimensionality reduction. By performing dimensionality reduction, we can learn low 

dimensional embeddings which capture most of the variability in data. This study proposes a new approach, Neighbourhood 

Components Analysis (NCA) a nearest-neighbor-based non-parametric method for learning low-dimensional linear 

embeddings of labeled data. This means that the approach uses class labels to guide the dimensionality reduction (DR) process. 

Neighborhood Components Analysis learns a low-dimensional linear projection of the feature space to improve the 

performance of a nearest neighbour classifier in the projected space. The method avoids making parametric assumptions about 

the data and therefore, can work well with complex or multi-modal data, which is the case with most real-world data. We 

evaluated the efficiency of our method for dimensionality reduction of data by comparing the classification errors and class 

separability of the embedded data with that of Principal Component Analysis (PCA). The result shows a significant reduction 

in the dimensions of the data from 754 to 55 dimensions. Neighborhood Components Analysis outperformed Principal 

Components Analysis in classification error across a range of dimensions. Analysis conducted on real and simulated datasets 

showed that the proposed algorithm is generally insensitive to the increase in the number of outliers and irrelevant features and 

consistently outperformed the classical Principal Component Analysis method. 

Keywords: Dimensionality Reduction, Neighbourhood Components Analysis (NCA),  

Principal Component Analysis (PCA), Outlier Detection 

 

1. Introduction 

Data from real-world settings such as signal processing, 

speech recognition, digital photographs, neuroinformatic, and 

bioinformatics usually has high dimensionality [1]. For instance, 

health care data on the status of patients with many recorded 

parameters from age, weight, blood analysis, nutrition, immune 

system status, genetic background, operations, treatments, 

diagnosed diseases, etc. can be high-dimensional. Each 

dimension corresponds to a specific parameter. 

The large number of dimensions enhance data information 

content, but at the same time result in a greater possibility of 

noise and redundancy. Also, the number of features can 

exceed that of observations. It, therefore, becomes difficult to 

predict certain properties when more variables are added to a 

dataset because each variable added makes the predictive 

power to decrease exponentially. 

Large datasets are often contaminated by highly deviating 

samples, faulty measurements, and noise often referred to as 

outliers. Although there is no widely agreed-upon concept of 

an outlier, D. M. Hawkins defined outliers as observations that 

are different or inconsistent with the remainder of a dataset, as 

to cause suspicion that it was as a result of unrelated 

mechanism [2]. Outliers can arise due to fraudulent behaviour, 

human error, mechanical faults, changes in system behaviour, 

instrument error, deviations in populations. Increasing 

dimensionality of data adds to the complexity of detecting such 

anomalies. By reducing the number of attributes in the data, it 

becomes easier to apply statistical techniques that can extract 
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useful information. This also addresses the issues brought 

about by the curse of dimensionality. 

Dimensionality reduction is the transformation of data 

from high-dimensional space to lower-dimensional space 

without loss of meaningful information in the original data 

[3]. Dimension reduction aims to discard redundant features 

and undesired properties of high dimensional space. This can 

be achieved through feature extraction or feature selection. 

Feature selection methods involve selecting a subset of 

variables from the original set of variables and discarding 

others to preserve crucial information. Feature selection 

methods preserve the original physical meaning of the 

features [4]. Feature extraction methods construct new 

reduced features from the original large number of features 

through linear or non-linear combinations, which preserves 

the class separability as much as possible in the transformed 

space. The extracted features do not preserve the meaning of 

the original features, but each of the original features may 

contribute to making the transformed features. 

Linear dimensionality reduction techniques are popular 

because they are both fast and relatively immune to overfitting. 

Both Neighbourhood Components Analysis (NCA) and 

Principal Component Analysis (PCA) are linear dimensionality 

reduction methods that apply a linear operator to the original 

data to achieve a reduced representation. This study aims to 

compare PCA and NCA techniques for dimensionality reduction 

of high dimensional data in presence of outliers. 

2. Literature Review 

Wu et al. described big data as a large volume of complex, 

growing datasets with multiple independent sources [5]. 

According to Fan et al., high dimensionality combined with a 

large sample size cause problems such as noise accumulation, 

false correlations, incidental homogeneity, heavy 

computational cost, and algorithmic instability [6]. Shetta & 

Niranjan observed the problem with high-dimensional datasets 

is that when the number of variables increases the volume of 

the space increases in such a way that available samples are 

not adequate to get statistically significant results [7]. 

According to Roweis et al., it is important to reduce the 

dimensionality of input data, either for regularization of a 

subsequent learning algorithm or for computational savings [8]. 

Dimension reduction is also useful in exploratory analysis and 

machine learning because it allows for visualization of samples 

which can then be used to detect outliers and identify clusters. 

Machine learning models with fewer variables also generalize 

better during the fitting process. 

Several linear and nonlinear approaches have been 

proposed in the literature to derive meaningful low-

dimensional representations of high-dimensional data, 

ranging from unsupervised to supervised techniques. Real-

world data are likely to form a highly nonlinear manifold. 

Although much recent effort has focused on non-linear 

methods, linear dimensionality reduction techniques are still 

popular, they are both fast and relatively immune to 

overfitting. Linear projections also preserve some essential 

topology of the original data [8]. 

PCA is a classical multivariate technique and first choice 

for dimensionality reduction of data. The method was first 

introduced by Pearson [9], and later developed independently 

by Hotelling [10]. The central idea of PCA is to reduce the 

dimensionality of data in which there is a large number of 

correlated variables while retaining as much as possible of 

the variation present in the dataset [11]. 

Astuti et al. used PCA for dimensionality reduction and 

SVM as a classifier for microarray data classification [12]. 

The results showed that the scheme performed well 

compared to previous research since the microarray data used 

was linearly separable. Reddy et al. investigated PCA and 

LDA dimensionality reduction techniques on four machine 

learning algorithms [13]. They found out that PCA 

outperformed LDA. Also, when the dimensionality of a 

dataset is high, PCA produces better results. Shetta & 

Niranjan observed that PCA is heavily affected by outliers 

present in the data [7]. Although PCA is widely considered as 

a basic model for dimensionality reduction, the method 

assumes that the data follows a specific model and requires a 

priori data knowledge, which is rare in real-world data. 

Neighbourhood components analysis (NCA) was 

originally proposed by Roweis et al. for pattern recognition, 

classification, and dimensionality reduction [8]. This 

approach is well suited for dimensionality reduction since it 

does not lose any information during the process. 

Singh-Miller et al. applied NCA method with a regularization 

term to acoustic modelling in a speech recognizer [14]. Singh-

Miller applied NCA to the problem of acoustic modelling for 

speech recognition to perform dimensionality reduction on 

acoustic vectors [15]. Experiments showed that NCA performed 

competitively with heteroscedastic linear discriminant analysis 

(HLDA) a commonly employed dimensionality reduction 

technique in speech recognition. 

Manit & Youngkong applied NCA to sEMG signal for gait 

phase pattern recognition and evaluated the efficiency of the 

method by comparing classification accuracy and class 

separability with that of PCA, linear discriminant analysis 

(LDA), and local preserving projection (LLP) [16]. They 

found that NCA outperformed the other methods in both 

classification accuracy and class separability. 

Rizwan & Anderson performed dimensionality reduction to 

investigate computational and memory cost of speaker 

similarity score for phoneme classification using NCA method 

[17]. The results obtained showed a significant reduction in the 

dimensions of the TIMIT dataset from 50 dimensions 22 as 

well as 56% reduction in computational cost, and memory. 

Ferdinando et al. explored how much NCA enhances 

emotion recognition using ECG-derived features [18]. The 

results showed that the method enhanced the performance 

and significantly improved the standard deviation for HRV-

based features. Ferdinando & Alasaarela experiments showed 

that applying NCA enhanced the features such that new 

baselines were set by the performances in valence [19]. 

In order to address the limitations of PCA method, this 

study utilizes NCA technique which has proven to be a 
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suitable linear dimensionality reduction technique for real 

world data since the method assumes no parametric model 

for the class distributions or the boundaries between them. 

But instead relies on the strong regularization imposed by 

restricting a linear transformation of the original inputs. 

3. Methodology 

3.1. Principal Components Analysis Model 

The PCA method calculates the covariance matrix of the 

given dataset and then finds the eigenvalues and eigenvectors 

of the covariance matrix [20]. A few eigenvectors whose 

eigenvalues have high variance are then selected to form the 

transformation matrix, which reduces the dimensions of the 

dataset. The main objective of PCA is to reduce the 

dimensions of a dataset from � to � and to project it onto a 

d-dimensional subspace where �d ≪ D�  with high 

computational efficiency and retain most of the information. 

�	 = ���	�
	⋮��	
� →  reduce  dimensionality  → � �	 
	⋮ !	

�  

Given a pattern set �	 , where  x# ∈ ℝ& , i = 1, … , N , the 

assumption made is that the data are centred around the 

origin. i.e  x# ⟺ x# − E�x#�. 

The mean is given by; 

x. = �/ ∑ x#/#1�                                  (1) 

The covariance is given by; 

C = �/ ∑ x#/#1� x#3                              (2) 

PCA formulates the eigenvalue problem. λv = Cv                                    (3) 

where λ  is eigenvalue, 6  is eigenvector, 7  is the 

corresponding covariance matrix over dataset �	 . Each 

eigenvector is a linear combination of original dimensions. 

3.1.1. Eigenvalue Decomposition 

Given that C is a square matrix, the solution for the 

eigenvalue problem consists of the following steps: 
1) Solve all the 8 which makes the matrix �7 − λ9� 

singular. 

We determine a scalar 8 which is the eigenvalue of matrix 

C such that the equation. Cv = λv, v ≠ 0                            (4) 

has a non-zero solution. 6 is the eigenvector associated with λ. 

2) Given an eigenvalue 8 , we solve for all non-zero 

vectors that meet �C − λI� = 0. 

To determine the non-zero vector 6, we modify equation. �C − λI�v = 0                             (5) 

For any vector 6, the condition under which the equation v ≠ 0 has a non-zero solution is, det�C − λI� = 0. 
Spreading the left side of the determinant of the eigen 

matrix �C − λI� of 7 we obtain a polynomial equation. 

 α> + α�λ + ⋯ + αAB�λAB� + �−1�AλA = 0          (6) 

The eigenvalues of 7 are denoted by λ�, λ
, … , λA. For each 

eigenvalue λ	  there is a corresponding eigenvector C  which 

can be found by solving: �C − λ#I�C = 0                                    (7) 

Consider λ�, λ
, … , λA eigenvalues of the covariance matrix 7 with λ� ≥ λ
 ≥ ⋯ ≥ λA thus represents a proportion of the 

total variation. 

Y# = FG∑ FGHGIJ                                    (8) 

The proportion of variation by the first d principal 

components should be large to avoid loss of information. 

 
FJKFLK⋯KFHFJKFLK⋯KFH ≈ 1                                (9) 

3.1.2. Low Dimensional Projection 

Projecting down to d dimensions once all the principal 

components have been identified, the dimensionality of the 

dataset is reduced to d dimensions by projecting it onto the 

hyperplane defined by the first � PCs. 

The transformation based on the principal components is 

defined as  	 = N!3x#                                     (10) 

Which is the dot product of the matrix �	  by the matrix N! , which is the matrix containing the first �  principal 

components. Where N  is the matrix of the first � 

eigenvectors of the highest eigenvalues of the covariance 

matrix 7 . Selecting this hyperplane ensures that the 

projection will preserve as much variance as possible. 

The attributes �	 from the initial D-dimensional space are 

therefore transformed into  	  low �  dimensional space by 

selecting the first � eigenvectors associated with the highest 

eigenvalues. Which is a polynomial of degree O in λ. 

3.2. Neighborhood Components Analysis Model 

Given a labelled dataset comprising of n real-valued input 

vectors x�, x
, … , xA ∈ ℝ&  with corresponding class labels y�, y
, … , yA , We find a quadratic distance metric that 

optimizes nearest neighbour classification performance [8]. 

For quadratic (Mahalanobis) distance metric we can write the 

expression as: 

d#P = Qx# − xPR3QQx# − xPR  

where T  is a positive semi-definite matrix that can be 

decomposed using eigen decomposition. Taking U to denote 

the transformation matrix to be learned, a metric Q = A3A is 

learned such that the distance between two points � and W is 

defined as, 
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d�x, y� = �x − y�3Q�x − y� = �Ax − Ay�3�Ax − Ay� 

For NCA to perform linear dimensionality reduction, we 

restrict A to be a non-square matrix of size d × D  where d ≪ D in our optimization procedure. 

3.2.1. Stochastic Neighbor Selection 

NCA selects a single neighbour stochastically. Each point i 

selects another point j as its neighbour among k points with 

some probability pij and inherits its class label from the point 

it selects [8]. The probability that a point i will select itself as 

a neighbour is zero. 

 p#P = Z[\]B^_[GB_[`^La∑ Z[\�B‖_[GB_[c‖�cd` , P## = 0               (11) 

The stochastic selection rule aids finding the probability pi 

that a point i will be correctly classified. 

 p# = ∑ p#PP∈fG 	where	y# = ijky# = yPl         (12) 

3.2.2. Objective (Cost) Function 

The objective of the neighbourhood components analysis 

is to maximize the expected number of points correctly 

classified. The objective (cost) function is given by, 

 f�A� = ∑ ∑ p#PP∈fG# = ∑ p##                    (13) 

Optimize the cost function (13) using gradient descent on a 

non-square matrix U. NCA maximizes the expected number 

of points correctly classified according to the objective 

function n�U�. 
Differentiating f with respect to the transformation matrix 

U provides a gradient rule used to optimize U. 

Denote x#P = x# − xP 

op

o_
= −2A∑ ∑ p#PQx#Px#P

3 − ∑ p#rr x#rx#r
3 RP∈fG#        (14) 

op

o_
= −2A∑ Qp# ∑ \Gcc

x#rx#r
3 − ∑ p#PP∈fG x#Px#P

3R#       (15) 

The learned transformation matrix A will map the vector 

samples from �  dimensional space to a low-dimensional 

space �. 

Z	 = 	A. X	                                    (16) 

Where v	 represents the transformed features in d-

dimensional space. 

3.3. Performance Measures 

To evaluate our method for dimensionality reduction and 

outlier detection, we consider classification error of the K-

Nearest neighbour (KNN) on the transformed data. 

wxxyx	 = 	1 − Uzz{x|zW 

Where, 

Uzz{x|zW = }~����	 ��	 �������	 ���!	��	���

�����	 �~����	 ��	 ���!	��	���
  

3.4. Data 

In our experiments for this study, we used two different 

datasets, Parkinson’s Disease Classification dataset from the 

UC Irvine repository and a simulated dataset. 

The Parkinson’s Disease Classification data used for this 

work was obtained from the Department of Neurology, in 

Cerrahpasa Faculty of Medicine, Istanbul University, and 

provided by UCI Machine Learning Repository [21]. The 

dataset consists of 755 variables and 756 instances. The 

target variable consists of two classes. The dataset contains 

various features for speech signal processing; including Time 

Frequency features, Mel Frequency Cepstral Coefficients 

(MFCCs), Wavelet Transform based Features, Vocal Fold 

Features, and tuneable Q-factor wavelet transform (TWQT) 

features which have been applied to the speech recordings of 

patients with Parkinson’s Disease (PD) to extract clinically 

useful information for assessment of PD. 

3.4.1. Data Simulation 

The simulation has focused on a scenario where outliers 

are present in the high dimensional data. The dataset 

comprises a total of 1000 samples with 500 features, where 

50 are relevant features and the rest redundant. The number 

of redundant features are generated as random linear 

combinations of the informative features. The inliers are 

drawn from ��0,1� . We added �	variance outliers from a 

���, �Σ�� distribution, where �	 = 	3	and Σ	 = 	1	[22]. 

3.4.2. Data Preparation 

As in the previous studies [1, 22], the features in the raw 

data were normalized to [0, 1]. 

The id variable from the Parkinson’s Disease 

Classification dataset was dropped because it was not useful 

in the analysis and the data type of the target variable was 

converted to categorical to represent the two classes. 

4. Results 

Dimensionality Reduction 

The results under the PCA and NCA transformations are 

shown in this section. We applied our models to Parkinson’s 

Disease Classification data to model dimensionality 

reduction of the high-dimensional features and the simulated 

data with High-dimensional features contaminated with 

outliers. 

4.1. Simulated Results 

PCA model and NCA model were fitted on the data. The 

dimensions of the simulated dataset were reduced from 500 

dimensions (D=500) to 50 (d=50) dimensions. 

To evaluate the effectiveness of the proposed method to 

filter irrelevant features and outliers, we added varied 

percentage of outliers for 5%, 10%, 15%, 20%, 25%, and 

30% to the simulated dataset. 

To evaluate the effectiveness of our methods for dimension 

reduction of high dimensional data contaminated with 

outliers, we evaluate NCA and PCA on the simulated data 
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set. To compare the methods based on the projected results, 

we applied K-nearest neighbor classification on the projected 

data using k = 3 and computed the classification error. The 

method with the least error preserves most of the important 

features than the other. Using the same projection learned at 

training, the training set and all future test points were 

projected into low-dimensional space and K-nearest neighbor 

classification was performed to assess the models. The 

results under the PCA and NCA transformations appear in 

Simulation results. 

Figure 1. gives the classification errors of KNN on the 

simulated data set by PCA and NCA embeddings by varying 

the percentage of outlier contamination. It can be observed 

from the simulated data set, KNN on NCA embeddings 

achieved consistently lower classification errors using k = 3 

compared to PCA. KNN on PCA embeddings achieved higher 

classification errors across a range of outlier contamination. It 

can be observed that PCA is highly affected by outliers. NCA 

is not heavily affected by the outliers since the outlying points 

contribute less to the labelling of the surrounding points. 

 

Figure 1. Classification Error % for various levels of outlier contamination. 

4.2. Application on Real Data 

The ability of PCA and NCA methods to perform dimensionality reduction was tested by applying the models to high 

dimensional dataset D=754. 

Table 1. Proportion of variance explained and cumulative variance proportion for the principal components. 

PCs Proportion of Variance Cumulated Proportion PCs Proportion of Variance Cumulated Proportion 

PC1 0.1295 0.130 PC36 0.0046 0.721 

PC2 0.0939 0.223 PC37 0.0044 0.726 

PC3 0.0825 0.306 PC38 0.0042 0.730 

PC4 0.0429 0.349 PC39 0.0040 0.734 

PC5 0.0357 0.385 PC40 0.0038 0.738 

PC6 0.0300 0.415 PC41 0.0038 0.741 

PC7 0.0251 0.440 PC42 0.0037 0.745 

PC8 0.0221 0.462 PC43 0.0036 0.749 

PC9 0.0204 0.482 PC44 0.0035 0.752 

PC10 0.0182 0.500 PC45 0.0035 0.756 

PC11 0.0177 0.518 PC46 0.0034 0.759 

PC12 0.0150 0.533 PC47 0.0034 0.763 

PC13 0.0131 0.545 PC48 0.0031 0.766 

PC14 0.0127 0.559 PC49 0.0031 0.769 

PC15 0.0127 0.572 PC50 0.0031 0.772 

PC16 0.0117 0.583 PC51 0.0030 0.775 

PC17 0.0107 0.594 PC52 0.0030 0.778 
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PCs Proportion of Variance Cumulated Proportion PCs Proportion of Variance Cumulated Proportion 

PC18 0.0106 0.604 PC53 0.0029 0.781 

PC19 0.0095 0.614 PC54 0.0028 0.784 

PC20 0.0094 0.623 PC55 0.0028 0.786 

PC21 0.0087 0.632 PC56 0.0028 0.789 

PC22 0.0081 0.640 PC57 0.0027 0.791 

PC23 0.0076 0.648 PC58 0.0027 0.795 

PC24 0.0074 0.655 PC59 0.0026 0.797 

PC25 0.0067 0.662 PC60 0.0026 0.800 

PC26 0.0063 0.668 PC61 0.0026 0.800 

PC27 0.0062 0.674 PC62 0.0026 0.800 

PC28 0.0061 0.680 PC63 0.0026 0.800 

PC29 0.0059 0.686 PC64 0.0026 0.800 

PC30 0.0056 0.692 PC65 0.0026 0.800 

PC31 0.0053 0.697 PC66 0.0026 0.800 

PC32 0.0052 0.702 PC67 0.0026 0.800 

PC33 0.0050 0.707 PC68 0.0026 0.800 

PC34 0.0048 0.712 PC69 0.0026 0.800 

PC35 0.0047 0.717 PC70 0.0022 0.823 

 

Table 1 represents the proportion of variance explained 

and cumulative variance proportion for the principal 

components. The second column of the table represents the 

proportion of variance which is the ratio of each Eigenvalue 

to the total. As it can be seen from the third column which 

represents the cumulated proportion on of variance, the first 

principal component explained 13% of the total data variance 

and the second PC which contains 0.9% of the variance in the 

data explains the second largest variance and so on. The first 

60 PCs in total accounted for 80% of the total variance. In 

this study the first 60 to 69 PCs are considered sufficient for 

data representation since they represent 80% of the variance 

in the data. 

For the Neighbourhood Components Analysis algorithm, 

the dimensionality of the reduced representation which is the 

number of rows in the matrix A has to be set by the user 

which is a deficiency of the approach. 

4.2.1. Visualizing the Projected Distribution 

The algorithms were applied to the Parkinson’s Disease 

Classification dataset and projected the data into a 2-

dimensional space for visualization. 

Visualization results of PCA applied on the dataset and 

projected into 2-dimensional embedding. 

 

Figure 2. Dataset visualization results of PCA embedding. The data was reduced from its original dimensions D=754 and projected to d=2. 

The data was successfully projected to a 2-dimensional 

feature space by PCA method. It can be observed from 

Figure 2. that the subjects in the first two principal 

components space overlap on each other and have no clear 

clustering for each group. 

The NCA model is trained with a projection down to d 

= 2 dimensions to allow for visualization of the projected 

data. 
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Figure 3. Dataset visualization results of NCA embedding. The data was reduced from its original dimensions D=754 to d=2. 

Figure 3 shows 2 dimensional projections of the Parkinson’s 

Disease Classification dataset obtained by NCA embedding. 

The projected representation of the data in 2 dimensions is 

well represented by NCA in terms of visualization compared to 

PCA. The classes are consistently much better separated by the 

NCA transformation. It can be observed that the two classes 

“haspd” (Has Parkinson’s disease) and “nopd” (Has no 

Parkinson’s disease) which is the control group, when 

projected to a 2-dimensional space, can be clearly separated. 

NCA appears to project data in such a way as to keep points 

from the same class close together. The clustering enforced by 

NCA is visually meaningful despite the large reduction in 

dimension. Other observations can be that the “haspd” class is 

spread out as compared to the control class. 

4.2.2. Model Comparison on the Parkinson’s Disease 

Classification Dataset 

The dataset was trained with 605 samples (80%) and tested 

with 151 samples (20%) and the embeddings were evaluated 

on the test set using KNN with k=3. 

The data was first projected into a 2-dimensional space by 

PCA and NCA methods for visualization. 

 

Figure 4. 2-dimensional PCA embedding on the test data. 
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It can be observed that from Figure 4. KNN on 2-

dimensional PCA embeddings achieved an error of 0.24 

which is slightly higher compared to that of NCA. There is 

no class separability acieved by PCA embedding on the test 

data. Rather the test points from the two classes overlap on 

each other. 

 

Figure 5. 2-dimensional NCA embedding on the test data. 

From Figure 5, KNN on 2-dimensional NCA embeddings 

achieved an error of 0.21. NCA embedding on test data 

achieves more class separability compared to the PCA 

embedding. The class separability can reveal how easy the 

dataset can be separated. This enables KNN classifier obtain 

less classification error on the embedded data. 

The algorithms were used to reduce the dataset from its 

original dimensions 754 to d = 2, d = 5, 

d = 10, d = 15, d = 20, d = 25, d = 30, d = 35, d = 40, 45, 

d=50, d=55, d= 60, d=65 and d = 70 respectively in order to 

obtain optimum dimensions that the dataset can be reduced to 

without loss of information. 

Table 1 represents the classification errors (%) across a 

range of projected dimensions on the Parkinson’s Disease 

Classification dataset. The number of principal components 

considered for this analysis ranged from 2 PCs to 70 PCs. 

 

Figure 6. KNN classification error on UCI Parkinson’s Disease Classification dataset, across a range of projected dimensions. 
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Table 1. Classification Error (%) on various reduced dimensions with k=3. 

Projected dimension (d) Classification Error (%) on PCA Embeddings Classification Error (%) on NCA Embeddings 

2 21.05 26.32 

5 16.45 15.79 

10 15.79 12.50 

15 15.13 12.50 

20 15.13 13.16 

25 14.47 12.50 

30 13.16 10.53 

35 14.47 11.84 

40 13.16 10.53 

45 12.50 7.89 

50 11.18 9.21 

55 11.84 7.89 

60 9.21 9.21 

65 7.89 10.53 

70 9.87 11.84 

 

It can be observed from Table 2 that KNN on NCA 

embeddings attained the lowest classification error across the 

range of projected dimensions and consistently outperformed 

PCA. 

 

Figure 7. Comparison by reduced dimensions. 

From Figure 6. The optimal classification error obtained 

by the methods was 7.89%. However, the methods 

achieved the optimum error at different dimensions. The 

trend was as the number of dimensions increased, the 

classification error reduced up to an optimum number of 

dimensions and then as the number of dimensions 

increased, the classifier performed poorly (classification 

error increased). The optimum classification error shows 

the number of dimensions the data can be reduced to for a 

classifier to perform well. 

Based on Figure 7, it can be observed that there was a 

significant reduction in the dimensions of the dataset from 

754 to 55 by the NCA technique. The PCA method reduced 

the dataset to 65 dimensions retaining 80% of the 

information in the data. This shows that the high dimensional 

dataset can be represented in 55 dimensions. This is the 

number of dimensions the KNN classifier obtained optimum 

results on the embedded dataset. 

5. Conclusion 

Linear dimensionality reduction methods are widely used 

because they are not prone to overfitting and preserve the 

topology of data. We have investigated Neighborhood 

Components Analysis, a novel approach for dimensionality 

reduction of data which is based on the nearest-neighbor 

model and compared it with Principal Components Analysis 

which is a well-known standard approach. Neighbourhood 

Component Analysis (NCA) algorithm has been applied as a 

dimensionality reduction criterion for selecting relevant 

features in high-dimensional data. For a researcher, it is 

important to consider the most relevant features for either 

exploratory analysis or machine learning in their analysis to 

achieve high accuracy results. This can be achieved by 

employing a dimensionality reduction procedure on the data. 

As per the results from this study, the Neighborhood 

Components Analysis model gives better performance in 

dimensionality reduction even in presence of outliers and in 

terms of visualization of class separation in low dimensional 

space compared to PCA. The classification error of the 

transformed features by NCA is lower than that of PCA. This 

signifies that the variance captured by the PCs is not certainly an 

important indicator of classification performance. Our 

experiments on Parkinson’s Disease Classification dataset shows 

that by using reduced dimensions of the data, learning can be 

made easier. NCA is not affected as much by the outlier points 

since they contribute less to the labelling of the surrounding 

points during learning of low dimensional projection. PCA was 

highly affected by the outliers. It therefore can be concluded 

from the above experimental results that NCA is able to achieve 

a better dimensionality reduction than PCA. Future work should 

consider robust variants of NCA to improve its performance in 

presence of outliers. 
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