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Abstract: Based on the stock transaction data of China's listed banks from 2007 to 2020, this paper constructs the complete 

network of tail risk spillovers among banks using the Least Absolute Shrinkage and Selection Operator (LASSO) quantile 

regression, and dynamically examines the characteristics of the network topology and the survivability of China's banking 

system. The results show that the newly listed banks are mainly the risk bearers. The role of a single bank as an isolator, risk 

bearer and risk disseminator in the network will change over time. City commercial banks have gradually changed from the 

role of risk bearer to both risk bearer and risk disseminator. The attack experiments on the Bank of China, China Merchants 

Bank, China CITIC Bank and Zhengzhou Bank those have the largest number of weighted media in the network for the 

networks of 2016, 2018, 2019 and 2020, show that large-scale cascading failure can occur in the network by changing the 

parameters. If the attacked bank is a risk communicator, a larger cascading effect may occur, in turn, lead to the Invulnerability 

of the whole network reduced. In addition, we find that the scale of network cascading failure is related to the type of attacked 

bank and the characteristics of its adjacent banks: if the neighbor bank is the risk bearer, the risk will not be passed down; If its 

adjacent banks are risk dispersers, the risks will be further spread and expanded, that is, the scale of cascade failure depends on 

the cluster structure of the network. 
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1. Introduction 

Preventing and defusing financial risks, especially 

preventing systemic financial risks, is the fundamental task of 

financial area. With the development of China's financial 

industry, financial companies have not only establish 

complicated relationships through such transactions as 

payment and settlement, acceptance bill, inter-bank lending, 

discount and so on, but also through the rapid development of 

derivative products under the impact of the wave of financial 

innovation. Traditional economics is weak in analyzing this 

complex relationship and the path of risk transmission. 

However, due to the isomorphism of complex network and 

financial system in the formation, many characteristics of 

systemic financial risk are corresponded to the characteristics 

of complex network. With the help of complex network, it can 

vividly and accurately describe the intricate relations between 

the main companies of the system. Moreover, it can analyze 

the diffusion path and diffusion trend of financial system risks 

[1]. Therefore, applying complex network to study systemic 

risk has become a new research hotspot in recent years. 

The complex network of financial system constructed by 

existing literatures can be divided into three categories 

according to the different methods to calculate the connection 

coefficients between nodes: (1) Mean spillover network, 

which uses Granger causality test to determine the connection 

relationship between nodes. Proposed by Billio et al. [2]. 

However, since the return of asset in the financial market has a 

characteristic of fluctuation clustering, does not comply with 

the normal distribution and has an obvious peak and fat tails, 

there is a certain error in the connection relationship between 

nodes determined by Granger causality test [3]. (2) Volatility 

overflow network, its core idea is to use Vector Autoregressive 

model (VAR) model to build coefficient matrix, and then use 

generalized variance decomposition technology to 

decomposed covariance to determine correlation index matrix, 

the connection edges and weights [4]. However, the vector 

autoregressive model has a large number of parameters to be 

estimated and tedious calculation. Therefore, this method is 

not suitable for the financial system with a large number of 

nodes [5]. (3) Risk spillover network, the tail risk of financial 
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companies are measured by applying the conditional value-at 

Risk (VaR), and quantile regression technology is applied to 

detect the intercorrelation and the strength of the connection 

between companies [6-7]. This method has been recognized 

and accepted by most scholars because of its wide 

practicability. 

Hautsch et al. [6] constructed a risk spillover network by the 

interdependence between firms' tail risk exposures of more 

than 100 financial firms of the United States, and found that 

risk contagion among financial firms was the main cause of 

market systemic risks. Nguyen et al. [8] map the entire 

network of tail risk dependence among 21 major 

cryptocurrencies and find that Bitcoin and Litecoin are the 

major drivers of tail risk when markets are bullish, and 

Ethereum and Ethereum Classic are major drivers of tail risk 

when markets are bearish. Li et al. [9] use the sample of 19 

international financial markets to analyze the tail risk 

contagion between international financial market during the 

COVID-19 epidemic. And find that the COVID-19 epidemic 

increases the number of contagion channels in the 

international financial system. The clustering level of the 

financial system has a significant growth during the 

COVID-19 pandemic, and the number of risk drivers is also 

larger than risk takers. Javed et al. [10] investigated the 

spillover risk and systemic risk of the troubled banking sectors 

of the five countries- Greece, Ireland, Italy, Portugal and Spain, 

for the rest of the European and the US banking sector using 

the conditional value-at-risk framework. And find the 

magnitude of these risks, originating from the five countries, 

is large. These risks affect banking of large European and the 

US banking sectors more than the rest. 

Jiang and Zhang [3] constructed the risk spillover network 

of China's listed banks, and found that tail risk spillover 

would reduce the risk level of the banks themselves, but 

enhance the interconnectedness of the bank network and 

increase the systemic risk of the network as a whole. In 

addition, the large state-owned banks play a central role in 

the banking network and have strong tail risk spillover effect. 

Xu [11] studied the important institutions in China's banking 

and securities system by using risk spillover network, and 

verified that the important firms are time-varying. Li et al. 

[12] built a risk spillover network to measure the network 

connectivity of China's listed financial firms in terms of the 

three levels of system, department and institution, and found 

that the system connectivity had periodic characteristics. The 

level of connectivity reached the peak in the stage of risk 

accumulation and would gradually fall after risk release. 

Large commercial banks contributed the most to the systemic 

risk, and insurance companies gradually became systemically 

important institutions. 

Although risk spillover network has been paid close 

attention and recognized by scholars to investigate risk 

contagiousness among financial company and assess systemic 

risk. However, the existing research, especially on the 

research of China's financial systemic risk, is still very 

inadequate in following aspects: First, most domestic scholars 

focus on the correlation analysis among financial firms, and 

seldom evaluate the dynamic change process of network 

structure. Second, most of the studies only evaluate the 

contribution of a single financial firm to the system risk, and 

few evaluate the invulnerability and survivability of the 

overall network. Invulnerability refers to the ability of the 

network to accept risks and maintain the stability of the 

financial system under the impulse of the failure event or 

external stress. Testing the invulnerability of a network, on the 

one hand, can provide a measure of the size of the systemic 

risk, on the other hand, by identifying the key nodes that can 

cause large-scale cascading failures of the network can guide 

regulators to formulate strategies. So, this paper aims to 

constructs a network of listed banks and measures the 

invulnerability of China's banking system based on financial 

market data, so as to provide scientific guidance for 

preventing financial systemic risks, maintaining financial 

security and stability and establishing macro-prudential 

policies in China. 

The remaining sections of this paper are as follows. In 

Section 2, we introduce all technical methods used in this 

paper, including the calculation of the network connection 

coefficient and invulnerability, and the fitting technique. In 

Section 3, we present the network construction of Chinese 

banking system. Section 4 we present our analysis of the 

invulnerability of Chinese banking system and results. In 

Section 5 we present our conclusions and final remarks. 

2. Method 

2.1. To Determine the Network Connection Coefficient 

To construct the risk spillover network, it is necessary to 

determine the connection edge between nodes in the network, 

including the direction and weight of the connection edge. We 

use LASSO regression to determine the risk drivers that 

significantly affect the banking institution i, and then perform 

quantile regression on the identified risk drivers, and the 

estimated parameter θ value is the risk spillover coefficient. 

The value of the conditional �����  of firm i at t=1,... T is 

expressed by a linear function of specific tail risk drivers of i: 

����� = �(�)
��� 	                (1) 

The vector �(�)
 and ���  in the formula respectively 

denote the risk drivers of firm i and its corresponding 

regression coefficient. 

����,�� = �����,�� ���
(�)� = −��,��  denotes that the value 

at risk of firm i is the negative q quantile of asset return at t. 

The Equation (2) can be expressed by quantile regression 

model: 

��� = −�(�)
��� + ��� 	              (2) 

Where, ��� stands for the log return of firm i at time t. Given 

the risk drivers of firm i, an estimated value of ���� can be 

obtained by minimizing the standard linear quantile 

regression: 
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Where, T is the number of sample observations, I (·) is the 

indicator function. When ��� ≤ �
(�)
���� , the indicator 

function equals 1, otherwise is 0. K is the number of 

repressors of �(�)
 , and �#
�  is the k

th
 element of the 

coefficient vector $%. 
Equation (2) can be expressed by estimated ����	as follows: 

�����& =�(�)
����	                (4) 

2.2. To Calculate the Invulnerability of Network 

Under normal circumstances, random failures of a few 

nodes in the network have little impact on the whole network, 

while attacks on key nodes may cause risks to be redistributed 

among the networks, which makes more nodes fail or even the 

whole network collapse, triggering systemic risks. The initial 

risk of node n in the network is defined as: 

'((0) = (1 + �)+(,                (5) 

Where, q and α are adjustable parameters to control risk 

distribution, and q≥ 0, α ≥ 0; +( is the weighted generalized 

betweenness of node n. 

+( = ∑
-./0
-.0

�,1 	                 (6) 

Where, 2�1 	is the total number of shortest paths between 

node i and node j, and 2�(1 is the number of shortest paths 

through node n between node i and node j, where i ≠j. This 

weighted generalized betweenness considers the two 

endpoints of each shortest path, which avoids the possibility 

that the intermediate number of some nodes may be equal to 

zero, thus avoiding the possibility that some nodes may not 

take risks at all. 

From Equation (5), initially each node bears some risk 

more or less, and the risk at each node is a nonlinear function 

of the generalized betweenness, unless the parameter α is 

equal to 1. Since the initial risk of a node is formed after a 

long period of evolution, it is speculated that the risk capacity 

of a node 3( is proportional to its initial risk '((0), we have: 

3( = (1 + 4)'((0)              (7) 

Where, β is the risk tolerance parameter, let β > 0 to ensure 

that there will no node produce risk spillover effect at first. β 

is related to the network cost. The larger the β is, the greater 

the risk capacity of the nodes is, indicating that it has a 

stronger ability to resist the risk spillover, but the higher the 

cost of network construction. Therefore, the value of β 

should be a trade-off between the network's invulnerability 

and the construction cost. 

If node N fails, its initial risk will be distributed to other 

nodes in the network. Considering that the initial risk 

reallocation is a transient behavior, the risk reallocation of 

the failure node must pass through its neighboring nodes, so 

the neighbors of the failure node are most affected. Therefore, 

we adopt the local allocation strategy, there exist two cases: 

First, when node n fails, if real-time risk information of its 

neighboring nodes cannot be obtained, it is reasonable to 

allocate more risks to nodes with larger risk capacity. In this 

situation, the risk ratio Π6
(�)

 that adjacent node e receives 

from the failure node n is: 

Π6
(�) = 78

∑ 7..∈:/
	                (8) 

Where, e is an adjacent node of the fault node n; Υ( is the 

set of adjacent nodes of node n; 36  represents the risk 

capacity of node e. Secondly, when the real-time risk 

information of the neighboring nodes is available, we can 

allocate more risks to the neighboring nodes e and denote the 

residual risk capacity with (36 − '6). Therefore, the risk 

proportion received by the neighboring node e from the 

failure node n is: 

Π6
(<) = 78=>8

∑ (7.=>.).∈:/
               (9) 

Where '6 is the initial risk of node e, and 36 is the risk 

capacity of node e. 

Due to the fast propagation speed of cascading failures, it 

is usually difficult to obtain real-time risk information of 

each node. Therefore, we use Equation (11) to assign the risk 

of the failure node to its neighbors. Then the risk absorbed by 

its neighbor node e from the failure node Δ'6(  can be 

expressed as: 

Δ'6( = Π6
(�)'( =

78
∑ 7..∈:/

'(	         (10) 

If the total risk borne by node e exceeds its risk capacity, 

that is, '6(@) = '6(@ − 1) + Δ'6( ≥ 36， the node e will fail 

and the risk it bears will be transmitted to its neighboring 

nodes, making the neighboring nodes bear more risks. If the 

total risk undertaken by its neighboring nodes exceeds its 

own risk capacity, these risks will further infect other nodes, 

and accompanied with a continuous increase of the contagion 

risk in each round, leading to large-scale cascading failures 

and systemic risks. Assuming that the initial number of nodes 

in the network is N and the number of remaining nodes in the 

network after node failure is BC, we use an exponential SCF 

to measure the survivability of cascading failures: 

D3E = F


F
	                  (11) 

The larger the SCF value, the higher the invulnerability of 

the network is. 

3. The Network Construction of Chinese 

Banking System 

In consideration of the availability of data and the changes 

of the number of listed banks in China, we select the 

representative listed banks data in 2007, 2010, 2016, 2018, 

2019 and 2020 to build the network. Data mainly from the 

official website of CSI (www.csindex.com.cn). By 

calculating the basic logarithmic rate of return, we regress the 
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equations (2) to get the risk spillover coefficient and risk 

contagion direction, and construct the risk spillover network. 

The statistically significant and non-negative ��  format 

the network connectivity. The tail risk input degree for bank i 

is the total number banks that transmit tail risk to bank i, and 

the tail risk output degree for bank i is the total number of 

banks that receive the tail risk of bank i. The total degree in 

the entire network is the number of non-zero �. The risk 

spillover networks of China's banking system in 

representative years are shown in Figure 1. 

  

  

  
Figure 1. Dynamics of the risk spillover network of China's listed banks. 

Note: ABC stands for Agricultural Bank of China; BCS stands for Bank of Changsha; BOB stands for Bank of Beijing; BOC stands for Bank of China; BOCOM stands 

for Bank of Communications; BQD stands for Bank of Qingdao; BSZ stands for Bank of Suzhou; CCB stands for China Construction Bank; CDB stands for Bank of 

Chengdu; CEB stands for China Everbright Bank; CIB stands for Industrial Bank; CITIC stands for China CITIC Bank; CMB stands for China Merchants Bank; CMBC 

stands for China Minsheng Banking; CRCB stands for Chongqing Rural Commercial Bank; CSRCB stands for Changshu Rural Commercial Bank; GYB stands for Bank 

of Guiyang; HXB stands for Hua Xia Bank; HZB stands for Bank of Hangzhou; ICBC stands for Industrial and Commercial Bank of China; JRCB stands for Jiangyin 

Rural Commercial Bank; JSB stands for Bank of Jiangsu; JSZRCB stands for Jiangsu Zijin Rural Commercial Bank; NBN stands for Bank of Ningbo; NJB stands for 

Bank of Nanjing; PAB stands for Ping An Bank; PSBC stands for Postal Savings Bank of China; QRCB stands for Qingdao Rural Commercial Bank; SHB stands for 

Bank of Shanghai; SPDB stands for Shanghai Pudong Development Bank; SZRCB stands for Jiangsu Suzhou Rural Commercial Bank; WRCB stands for Wuxi Rural 

Commercial Bank; XAB stands for Bank of Xi'an; ZRCB stands for Rural Commercial Bank of Zhangjiagang; ZSB stands for China Zheshang Bank; ZZB stands for 

Bank of Zhengzhou. 
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The size of the node (red color) in Figure 1 represents the 

degree center value of the node. The larger the node is, the 

near to the center position of the network, indicating that the 

node is of more importance in the banking system. The width 

of the edge denotes the size of the risk spillover coefficient, 

that is, the wider the edge of ��→1 is, the greater the risk 

contribution of firm i to firm j is. 

Figure 1 shows banks in the networks can be divided into 

four categories. The first type of banks has only outward 

arrows. These kind of banks mainly play the role of risk 

dispersers in the system. The failure of these firms could 

have repercussions for many others, while they themselves 

are relatively immune to the woes of others. Such banks 

should be the subject of close monitoring by regulators. 

The second type of bank is the one with only inward 

arrows as the risk takers in the network. These banks do not 

have an impact on other banks, but they may be exposed to 

other banks' troubles, and they should therefore consider such 

risk spillovers in their internal risk management. 

The third type of bank has both inward and outward 

arrows, so it acts as risk taker and risk disseminator 

simultaneously. This bank receive spillover risks from other 

banks and amplify risks in the system by spreading them. 

They are key systemic actors and should be regulated 

accordingly. 

The fourth type of bank is not related to other banks, and 

they are neither risk bearers nor risk disseminators. Its own 

risks will not have spillover effects and affect the normal 

operation of other banks. 

By comparing the networks in Figure 1, it is found that the 

network becomes more complex with the newly listed banks 

joining, and the connections among banks become closer 

over time. Most of the newly listed banks play the role of risk 

takers at first, such as China Everbright Bank listed in 2016, 

Zhangjiagang Bank listed in 2018, Chengdu Bank listed in 

2019 and Zijin Bank, Qingdao Bank, Chongqing Rural 

Commercial Bank and Postal Savings Bank those listed in 

2020. The risk isolator will gradually become as a role of the 

risk bearer, risk disseminator or both risk disseminator and 

risk bearer. For example, China Construction Bank is an 

isolator in 2010, became a risk disseminator in 2016, a risk 

bearer in 2018, and both a risk disseminator and risk bearer 

in 2019. 

Figure 1 shows that before 2016, the major risk 

disseminators were large state-owned holding commercial 

banks and national joint-stock commercial banks, such as 

Bank of China, Agricultural Bank of China, China 

Construction Bank, Shanghai Pudong Development Bank, 

Huaxia Bank, Minsheng Bank, etc. After 2018, urban 

commercial banks gradually became risk dispersers, such as 

Bank of Shanghai, Bank of Ningbo, Bank of Zhangjiagang, 

Bank of Chengdu, Bank of Jiangsu, Bank of Hangzhou, etc. 

From the perspective of risk bearers, it is found that the risk 

bearers have gradually changed from the original 

state-owned large commercial banks to urban commercial 

banks. For example, before 2016, Industrial and Commercial 

Bank of China, Bank of Communications and some national 

joint-stock commercial banks are the risk bearers. By 2020, 

the risk bearers are mainly urban commercial banks. Such as 

Guiyang Bank, Bank of Shanghai, Sunong Bank, 

Zhangjiagang Bank, Zijin Bank, Qingdao Bank, Suzhou 

Bank and so on. 

4. The Invulnerability of Chinese 

Banking System 

Network invulnerability refers to the ability of the network 

to receive risks and maintain the stability of the financial 

system when failures of some nodes occur or external shock or 

pressure occurs. The more invulnerable the network has, the 

more stable it is. Here we investigate each network 

invulnerability under two attack strategies - attack the largest 

weighted betweenness nodes and attack the smallest weighted 

betweenness nodes, the results are shown in Figure 2. 

Table 1 summarizes the results of attacking the banks with 

maximum and minimum weighted betweenness in different 

networks. 

Table 1. The results of attacking experiments. 

 The bank with largest weighted betweenness The bank with smallest weighted betweenness 

Network in 2007 China Minsheng Bank Huaxia Bank, Industrial and Commercial Bank of China 

Network in 2010 Bank of China, Minsheng Bank Bank of Beijing, Agricultural Bank of China 

Network in 2016 Bank of China China Everbright Bank 

Network in 2018 China Merchants Bank Minsheng Bank, Bank of Beijing 

Network in 2019 China CITIC Bank Agricultural Bank of China 

Network in 2020 Bank of Zhengzhou Bank of Suzhou 

Table 1. Continued. 

 
attacking the smallest weighted betweenness nodes attacking the largest weighted betweenness nodes 

SCF value The impact of α The impact of β SCF value The impact of α The impact of β 

Network in 2007 =0.86 no no =0.86 no no 
Network in 2010 >0.92 no no >0.92 no no 

Network in 2016 =0.94 no no <0.70 The threshold α=0.2 The threshold 4H=0.36 

Network in 2018 =0.96 no no <0.70 The threshold α=0.2 The threshold 4H=0.4 

Network in 2019 =0.96 no no <0.70 The threshold α=0.2 The threshold 4H=0.4 

Network in 2020 =0.95 no no <0.60 The threshold α=0.2 The threshold 4H=0.36 
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Note: Icon HH represents the node with the largest weighted betweenness; LL represents the node with the smallest weighted intermediate number. 

Figure 2. The dynamics of invulnerability of China's bank network. 

Table 1 shows that for the network in 2007 and 2010, no 

matter what the values of α and β are, and no matter the attack 

is on the node with the maximum or minimum weighted 

betweenness, the SCF values are the same 0.86 and more than 

0.92, which means the cascade failure will not occur, that is, 

the network has good damage resistance. 

However, for the banking network in 2016 and later, the 

SCF value obtained by attacking the node with the maximum 
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weighted betweenness is much less than that obtained by 

attacking the node with the minimum weighted betweenness, 

indicating that the attack on the node with the maximum 

weighted betweenness may take the risk of cascading failure. 

Taking the network in 2020 as an example, the Bank of 

Zhengzhou has the largest weighted betweenness, and the 

Bank of Suzhou has the smallest weighted betweenness. 

Figure 2 shows, no matter what the value of α and β are, the 

SCF equals 0.95 after attacking the Bank of Suzhou with the 

largest weighted betweenness, which indicate that such 

attacking will not cause cascading failure. When the Bank of 

Zhengzhou with the largest weighted betweenness is 

attacked, the SCF values are all below 0.60 taking different α 

and β, which indicates that the attack is easy to cause cascade 

failure. At the same time, it can be seen from Figure 2 that 

the SCF reaches its maximum at threshold α=0.2, β0=0.36. 

When β>β0, the SCF not increase any more. When β<β0, the 

SCF decreases quickly with the β decrease. So, attacking the 

node with the largest weighted betweenness is prone to 

cascading failure 5. 

5. Conclusions 

This paper uses LASSO quantile regression technique to 

select variables, and builds a tail risk connectivity network of 

China's listed banks from 2007 to 2020. Using cascading 

failure model in complex networks, the invulnerability and 

node risk threshold are studied. Here's some results: 

Firstly, the newly listed banks mainly play the role of risk 

bearers in the network. The role of a single bank as an isolator, 

risk bearer and risk disseminator will change over time. 

Secondly, urban commercial banks gradually become 

influential subjects, from the risk bearer to both risk bearer 

and risk disseminator. 

And thirdly, the research on invulnerability finds that in 

2016, 2018, 2019 and 2020, the attacks on Bank of China, 

China Merchants Bank, China CITIC Bank and 

Zhengzhou Bank, those have the largest weighted 

betweenness are easy to cause large-scale cascading 

failure of the network. If the attacked bank is a risk 

communicator, it will cause larger cascading failure and 

reduce invulnerability of the network. 

In addition, we find that the magnitude of cascading effect 

of the network invulnerability is related to the type of attacked 

bank and its neighbor. If the neighbor bank is the risk bearer, 

the risk will not be transmitted. If the neighbor bank is a risk 

disperser, the risk will be further spread and expanded, that is, 

the size of the cascade also depends on the network cluster 

structure. We also find that there exist the threshold for α and β 

(e.g., α=0.2 and β=0.36 in the 2020 network), the network's 

invulnerability reaches the maximum, and the network's 

ability to resist risks is the strongest. 
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