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Abstract: The results of the experimental determination of the heat losses in fixed supports of low, medium and high 

pressure steam pipelines in firm Lukoil Neftochim Burgas have been summarized. In the conditions of a three-factor 

experiment, the exponents of the regression equation have been determined. For determination of convective heat exchange 

coefficient (α), the Newton-Rihmann equation has been used as a boundary condition of a third kind of heat transfer equation. 

Experimentally obtained α dependency has been shown as a function of the dimensionless temperature and the velocity and 

angle of the airflow of support. The results obtained shall be considered as part of the effort to structure user-friendly software 

for heat losses determination of steam pipelines and their components by means of thermal imaging equipment. 
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1. Introduction 

The two previous publications [1, 2] have shown the 

possibilities for heat losses determination using a thermal 

imaging camera. Therefore the method for real time heat 

losses determination from heat transfer pipelines through 

specialized software based on determination of the heat flow 

which has passed from the insulated surface of the pipeline, 

fittings and fixed supports to the environment seems 

promising, providing a reason to continue the researches in 

this direction until the successful validation or rejection of 

the method. In this regard there are significant difficulties to 

find a mathematical relationship for determination of losses 

in fixed supports convenient for engineering use. Based on 

dimensional analysis [3] an exponential function has been 

proposed of dimensionless criteria of a similarity of the kind  
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 is the dimensionless geometric criterion.  

The complexes of magnitudes in equation (1) contain the 

main factors influencing the heat released by the support and 

have a definite physical meaning [4]. The left part of the 

equation takes a dimensionless form by grouping the physical 

magnitudes with an exponent one in the auxiliary function с 

= α.δ
2
.∆t with dimensionality [W]. 

2. Subject Characteristics 

The subject of the study is a typical fixed support used in 

the steam network of Lukoil Neftochim Burgas, used in 

steam pipelines with DN 300 – DN 600. A laboratory model 
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has been constructed in the Faculty of Engineering and 

Pedagogy – Sliven of Technical University of Sofia for 

experimental determination of the losses in the supports. The 

mechanical structure and electrical diagram of the model 

have been presented in [1]. Upon maximum approximation 

of the insulation to the adiabatic conditions and stationary 

heat transfer mode, the heat input through the electric heaters 

is equal to the heat flow passing in the support. 

3. Purpose 

The purpose is the development of a reliable mathematical 

model that can be used for the structuring of a suitable 

software product that allows the real time determination of 

heat losses in the supports. From the stated purpose comes 

the task, based on the experiment carried out, to determine 

the exponents of the regression equation (1).  

4. Method of the Study 

It concerns the performance of a thermal engineering 

experiment with orthogonal planning of first order. Several 

scientifically-based methods are known for experiment data 

processing. The most widely spread and frequently used is 

the least squares method. This method, as known [5], is 

based on the equation  

SUM = ( )
1

n

i iy y−∑  = min                  (2) 

where: iy  is the arithmetic mean of the magnitude sought, 

and iy  is its value in compliance with the mathematical 

model. Equation (1) is used as physical model. For 

determination of convective heat exchange coefficient α 

[W/(m2.K)] the experimentally obtained results are used 

according to Newton-Richmann's law: 

Q = α. F. (tW - toc)                          (3) 

where: Q [W] is the experimentally determined thermal 

power, F [m2] is the area of the support, tW [°C] is the 

measured with thermal imaging camera integral temperature 

of support, and toc [°C] is the ambient temperature. Strictly 

speaking, the presence of the three criteria of similarity in 

equation (1) determines the performance of a three-factor 

experiment, that is to say, the solutions shall be located in the 

factorial space of a volumetric geometric figure, but since the 

support of the experiments has a fixed surface and thickness, 

the dimensionless geometric criterion 2

F

δ
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 has a specific 

value 2

0,221

0,002

 
 
 

= 55250, which transforms the experiment into 

a two-factor one and the equation of regression (1) takes the 

following form: 
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It is known [6], that the solutions of this kind are located in 

a planar geometric figure, whose shape and magnitude 

depend on the range of function argument variations. As far 

as one plane is defined by three points, the task is to solve a 

system of three equations in logarithmic coordinates. 

Q
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It is convenient to apply the substitution: 
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Due to the fact that the unknowns in the equation are three, 

the task is to solve the system: 

1 11 21

2 12 22

3 13 23

.10,92 . .

.10,92 . .

.10,92 . .

y d b x e x

y d b x e x

y d b x e x

= + +
= + +
= + +

                      (6) 

where: уi, x1i, and x2i are the determined based on equation 

(3) experimentally averaged values of dimensionless 

complexes, while d, b and e are the unknown exponents. The 

three equations are obtained like the based ones on the plan 

of the experiment. The accuracy of the algebraic method 

depends whether one of the selected equations will pass 

through the center of the two-factor space, which in the 

logarithmic coordinates has an orthogonal geometric 

interpretation. As an alternative to the purely algebraic 

method in more complex multifactor experiments, it is 

possible to apply the orthogonal planning method using 

normalized factors [5].  

The reproducibility of the results and the adequacy of the 

mathematical model shall be verified by a statistical check 

known as regression analysis. These models shall be 

considered to be adequate in which the uniformity of the 

reproducibility dispersion and the adequacy dispersion is 

observed. [4] The hypothesis of dispersion persistence of the 

experimentally determined results shall be confirmed by the 

Cochrane's G-criterion and the adequacy of the mathematical 

model is verified by Fisher's F-criterion. In an exponential 

function of the type of equation (5), the exponents are of high 

significance and it is not required to make an evaluation 

according to the t- criterion of Student [5]. 

5. Results and Analysis 

Upon fixed values of support thickness δ = 0,002 [m], the 

area of the uninsulated part F = 0,221 [m
2
], and the heat 

transfer coefficient of the metal λ = 52 [W/(m.K)], the 

independent variables are the convective heat transfer 

coefficient α (as a function of airflow velocity) and 

temperature difference between the integral temperature of 

support surface and the environment ∆t. The experimental 

model allows based on the boundary condition of a third kind 

[6] of heat transfer equation to determine empirically the 
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dependence α = f(v) within a range of natural convection at v 

= 0 m/s to a pronounced turbulent flow with v =10 m/s. Three 

characteristic modes have been used for to = 183, 205 and 

241 [°C], corresponding to the steam saturation temperature 

in low, medium and high pressure steam pipelines of 1, 1,5 

and 2 [MPa] respectively. These temperatures remain 

constant throughout the experiment. The consumed electrical 

power of heaters is measured (Q) as well as the temperature 

difference between the temperature of the uninsulated surface 

of the support (tw) and the ambient temperature (toc) under 

different velocities and angles of airflow. The results in 

graphical form are shown in figure 1 to figure 3. The 

obtained dependencies are approximated as an exponential 

function.  

 

Figure 1. α= f(v) at tо =183 °C (1 – π/2 rad, 2 – π/3 rad, 3 – π/6 rad). 

 

Figure 2. α= f(v) at tо =205°C (1 – π/2 rad, 2 – π/3 rad, 3 – π/6 rad). 

To summarize the results of the experiment, the method of 

orthogonal planning using normalized factors is applied. The 

matrix of the experimental plan is determined by the 

endpoints of the factor space. The range of change of the 

values of the independent variables and the limit values of 

the heat losses are shown in Table 1. 

The range of change of similarity criteria, participating in 

the experiment is shown in Table 2. 

 

Figure 3. α= f(v) at tо =241°C (1 – π/2 rad, 2 – π/3 rad, 3 – π/6 rad). 

The normalization procedure essentially consists in the 

fact that having the maximum and minimum logarithmic 

meanings of both factors (xmax and xmin) one of the mean xo 

for each of both factors is determined. These “zero” values of 

x1 and x2 as per [5] determine the coordinates of the central 

point of the plan through which one of the equations of the 

system passes (6): 

1min 1max
1,0

6, 428 7, 275
6,852

2 2

x x
x

+ += = =        (7) 

2min 2max
2,0

1, 297 2, 489
1,893

2 2

x x
x

+ += = =       (8) 

The range of deviations is the difference between the 

maximum and minimum logarithmic meanings of both 

factors: 

1max 1min
1

7, 275 6, 428
0, 424

2 2

x x
x

− −∆ = = =        (9) 

2max 2min
2

2, 489 1, 297
0,596

2 2

x x
x

− −∆ = = =        (10) 

The graphic interpretation of the factor space is shown in 

Figure 4. 

 



297 Stefan Kalchev et al.:  Summarized Results of the Experimental Determination of Heat Losses   

Through Fixed Supports of Steam Pipelines 

 

Figure 4. Graphic Form of the Area of Solutions in Logarithmic Coordinates. 

Table 1. Range of Change of Values of Independent Variables. 

Temperature levels 183°C 205°C 241°C Range 

αmin, [W/(m2.K)] 17,6 18,0 18,2 18,0 

αmax, [W/(m2.K)] 40,2 40,8 41,9 42,0 

∆tmin, [°C] 19,9 21,6 23,5 20 

∆tmax, [°C] 39,8 45,2 49,7 50 

Qmin, [W] 77,4 85,9 94,5 80 

Qmax, [W] 353,6 407,5 460,2 464 

Table 2. Range of Change of Similarity Criteria, Participating in the Experiment. 

Criteria Factor Level 

 Numerical meanings of parameters Meaning 

δ [m] F [m2] 
to 

[°C] 

∆t 

[°C] 
λ [W/(m.К)] v [m/s] α [W/(m2.К)] Criterion ln 

2

F

δ
 
 
   

Const. 
Upper 0,002 0,221      55250 10,92 

Lower 0,002 0,221      55250 10,92 

.

λ
α δ
 
 
   

x1 
Upper     52 0 18 1444 7,275 

Lower     52 10 42 619 6,428 

ot

t

 
 ∆   

x2 
Upper   241 20    12,05 2,489 

Lower   183 50    3,66 1,297 

 

Under these boundary conditions, experiments were 

carried out for each separate point to determine the heat load. 

Thus, the condition for the least square deviation is observed, 

as they are equidistant from the central point. The results are 

shown in Table 3. 

From the theory of the experiment [4, 5] it is known that in 

the simultaneous execution of the four boundary conditions, 

the coefficients of regression of the mathematical model in 

logarithmic coordinates are easily found in the following 

formulas in which N is the number of experiments, in this 

case 4. 

* *
1 12 1

1 1
X 0,188 0,0470

4

NB y
N

= = =∑              (11) 

* *
1 12 2

1 1
X 0,190 0,0475

4

NE y
N

= = =∑             (12) 

*
1 12

1 1
43,65 10,912

4

ND y
N

= = =∑               (13) 

The regression equation in logarithmic coordinates takes 

the following form: 

* * * * *
1 2X Xy D B E= + +                      (14) 

By the reverse transformation are obtained the regression 

coefficients of logarithmic equation (5). 
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Table 3. Results of the Experiments in Natural and Logarithmic. Expression at the Bounder Points of the Factor Space. 

№ 

Meaning of 

criteria 
Experiment results Auxiliary logarithmic functions 

 
 
 

λ

α.δ  

 
 
 

ot

Δt  

 
 
 

2

Q

α.δ.Δt  183°C 
 
 
 

2

Q

α.δ.Δt  205°C 
 
 
 

2

Q

α.δ.Δt  241°C 
 
 
 

∑3
1 2

Q

α.δ.Δt

 
12y

 
X1* X2* 12y  X1* 12y  X2* 

1 619 3,66 42214 48523 54762 49499 10,810 – 1 – 1 – 10,810 – 10,810 

2 1444 3,66 55319 55310 55277 55302 10,920 + 1 – 1 –10,920 –10,920 

3 619 12,05 55314 55317 55350 55327 10,921 – 1 + 1 10,921 10,921 

4 1444 12,05 53700 59722 65972 59815 10,999 + 1 + 1 10,999 10,999 

Σ 0 0     43,65 0 0 0,188 0,190 

Results at the central point of the plan 

0 1031,5 7,855 51637 54718 57840 54986 10,912   0,0470 0,0475 

 

*

1

0,0470
0,1108

0,424

B
b

x
= = =

∆
                       (15) 

*

2

0,0475
0,0797

0,596

E
e

x
= = =

∆
                    (16) 

( ) ( )*
1,0 2,0

*

. . . 10,912. 0,1108.6,852 0,0797.1,893
0,9167

10,912

D b x e x
d

D

+ +
= = =

  (17) 

Since the regression coefficients are the exponents of the 

natural equation (4), the mathematical model by which heat 

losses through a specific support can be determined takes the 

following form: 

( )
0,07970,1108

0,9167

2
55250 . .

.. .

otQ

tt

λ
α δα δ

  =    ∆∆    
 (18) 

The main regression analysis procedures are the 

assessment of the magnitude of the regression coefficients 

and the verification of the adequacy hypothesis. In this case, 

verification of the relevance of the coefficients is not 

necessary because their effect is immediate. It is obvious, the 

results in the combination ( + – ) and ( – + ) are very close 

and they actually coincide with the center of factor space. 

This is because the two factors influencing heat exchange 

with the environment have mutually opposite effects. With 

increasing airflow rate, the factor x1 (the reciprocal value of 

the criterion of Bio) is growing and x2 (dimensionless 

temperature) reduces and to a great extent the two effects 

compensate each other. These mathematical models shall be 

considered adequate where the condition for uniformity of 

both dispersions is observed - the reproducibility dispersion: 

( )
( )2

12

ˆN

y

n Q Q
S

N L

−
=

−
∑                       (19) 

and the adequacy dispersion 

( )
( )2

12

1

n
ij

ad

Q Q
S

n

−
=

−
∑                       (20) 

where: 

L is the quantity of significant coefficients (in this case 2);  

iQ  is the mean arithmetic meaning of the result for each i-

th point, limiting the area of solutions;  

ˆ
iQ  is the estimated value, determined by the mathematical 

model;  

N is the number of the points in the factor space, where 

experiments have been performed (in this case 4);  

n is the number of parallel experiments in each i-th point 

(in this case 3). 

Comparison of a representative sample of the experimental 

results with the predictions determined by the mathematical 

model (19) are presented in Table 4. 

For verification of uniformity hypothesis an assessment 

has been made through G- criterion of Cochrane and F-

criterion of Ficher  

( )

( )

2
.max

2
1

27,477
0,304 0,7457

80,448

y i

tabln
y i

s
G G

s
= = = ≤ =
∑

  (21) 

where: ( )
2

.maxy i
s  is the maximum recorded value of the mean 

square deviation (line 9, table 4) and Gtabl is the table value of 

the criterion at confidence interval 0,95 [5]. 

Table 4. Regression Analysis Data. 

№ 

Results Prediction Data for dispersion determination  

v

 
  

m

s  

α

 
  

2

W

m .K  

to 

[°C] 

∆t 

[°C] 

Qi1 

[W] 

Qi2 

[W] 

Qi3 

[W] 
i

Q  

[W] 
Q̂  [W] 

Adeq. 

( )ˆ
2

i iQ - Q  
Disp. 

( )
2
adS

 

Reproducib. 

( )2ij iQ - Q
 

Disp. 

( )
2
yS

 
J=1 J=2 J=3 

1 0,00 17,6 183 38,6 148 153 149 150,0 152,79 7,7841 11,676 4,00 9,00 1,00 7,00 

2 1,50 21,3 183 26,9 162 163 163 162,7 162,85 0,0225 0,034 0,49 0, 09 0, 09 0,67 

3 4,60 37,7 184 20,9 172 177 174 174,3 171,79 6,3001 9,450 5,29 7,29 0,09 12,67 

4 10,6 51,7 183 15,4 177 178 176 177,0 174,74 5,1076 7,661 0,00 1,00 1,00 2,00 

5 0,00 20,0 206 40,7 180 182 179 180,3 181,86 2,4336 2,434 0,09 1,69 18,5 20,27 
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№ 

Results Prediction Data for dispersion determination  

v
 
  

m

s  

α

 
  

2

W

m .K  

to 

[°C] 

∆t 

[°C] 

Qi1 

[W] 

Qi2 

[W] 

Qi3 

[W] 
i

Q  

[W] 
Q̂  [W] 

Adeq. 

( )ˆ
2

i iQ - Q  
Disp. 

( )
2
adS

 

Reproducib. 

( )2ij iQ - Q
 

Disp. 

( )
2
yS

 
J=1 J=2 J=3 

6 1,60 24,7 205 33,3 181 183 182 182,0 183,19 1,4161 2,124 1,00 1,00 1,00 3,00 

7 4,30 31,9 206 26,6 186 188 188 187,3 186,35 0,9025 0,947 1,69 0,49 0,49 2,67 

8 10,4 41,9 205 21,1 195 193 196 194,7 191,99 7,3441 11,016 0,09 2,89 1,69 4,67 

9 0,00 18,2 241 40,8 200 203 197 200,0 204,28 18,318 27,477 0,00 9,00 9,00 18,00 

10 1,50 25,2 241 26,2 206 205 201 204 205,85 3,4225 5,134 4,00 1,00 9,00 14,00 

11 4,80 28,9 242 32,4 208 207 205 206,7 207,88 1,3924 2,089 1,69 0,09 2,89 4,67 

12 10,5 33,9 241 28,1 210 213 211 211,3 210,48 0,2704 0,406 1,69 2,89 0,09 4,67 

 

( )

( )

2

2

80,448
0,853 4,46

94,290

ad

tabl

y i

s
F F

s
= = = ≤ =      (22) 

where Ftabl is the table value of the criterion at confidence 

interval 0,95. 

Adding the geometric criterion of similarity 2

F

δ
 
 
 

 at the place 

of the constant 55250 under the same exponents transforms 

equation (1) in: 

0,079770,9167 0,1108

2 2
.

.. .

otQ F

tt

λ
α δα δ δ

    =      ∆∆      
   (23) 

With great credibility it can be assumed that in this kind 

the solutions of equation (21) will be satisfactory for any and 

with different configuration of supports but in order to use it 

as a universal mathematical model for estimating the heat 

losses through fixed supports, this assumption shall be 

proven experimentally. 

6. Conclusions 

1. Based on experiments performed, functional 

dependence was found α = f(v) at to = const. The 

approximation of the experimental curves in exponential 

function allows the analytical determination of α for a given 

temperature regime at a certain wind velocity and direction. 

2. Through the method of orthogonal planning, using 

normalized factors, the results of the experiment were 

analysed and the exponents of criterion equation proposed as 

mathematical model have been determined.  

3. The equation is 95% credible that Cochrane and Fisher 

criteria for reproducibility and adequacy can be used as a 

mathematical model for determining heat losses through 

fixed supports as part of the larger scale task of producing 

engineering applicable software to determine aggregate heat 

losses of steam pipelines at Lukoil Neftochim Burgas site by 

measuring their surface temperature using thermal imaging 

equipment. 
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