

International Journal on Data Science and Technology
2018; 4(2): 42-48

http://www.sciencepublishinggroup.com/j/ijdst

doi: 10.11648/j.ijdst.20180402.11

ISSN: 2472-2200 (Print); ISSN: 2472-2235 (Online)

Performance Engineering for Scientific Computing with R

Hui Zhang

Computer Engineering and Computer Science Department, University of Louisville, Louisville, USA

Email address:

To cite this article:
Hui Zhang. Performance Engineering for Scientific Computing with R. International Journal on Data Science and Technology.

Vol. 4, No. 2, 2018, pp. 42-48. doi: 10.11648/j.ijdst.20180402.11

Received: March 26, 2018; Accepted: May 26, 2018; Published: June 26, 2018

Abstract: R has been adopted as a popular data analysis and mining tool in many domain fields over the past decade. As Big

Data overwhelms those fields, the computational needs and workload of existing R solutions increases significantly. With

recent hardware and software developments, it is possible to enable massive parallelism with existing R solutions with little to

no modification. In this paper, three different approaches are evaluated to speed up R computations with the utilization of the

multiple cores, the Intel Xeon Phi SE10P Co-processor, and the general purpose graphic processing unit (GPGPU).

Performance engineering and evaluation efforts in this study are based on a popular R benchmark script. The paper presents

preliminary results on running R-benchmark with the above packages and hardware technology combinations.

Keywords: Performance Evaluation, R, Intel Xeon Phi, Multi-Core Computing, GPGPU

1. Introduction

R, open-source version of the language S, is best known as

package that performs statistical analysis and creates plots.

Over the years, R has evolved as a high-level language

environment for performing complex calculation and

simulation in a variety of scientific computing tasks. R has

high-level functions to operate on matrices and perform

numerical analysis as well as advanced data analytics.

Although R has been adopted in many scientific domains

as a high productive analytic tool, R faces the even greater

challenges to scale up the computation with large data set.

Recent hardware and software developments have potential

to enable massive parallelism with existing R solutions with

little to no modification.

The goal of this paper is to evaluate three such approaches

to speed up R computations with the utilization of the latest

hardware technology including multi-core, many core (GPU)

technologies, and Intel Many Integrated Core architecture

(MIC).

2. Background

Significant efforts have been made in developing

accelerator cards that can easily increase the parallel

processing potential in recent years. A general purpose

graphic processing unit (GPGPU) extends parallel functions

and technologies traditionally embedded in graphic

processing units to handle more generic computations.

Computational solutions can utilize the parallel features

provided by GPU through programing interface such as

OPENCL and CUDA. Most recently, the Intel Xeon Phi

SE10P Co-processor (Xeon Phi) integrate 60 processing

cores and 8GB memory in a single card. A critical advantage

of the Xeon Phi co-processor is that, unlike GPU-based

co-processors, the processing cores run the Intel x86

instruction set (with 64-bit extensions), allowing the use of

familiar programming models, software, and tools. In

addition to allowing the host system to offload computing

workload partially to the Xeon Phi, it also can run a

compatible program independently.

To utilize those new hardware enabled parallelism, a

common usage model is to rewrite some basic functions or

processing flow with the corresponding parallel version

supported by the particular hardware. The code

redevelopment requires the user to have extensive knowledge

in both existing R code as well as the parallel mechanism

supported by the additional packages. On the other hand, R

enables linking to other shared mathematics libraries to speed

up many basic computation tasks for linear algebra

computation. One option to utilize the Intel Many Integrated

Core is to use Intel Math Kernel Library (MKL). Lately some

R packages have been developed that use the latest

43 Hui Zhang: Performance Engineering for Scientific Computing with R

multi-core and GPU libraries to give substantial speed-ups to

existing linear algebra functions in R. One such example is

HiPLARM1 which targets the underlying LAPACK routines

and replaces them with the latest linear algebra libraries that

take advantage of multi-core CPU and GPU hardware.

This paper presents the study’s preliminary results on

running R-benchmark with the above packages and hardware

technology combinations. Section 2 details the experimental

setup. The section 3 presents the initial findings.

3. Evaluation Environment

3.1. R Benchmark

The investigation used the R-25 benchmark script for

testing performance of different approaches2. The testing

script includes fifteen common computational tasks grouped

into three categories: Matrix Calculation, Matrix functions

and Programmation. The fifteen tasks are listed in Table 1:

Table 1. Translation of benchmark number to R-25 benchmark description

for all R-25 plots.

R25 Benchmark Task Description

1 Creation, transp., deformation of a 2500×2500 matrix (sec)

2 2400×2400 normal distributed random matrix

3 Sorting of 7,000,000 random values

4 2800×2800 cross-product matrix

5 Linear regression over a 3000×3000 matrix

6 FFT over 2,400,000 random values

7 Eigenvalues of a 640×640 random matrix

8 Determinant of a 2500×2500 random matrix

9 Cholesky decomposition of a 3000×3000 matrix

10 Inverse of a 1600×1600 matrix

11 3,500,000 Fibonacci numbers calculation (vector calc.)

12 Creation of a 3000×3000 Hilbert matrix (matrix calc.)

13 Grand common divisors of 400,000 pairs (recursion)

14 Creation of a 500×500 Toeplitz matrix (loops)

15 Escoufier’s method on a 45×45 matrix (mixed)

16 Total time for all 15 tests (not averaged)

17 Overall mean (sum of means of all tests)

3.2. Compute Environment – Stampede Supercomputing

Cluster

The evaluation work used the Stampede cluster at Texas

Advanced computing Center as the high performance

computing environment for performance testing. Stampede

supports several latest hardware technologies for improved

computational performance including using Xeon Phi

accelerators and/or NVIDIA Kepler 20 GPUs for large matrix

calculations. In this test, each compute node has two Intel

Xeon E5-2680 processors each of which has eight computing

cores running @2.7GHz. There is 32GB DDR3 memory in

each node for the host CPUs. The Xeon Phi SE10P

Coprocessor installed on each compute node has 61 cores

with 8GB GDDR5 dedicated memory connected by an x16

PCIe bus. The NVIDIA K20 GPUs on each node have 5GB

of on-board GDDR5. All compute nodes are running CentOS

6.3. For this study the stock R 3.01 package is used. The

package is compiled with the Intel compilers (v.13) and built

with Math Kernel Library (MKLv.11).

4. Acceleration Strategies

The performed experiment focused on the benefit of R

programs using the latest multi-core, GPGPU, and Intel

Co-processor technologies:

4.1. Exploiting Xeon Phi Co-Coprocessor with MKL

To utilize Xeon Phi co-processor, one option is to use Intel

Math Kernel Library (MKL) [1]. MKL which includes a

wealth of routines to accelerate application performance and

reduce development time such as highly vectorized and

threaded linear algebra, fast fourier transforms (FFT), vector

math and statistics functions. It has been reported that the

compiling R with MKL can provide three times

improvements out of box [2].

Figure 1. Adopting offload model on Stampede cluster at XSEDE: an R

program running on the host can “offload” work by directing the MIC to

execute a specified block of code. The host also directs the exchange of data

between host and MIC.

Figure 2. Configuring environment variables to enable automatic offloading

to Intel Xeon Phi Coprocessor. In this sample script, 70% of computation is

offloading to Phi, while only 30% is done on host.

The evaluation further exploited an offload model to

automatically offload MKL operations to Intel

 International Journal on Data Science and Technology 2018; 4(2): 42-48 44

Co-processor. As illustrated in Figure 1, while MKL can

automatically manages the computing details, further

performance improvement can be obtained by distributing

the work across the compute host and the

many-integrate-core (MIC).

On Stampede offloading to Xeon Phi can be enabled by

setting environment variables as opposed to making

modifications to existing R programs (see e.g., Figure 2 for a

sample script to enable 70% offloading to Phi.)

4.2. Exploiting Multi-Core and GPU Technologies with

HiPLAR

General purpose graphic processing units (GPGPU) extend

parallel functions and technologies traditionally embedded in

graphic processing units to handle more generic

computations. The Matrix package currently uses the BLAS

and LAPACK linear algebra libraries to perform its

operations. These are the de-facto libraries for performing

linear algebra operations, however, they are only designed to

run on single core CPUs and are not designed for modern

CPU architectures and accelerators.

HiPLAR’s over-arching goal is to provide easy access to

the latest computational architectures using the latest linear

algebra libraries and to do so in an easy and user friendly

manner. With the installed suite of R packages the user can

achieve large speed-ups with little understanding of the

complexities of multi-core and GPU computing.

Another important feature of HiPLAR is its auto-tuning

capability: for users that have multi-core CPUs and an

NVIDIA GPU, an auto-tuning feature is provided that

calculates the optimal configuration for the problem and the

hardware. Currently, HiPLAR provides two packages to

target linear algebra functions in the standard R release and

Matrix packages.

Using the PLASMA library for multi-core CPUs and the

MAGMA library for NVIDIA GPUs users can see large

speed-up in R codes that use linear algebra routines from

simple matrix multiplication to Cholesky and LU

decomposition. Figure 3 shows an example where a minimal

change (one liner) is applied to the R program to leverage

substantial speed-ups by HiPLAR.

Figure 3. A brief example to highlight the benefits of using HiPLARM.

5. Performance Tuning

Based on the previous observation of significant

performance improvement of benchmark version of R

computation using MKL and offload model, the study tests

R25 benchmark script by choosing work-sharing at the 30%

host (16 threads) 70% coprocessor (240 threads) sweet spot

(see e.g., [3]).

The evaluation effort tested R25 with multi-core and GPU

acceleration using HiPLAR package.

Figure 4. Basic vectorized and matrixed operations can obtain significant speed-ups by using offload model with MKL and MIC, multi-core, and GPU

technologies.

45 Hui Zhang: Performance Engineering for Scientific Computing with R

Figure 4 indicates the obtained speed-ups from the three

strategies proposed and evaluated in this study. Significant

speed-ups are consistently achieved over various matrices

size and matrix based functions. At an R level, the user will

notice no difference between using Matrix and using the

three acceleration strategies. These methods/packages strive

to retain the optimization within the Matrix package in R. So

the user will notice no difference between using the offload

model, the functions of HiPLAR packages or indeed, results.

This feature enables programmers easily access to the latest

computational architectures though the linked linear algebra

libraries.

6. Use Case: Accelerating Mathematical

Knot Simulations with R

The creation of mathematical 3D curves and knots

(closed 3D curves) can often be facilitated with a 2D

drawing interface. One often constructs an initial

configuration for an object while neglecting most issues of

geometric placement.

For example, when knot diagrams are drawn, only bare

projections are needed with relative depth ordering indicated

at crossings while precise 3D depth information is

unimportant (e.g., Figure 5 (a)).

The next task that comes naturally is to topologically

refine these initial embeddings, not only to make the

geometry look more pleasant, but also to remove crossings

into the minimal number. One way to refine the initial

embedding is to embed the initial graph into 3-dimensional

space and replace the vertices with electrostatically charged

masses and replace each edge with a spring to form a

mechanical system.

Figure 5. Typical screen images of the self-deformation. The simple closed curve (a knot 51) relaxes, with the proposed force laws and collision avoidance

mechanism. During the relaxation, the knotted string preserves the its topological structure.

The vertices are placed in some initial layout and let go so

that the spring systems and electrical forces on the masses

move the system to a minimal energy state. Two basic forces

are used, an attractive mechanical force applied between

adjacent masses on the same spring and a repulsive electrical

force applied between all other pairs of masses:

1. attractive mechanical force — the mechanical force is a

generalization of Hooke’s law, allowing for an arbitrary

power of the distance r between masses, Fm = Hr
1
+b,

where H is a constant;

2. repulsive electrical force — the electrical force also

allows for a general power of the distance, Fe

=Kr−(2+a), where r again is the distance between the

two masses, and K is a constant. The electrical force is

applied to all pairs of masses excluding those

consisting of adjacent masses on the same link.

In most of the preliminary results [4], [5], [6] shown in this

work, the parameters used β = 1 and α = 2.

For this force-directed algorithm to be applicable to the

principal test case of mathematical curves positioned in R3, it

is imperative that any proposed evolution should respect

topological constrains: it does not involve cutting the curve

or passing the curve through itself. Parallel to the force laws

previously specified, the self-intersection problem is solved

in the proposed approach by requiring that the position of

each mass be updated one at a time, and collision avoidance

is strictly performed to determine if one is heading towards

one of the following two potential collisions:

1. point-segment collision — a vertex of a 3D curve is

going towards a link of the curve and the distance is

less than a predefined threshold distance

2. segment-segment collision — a link of a 3D curve is

going towards another link and their distance is less

than a predefined threshold distance

6.1. Accelerating the Force-Driven Knot Simulation

A good portion of the algorithms is concerned with Linear

Algebra Computation (LAC), and heavily vectorized

operations performed over and over in a large number of

iterations. One promising direction for accelerating the

computation is to utilize the latest hardware advance and

exploit hardware-enabled massive parallelism to accelerate

the LAC in the force-driven knot algorithms.

The compute-intensive part of the knot simulation

algorithm is for distance calculation. Both point-segment

collision and segment-segment collision avoidance are

heavily relying on distance calculation between points and

line segments in 3-dimensional space. The core algorithms

are implemented and optimized with vectorized and

matrixized R code and exploit GPGPU to accelerate the core

computational components. We have recently completed a

 International Journal on Data Science and Technology 2018; 4(2): 42-48 46

preliminary study on accelerating R computation with

hardware enabled parallelism [3], and obtained promising

results by adopting this technology in several

domain-specific scientific investigations [7], [8], [9].

Meanwhile, many geometry studies require the examination

of phenomena under different conditions, e.g., with different

relaxation models, or with different intervening forces. Such

tasks and simulations can be executed in a pleasing parallel

way, which can be accelerated by parallel computing on

multi-core and multimode data infrastructure (see e.g., initial

results in [10], [7], [11].)

6.2. Extracting the Key Moments

Extracting key moments is a simple yet effective form of

summarizing a long mathematical evolution or comparing

among multiple evolutions. In most applications of

topological refinement, the interests do not include each step

in the path followed by the object model. Rather, those key

moments and the final conformation are of greater

importance for investigation and presentation. The

fascinating question here is whether there is a way to extract

the key moments of the deformations in high dimensions by

identifying the sequence of “frames” where each item differs

by one critical topological change.

In the case scenario, the critical changes can be computed

in the knot presentations (e.g., see work in [4], [12]) by

identifying the minimal number of crossing points among all

possible 2D projections. If the number of crossing points

changes, the evolution is considered at the new critical

moment. In this way, w associated key moments can be

identified and provide a much clearer visualization and

navigation interfaces for users to perceptualize the entire

evolution process (see e.g., Figure 6).

Figure 6. MathSimWeb: a web-based interface to define mathematical knots’ initial embedding, and generate knot images for the entire evolution.

6.3. MathSimWeb: Putting Simulation and Visualization

Together

The next focus is effective integration of algorithms and

techniques so far, to enable and enrich users’ mathematical

experience with knot geometry and topology. Figure 6 shows

a visual analysis system, called MathSimWeb, developed for

exploring geometric data. This work to fully connect guided

geometric relaxation (with a multi-view interface) and

hardwareenabled accelerated computing (offloading math

operations to GPGPU) for exploring new geometry.

MathSimWeb leverages R Shiny’s architecture deployed

47 Hui Zhang: Performance Engineering for Scientific Computing with R

on a local lab cluster environment at UofL, and it will consist

of two main parts:

1. a back-end module that exploits massively parallel

solutions for geometry computation and ingests

visualization archive (vectors) into a data store;

2. a front-end module that allows investigative geometric

analysis at run time

I. a central visualization panel that displays the

geometry and its real-time evolution, and

mathematical movies that can depict geometry’s

evolution with identified key moments.

II. a dashboard for users to upload knot embedding

and configure parameters for the simulations

General purpose graphic processing units (GPGPU) extend

parallel functions and technologies traditionally embedded in

graphic processing units to handle more generic

computations. The Matrix package currently uses the BLAS

and LAPACK linear algebra libraries to perform its

operations. These are the de-facto libraries for performing

linear algebra operations, however, they are only designed to

run on single core CPUs and are not designed for modern

CPU architectures and accelerators.

To accelerate the large number of iterations in the

mathematical simulations, the library of High Performance

Linear Algebra in R (HIPLAR) is used. HiPLAR’s

over-arching goal is to provide easy access to the latest

computational architectures using the latest linear algebra

libraries and to do so in an easy and user friendly manner.

With the installed suite of R packages the user can achieve

large speed-ups with little understanding of the complexities

of multi-core and GPU computing. Another important feature

of HiPLAR is its auto-tuning capability: users that have

multi-core CPUs and an NVIDIA GPU can use an

auto-tuning feature that calculates the optimal configuration

for the problem and the hardware. Currently, HiPLAR

provides two packages to target linear algebra functions in

the standard R release and Matrix packages. Using the

PLASMA library for multi-core CPUs and the MAGMA

library for NVIDIA GPUs users can see large speed-up in R

codes that use linear algebra routines from simple matrix

multiplication to Cholesky and LU decomposition.

Figure 7 shows an example where a minimal change (one

liner) is applied to the math simulation R program to leverage

substantial speed-ups by HiPLAR.

Figure 7. A brief example to highlight the benefits of using HiPLARM in

accelerating mathematical simulations.

7. Conclusion

The ultimate goal is to facilitate the manipulation and

understanding of geometric structures. We now possess

interactive graphics tools, computational algorithms, and

increased computing powers that can extremely simplify and

accelerate the process of making analogues diagrams,

generating dynamic illustrations, and rendering perceptual

clues, even for abstract mathematical entities and phenomena

that occur in three- and high-dimensional space. By exploiting

such tools, we feel that we can make a novel contribution to

building intuition about classes of geometric and topological

problems even beyond the third dimension.

Future directions of this work include extending the range

of objects for which we can support to include more complex

knots, links, and Riemann surfaces, and the use of

divide-and-conquer strategies [13, 14] to accelerate

large-scale mathematical simulations.

Acknowledgements

The computational experiments used Stampede at the

Extreme Science and Engineering Discovery Environment

(XSEDE) (resource allocation Award Number

TGASC130037). The study was partly funded by NSF

awards #1651581 and #1726532.

References

[1] Accelerating the intel math kernel library, 2007. M. Intel. Intel
math kernel library, 2007.

[2] A hardware accelerator for the Intel Math Kernel. J. L.
Gustafson and B. S. Greer. ClearSpeed whitepaper.

[3] Y. El-Khamra, N. Gaffney, D. Walling, E. Wernert, W. Xu, and
H. Zhang. Performance evaluation of r with intel xeon
phicoprocessor. In Big Data, 2013 IEEE International
Conference on, pages 23–30. IEEE, 2013.

[4] Hui Zhang, Sidharth Thakur, and Andrew J. Hanson. Haptic
exploration of mathematical knots. In ISVC (1), pages 745–756,
2007.

[5] Lin Jing, Xipei Huang, Yiwen Zhong, Yin Wu, and Hui Zhang.
Python based 4d visualization environment. International
Journal of Advancements in Computing Technology, 4
(16):460–469, September 2012.

[6] Hui Zhang, Jianguang Weng, and Andrew J. Hanson. A
pseudo-haptic knot diagram interface. In Proc. SPIE, volume
7868, pages 786807–786807–14, 2011.

[7] Guangchen Ruan and Hui Zhang. Conquering Big Data with High
Performance Computing, chapter Large-Scale Multimodal Data
Exploration with Human in the Loop. Springer International
Publishing, Springer International Publishing Switzerland, 2016.

[8] Jian Zou and Hui Zhang. Conquering Big Data with High
Performance Computing, chapter High-Frequency Financial
Analysis through High Performance Computing. Springer
International Publishing, Springer International Publishing
Switzerland, 2016.

 International Journal on Data Science and Technology 2018; 4(2): 42-48 48

[9] Weijia Xu, Ruizhu Huang, and Hui Zhang. Conquering Big
Data with High Performance Computing, chapter Empowering
R with High Performance Computing Resources for Big Data
Analytics. Springer International Publishing, Springer
International Publishing Switzerland, 2016.

[10] Hui Zhang, Huian Li, Michael J. Boyles, Robert Henschel,
Eduardo Kazuo Kohara, and Masatoshi Ando. Exploiting hpc
resources for the 3d-time series analysis of caries lesion activity.
In Proceedings of the 1st Conference of the Extreme Science
and Engineering Discovery Environment: Bridging from the
eXtreme to the Campus and Beyond, XSEDE ’12, pages 19:1–
19:8, New York, NY, USA, 2012. ACM.

[11] Hui Zhang, Michael J. Boyles, Guangchen Ruan, Huian Li,
Hongwei Shen, and Masatoshi Ando. Xsede-enabled
highthroughput lesion activity assessment. In Proceedings of
the Conference on Extreme Science and Engineering Discovery

Environment: Gateway to Discovery, XSEDE ’13, pages 10:1–
10:8, New York, NY, USA, 2013. ACM.

[12] Hui Zhang, Jianguang Weng, and Guangchen Ruan.
Visualizing 2-dimensional manifolds with curve handles in 4d.
IEEE Transactions on Visualization and Computer Graphics,
20 (12):2575–2584, Dec 2014.

[13] Riqing Chen and Hui Zhang. Large-scale 3D Reconstruction
with an R-based Analysis Workflow. In Proceedings of the
Fourth IEEE/ACM International Conference on Big Data
Computing, Applications and Technologies (BDCAT '17).
ACM, New York, NY, USA.

[14] Hui Zhang, Yiwen. Zhong and Juan Lin, Divide-and-conquer
strategies for large-scale simulations in R, 2017 IEEE
International Conference on Big Data (Big Data), Boston, MA,
2017, pp. 3517-3523.

