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Abstract: R has been adopted as a popular data analysis and mining tool in many domain fields over the past decade. As Big 

Data overwhelms those fields, the computational needs and workload of existing R solutions increases significantly. With 

recent hardware and software developments, it is possible to enable massive parallelism with existing R solutions with little to 

no modification. In this paper, three different approaches are evaluated to speed up R computations with the utilization of the 

multiple cores, the Intel Xeon Phi SE10P Co-processor, and the general purpose graphic processing unit (GPGPU). 

Performance engineering and evaluation efforts in this study are based on a popular R benchmark script. The paper presents 

preliminary results on running R-benchmark with the above packages and hardware technology combinations. 
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1. Introduction 

R, open-source version of the language S, is best known as 

package that performs statistical analysis and creates plots. 

Over the years, R has evolved as a high-level language 

environment for performing complex calculation and 

simulation in a variety of scientific computing tasks. R has 

high-level functions to operate on matrices and perform 

numerical analysis as well as advanced data analytics.  

Although R has been adopted in many scientific domains 

as a high productive analytic tool, R faces the even greater 

challenges to scale up the computation with large data set. 

Recent hardware and software developments have potential 

to enable massive parallelism with existing R solutions with 

little to no modification. 

The goal of this paper is to evaluate three such approaches 

to speed up R computations with the utilization of the latest 

hardware technology including multi-core, many core (GPU) 

technologies, and Intel Many Integrated Core architecture 

(MIC).  

2. Background 

Significant efforts have been made in developing 

accelerator cards that can easily increase the parallel 

processing potential in recent years. A general purpose 

graphic processing unit (GPGPU) extends parallel functions 

and technologies traditionally embedded in graphic 

processing units to handle more generic computations. 

Computational solutions can utilize the parallel features 

provided by GPU through programing interface such as 

OPENCL and CUDA. Most recently, the Intel Xeon Phi 

SE10P Co-processor (Xeon Phi) integrate 60 processing 

cores and 8GB memory in a single card. A critical advantage 

of the Xeon Phi co-processor is that, unlike GPU-based 

co-processors, the processing cores run the Intel x86 

instruction set (with 64-bit extensions), allowing the use of 

familiar programming models, software, and tools. In 

addition to allowing the host system to offload computing 

workload partially to the Xeon Phi, it also can run a 

compatible program independently. 

To utilize those new hardware enabled parallelism, a 

common usage model is to rewrite some basic functions or 

processing flow with the corresponding parallel version 

supported by the particular hardware. The code 

redevelopment requires the user to have extensive knowledge 

in both existing R code as well as the parallel mechanism 

supported by the additional packages. On the other hand, R 

enables linking to other shared mathematics libraries to speed 

up many basic computation tasks for linear algebra 

computation. One option to utilize the Intel Many Integrated 

Core is to use Intel Math Kernel Library (MKL). Lately some 

R packages have been developed that use the latest 
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multi-core and GPU libraries to give substantial speed-ups to 

existing linear algebra functions in R. One such example is 

HiPLARM1 which targets the underlying LAPACK routines 

and replaces them with the latest linear algebra libraries that 

take advantage of multi-core CPU and GPU hardware. 

This paper presents the study’s preliminary results on 

running R-benchmark with the above packages and hardware 

technology combinations. Section 2 details the experimental 

setup. The section 3 presents the initial findings. 

3. Evaluation Environment 

3.1. R Benchmark 

The investigation used the R-25 benchmark script for 

testing performance of different approaches2. The testing 

script includes fifteen common computational tasks grouped 

into three categories: Matrix Calculation, Matrix functions 

and Programmation. The fifteen tasks are listed in Table 1: 

Table 1. Translation of benchmark number to R-25 benchmark description 

for all R-25 plots. 

# R25 Benchmark Task Description 

1 Creation, transp., deformation of a 2500×2500 matrix (sec) 

2 2400×2400 normal distributed random matrix 

3 Sorting of 7,000,000 random values 

4 2800×2800 cross-product matrix 

5 Linear regression over a 3000×3000 matrix 

6 FFT over 2,400,000 random values 

7 Eigenvalues of a 640×640 random matrix 

8 Determinant of a 2500×2500 random matrix 

9 Cholesky decomposition of a 3000×3000 matrix 

10 Inverse of a 1600×1600 matrix 

11 3,500,000 Fibonacci numbers calculation (vector calc.) 

12 Creation of a 3000×3000 Hilbert matrix (matrix calc.) 

13 Grand common divisors of 400,000 pairs (recursion) 

14 Creation of a 500×500 Toeplitz matrix (loops) 

15 Escoufier’s method on a 45×45 matrix (mixed) 

16 Total time for all 15 tests (not averaged) 

17 Overall mean (sum of means of all tests) 

3.2. Compute Environment – Stampede Supercomputing 

Cluster 

The evaluation work used the Stampede cluster at Texas 

Advanced computing Center as the high performance 

computing environment for performance testing. Stampede 

supports several latest hardware technologies for improved 

computational performance including using Xeon Phi 

accelerators and/or NVIDIA Kepler 20 GPUs for large matrix 

calculations. In this test, each compute node has two Intel 

Xeon E5-2680 processors each of which has eight computing 

cores running @2.7GHz. There is 32GB DDR3 memory in 

each node for the host CPUs. The Xeon Phi SE10P 

Coprocessor installed on each compute node has 61 cores 

with 8GB GDDR5 dedicated memory connected by an x16 

PCIe bus. The NVIDIA K20 GPUs on each node have 5GB 

of on-board GDDR5. All compute nodes are running CentOS 

6.3. For this study the stock R 3.01 package is used. The 

package is compiled with the Intel compilers (v.13) and built 

with Math Kernel Library (MKLv.11). 

4. Acceleration Strategies 

The performed experiment focused on the benefit of R 

programs using the latest multi-core, GPGPU, and Intel 

Co-processor technologies: 

4.1. Exploiting Xeon Phi Co-Coprocessor with MKL 

To utilize Xeon Phi co-processor, one option is to use Intel 

Math Kernel Library (MKL) [1]. MKL which includes a 

wealth of routines to accelerate application performance and 

reduce development time such as highly vectorized and 

threaded linear algebra, fast fourier transforms (FFT), vector 

math and statistics functions. It has been reported that the 

compiling R with MKL can provide three times 

improvements out of box [2]. 

 

Figure 1. Adopting offload model on Stampede cluster at XSEDE: an R 

program running on the host can “offload” work by directing the MIC to 

execute a specified block of code. The host also directs the exchange of data 

between host and MIC. 

 

Figure 2. Configuring environment variables to enable automatic offloading 

to Intel Xeon Phi Coprocessor. In this sample script, 70% of computation is 

offloading to Phi, while only 30% is done on host. 

The evaluation further exploited an offload model to 

automatically offload MKL operations to Intel 
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Co-processor. As illustrated in Figure 1, while MKL can 

automatically manages the computing details, further 

performance improvement can be obtained by distributing 

the work across the compute host and the 

many-integrate-core (MIC).  

On Stampede offloading to Xeon Phi can be enabled by 

setting environment variables as opposed to making 

modifications to existing R programs (see e.g., Figure 2 for a 

sample script to enable 70% offloading to Phi.) 

4.2. Exploiting Multi-Core and GPU Technologies with 

HiPLAR 

General purpose graphic processing units (GPGPU) extend 

parallel functions and technologies traditionally embedded in 

graphic processing units to handle more generic 

computations. The Matrix package currently uses the BLAS 

and LAPACK linear algebra libraries to perform its 

operations. These are the de-facto libraries for performing 

linear algebra operations, however, they are only designed to 

run on single core CPUs and are not designed for modern 

CPU architectures and accelerators.  

HiPLAR’s over-arching goal is to provide easy access to 

the latest computational architectures using the latest linear 

algebra libraries and to do so in an easy and user friendly 

manner. With the installed suite of R packages the user can 

achieve large speed-ups with little understanding of the 

complexities of multi-core and GPU computing.  

Another important feature of HiPLAR is its auto-tuning 

capability: for users that have multi-core CPUs and an 

NVIDIA GPU, an auto-tuning feature is provided that 

calculates the optimal configuration for the problem and the 

hardware. Currently, HiPLAR provides two packages to 

target linear algebra functions in the standard R release and 

Matrix packages. 

Using the PLASMA library for multi-core CPUs and the 

MAGMA library for NVIDIA GPUs users can see large 

speed-up in R codes that use linear algebra routines from 

simple matrix multiplication to Cholesky and LU 

decomposition. Figure 3 shows an example where a minimal 

change (one liner) is applied to the R program to leverage 

substantial speed-ups by HiPLAR. 

 

Figure 3. A brief example to highlight the benefits of using HiPLARM. 

5. Performance Tuning 

Based on the previous observation of significant 

performance improvement of benchmark version of R 

computation using MKL and offload model, the study tests 

R25 benchmark script by choosing work-sharing at the 30% 

host (16 threads) 70% coprocessor (240 threads) sweet spot 

(see e.g., [3]).  

The evaluation effort tested R25 with multi-core and GPU 

acceleration using HiPLAR package. 

 

Figure 4. Basic vectorized and matrixed operations can obtain significant speed-ups by using offload model with MKL and MIC, multi-core, and GPU 

technologies. 
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Figure 4 indicates the obtained speed-ups from the three 

strategies proposed and evaluated in this study. Significant 

speed-ups are consistently achieved over various matrices 

size and matrix based functions. At an R level, the user will 

notice no difference between using Matrix and using the 

three acceleration strategies. These methods/packages strive 

to retain the optimization within the Matrix package in R. So 

the user will notice no difference between using the offload 

model, the functions of HiPLAR packages or indeed, results. 

This feature enables programmers easily access to the latest 

computational architectures though the linked linear algebra 

libraries. 

6. Use Case: Accelerating Mathematical 

Knot Simulations with R 

The creation of mathematical 3D curves and knots 

(closed 3D curves) can often be facilitated with a 2D 

drawing interface. One often constructs an initial 

configuration for an object while neglecting most issues of 

geometric placement. 

For example, when knot diagrams are drawn, only bare 

projections are needed with relative depth ordering indicated 

at crossings while precise 3D depth information is 

unimportant (e.g., Figure 5 (a)). 

The next task that comes naturally is to topologically 

refine these initial embeddings, not only to make the 

geometry look more pleasant, but also to remove crossings 

into the minimal number. One way to refine the initial 

embedding is to embed the initial graph into 3-dimensional 

space and replace the vertices with electrostatically charged 

masses and replace each edge with a spring to form a 

mechanical system. 

 

Figure 5. Typical screen images of the self-deformation. The simple closed curve (a knot 51) relaxes, with the proposed force laws and collision avoidance 

mechanism. During the relaxation, the knotted string preserves the its topological structure. 

The vertices are placed in some initial layout and let go so 

that the spring systems and electrical forces on the masses 

move the system to a minimal energy state. Two basic forces 

are used, an attractive mechanical force applied between 

adjacent masses on the same spring and a repulsive electrical 

force applied between all other pairs of masses: 

1. attractive mechanical force — the mechanical force is a 

generalization of Hooke’s law, allowing for an arbitrary 

power of the distance r between masses, Fm = Hr
1
+b, 

where H is a constant; 

2. repulsive electrical force — the electrical force also 

allows for a general power of the distance, Fe 

=Kr−(2+a), where r again is the distance between the 

two masses, and K is a constant. The electrical force is 

applied to all pairs of masses excluding those 

consisting of adjacent masses on the same link. 

In most of the preliminary results [4], [5], [6] shown in this 

work, the parameters used β = 1 and α = 2. 

For this force-directed algorithm to be applicable to the 

principal test case of mathematical curves positioned in R3, it 

is imperative that any proposed evolution should respect 

topological constrains: it does not involve cutting the curve 

or passing the curve through itself. Parallel to the force laws 

previously specified, the self-intersection problem is solved 

in the proposed approach by requiring that the position of 

each mass be updated one at a time, and collision avoidance 

is strictly performed to determine if one is heading towards 

one of the following two potential collisions: 

1. point-segment collision — a vertex of a 3D curve is 

going towards a link of the curve and the distance is 

less than a predefined threshold distance 

2. segment-segment collision — a link of a 3D curve is 

going towards another link and their distance is less 

than a predefined threshold distance 

6.1. Accelerating the Force-Driven Knot Simulation 

A good portion of the algorithms is concerned with Linear 

Algebra Computation (LAC), and heavily vectorized 

operations performed over and over in a large number of 

iterations. One promising direction for accelerating the 

computation is to utilize the latest hardware advance and 

exploit hardware-enabled massive parallelism to accelerate 

the LAC in the force-driven knot algorithms. 

The compute-intensive part of the knot simulation 

algorithm is for distance calculation. Both point-segment 

collision and segment-segment collision avoidance are 

heavily relying on distance calculation between points and 

line segments in 3-dimensional space. The core algorithms 

are implemented and optimized with vectorized and 

matrixized R code and exploit GPGPU to accelerate the core 

computational components. We have recently completed a 
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preliminary study on accelerating R computation with 

hardware enabled parallelism [3], and obtained promising 

results by adopting this technology in several 

domain-specific scientific investigations [7], [8], [9]. 

Meanwhile, many geometry studies require the examination 

of phenomena under different conditions, e.g., with different 

relaxation models, or with different intervening forces. Such 

tasks and simulations can be executed in a pleasing parallel 

way, which can be accelerated by parallel computing on 

multi-core and multimode data infrastructure (see e.g., initial 

results in [10], [7], [11].) 

6.2. Extracting the Key Moments 

Extracting key moments is a simple yet effective form of 

summarizing a long mathematical evolution or comparing 

among multiple evolutions. In most applications of 

topological refinement, the interests do not include each step 

in the path followed by the object model. Rather, those key 

moments and the final conformation are of greater 

importance for investigation and presentation. The 

fascinating question here is whether there is a way to extract 

the key moments of the deformations in high dimensions by 

identifying the sequence of “frames” where each item differs 

by one critical topological change. 

In the case scenario, the critical changes can be computed 

in the knot presentations (e.g., see work in [4], [12]) by 

identifying the minimal number of crossing points among all 

possible 2D projections. If the number of crossing points 

changes, the evolution is considered at the new critical 

moment. In this way, w associated key moments can be 

identified and provide a much clearer visualization and 

navigation interfaces for users to perceptualize the entire 

evolution process (see e.g., Figure 6). 

 

Figure 6. MathSimWeb: a web-based interface to define mathematical knots’ initial embedding, and generate knot images for the entire evolution. 

6.3. MathSimWeb: Putting Simulation and Visualization 

Together 

The next focus is effective integration of algorithms and 

techniques so far, to enable and enrich users’ mathematical 

experience with knot geometry and topology. Figure 6 shows 

a visual analysis system, called MathSimWeb, developed for 

exploring geometric data. This work to fully connect guided 

geometric relaxation (with a multi-view interface) and 

hardwareenabled accelerated computing (offloading math 

operations to GPGPU) for exploring new geometry. 

MathSimWeb leverages R Shiny’s architecture deployed 
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on a local lab cluster environment at UofL, and it will consist 

of two main parts: 

1. a back-end module that exploits massively parallel 

solutions for geometry computation and ingests 

visualization archive (vectors) into a data store; 

2. a front-end module that allows investigative geometric 

analysis at run time 

I. a central visualization panel that displays the 

geometry and its real-time evolution, and 

mathematical movies that can depict geometry’s 

evolution with identified key moments. 

II. a dashboard for users to upload knot embedding 

and configure parameters for the simulations 

General purpose graphic processing units (GPGPU) extend 

parallel functions and technologies traditionally embedded in 

graphic processing units to handle more generic 

computations. The Matrix package currently uses the BLAS 

and LAPACK linear algebra libraries to perform its 

operations. These are the de-facto libraries for performing 

linear algebra operations, however, they are only designed to 

run on single core CPUs and are not designed for modern 

CPU architectures and accelerators. 

To accelerate the large number of iterations in the 

mathematical simulations, the library of High Performance 

Linear Algebra in R (HIPLAR) is used. HiPLAR’s 

over-arching goal is to provide easy access to the latest 

computational architectures using the latest linear algebra 

libraries and to do so in an easy and user friendly manner. 

With the installed suite of R packages the user can achieve 

large speed-ups with little understanding of the complexities 

of multi-core and GPU computing. Another important feature 

of HiPLAR is its auto-tuning capability: users that have 

multi-core CPUs and an NVIDIA GPU can use an 

auto-tuning feature that calculates the optimal configuration 

for the problem and the hardware. Currently, HiPLAR 

provides two packages to target linear algebra functions in 

the standard R release and Matrix packages. Using the 

PLASMA library for multi-core CPUs and the MAGMA 

library for NVIDIA GPUs users can see large speed-up in R 

codes that use linear algebra routines from simple matrix 

multiplication to Cholesky and LU decomposition. 

Figure 7 shows an example where a minimal change (one 

liner) is applied to the math simulation R program to leverage 

substantial speed-ups by HiPLAR. 

 

Figure 7. A brief example to highlight the benefits of using HiPLARM in 

accelerating mathematical simulations. 

7. Conclusion 

The ultimate goal is to facilitate the manipulation and 

understanding of geometric structures. We now possess 

interactive graphics tools, computational algorithms, and 

increased computing powers that can extremely simplify and 

accelerate the process of making analogues diagrams, 

generating dynamic illustrations, and rendering perceptual 

clues, even for abstract mathematical entities and phenomena 

that occur in three- and high-dimensional space. By exploiting 

such tools, we feel that we can make a novel contribution to 

building intuition about classes of geometric and topological 

problems even beyond the third dimension. 

Future directions of this work include extending the range 

of objects for which we can support to include more complex 

knots, links, and Riemann surfaces, and the use of 

divide-and-conquer strategies [13, 14] to accelerate 

large-scale mathematical simulations. 
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