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Abstract: As a new format, the digital economy will inevitably affect the environment while bringing economic benefits. To 

explore the mechanism, regional differences of the digital economy on carbon emissions, and provides a theoretical basis for the 

realization of the carbon peaking and carbon neutrality goals of the digital economy. This paper selects China’s provincial panel 

data from 2011 to 2019, constructs an indicator system to scientifically measure China’s digital economy development level and 

carbon emission level, and uses the spatial Durbin model to study and analyze the impact of digital economic development on 

carbon emissions. The results show that: (1) there is a positive spatial correlation between China’s carbon emissions. The 

development of the digital economy has an inhibitory effect on carbon emissions in both local and adjacent areas, and the effect 

of locality is greater than that of adjacent areas. (2) there are obvious regional differences in the relationship between digital 

economy development and carbon emissions in China. The development of digital economy in eastern and central China has a 

significant inhibitory effect on carbon emissions. However, the inhibitory effect in the central region is slightly stronger than that 

in the eastern region, and the development of the digital economy in the western region has not yet shown a significant effect on 

carbon emissions. (3) According to the results of spatial Durbin model, digital economy development in eastern China has a 

significant negative spillover effect on carbon emissions, while that in central China has a significant positive spillover effect. 

The research helps to plan the development strategy of the digital economy according to local conditions, implement low-carbon 

policies according to the right medicine, and effectively alleviate the problem of unbalanced development in different regions. 
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1. Introduction 

Global warming is a huge challenge facing all mankind. 

The continued increase in greenhouse gas emissions will 

have a negative impact on agricultural production, 

socio-economic activities and human life, thereby hindering 

the progress of global sustainable development [1]. China’s 

economy has shifted from a stage of high-speed growth to a 

stage of high-quality development, and the traditional growth 

model at the expense of energy consumption has become 

weak in driving the economy. At the same time, facing the 

pressure of international carbon emission reduction, the 

ecological environment has increasingly become a livelihood 

issue that cannot be ignored. According to the statistics of the 

“World Energy Statistical Yearbook 2021” [2], from 2010 to 

2020, China’s carbon emissions increased from 8.146 billion 

tons to 9.899 billion tons, accounting for a large proportion 

of the world’s total carbon emissions, and the emission 

reduction situation is grim. In view of the responsibility of 

carbon emission reduction in the context of global warming 

and the issue of environmental effects in socio-economic 

development. In September 2020, President Xi Jinping 

pledged at the UN General Assembly to achieve carbon 

peaking and carbon neutrality by 2030 and 2050, respectively. 

China’s carbon peaking and carbon neutrality goals show that 

China prioritizes reducing greenhouse gas emissions, 

expresses its determination to mitigate climate change. And it 
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also meets the essential requirements of China’s high-quality 

development, and strives to transform towards green and 

sustainable development [3]. 

As an important symbol of the era of industry 4.0, digital 

economy takes data as the key production factor, digital 

technological innovation as the core driving force, modern 

information network as an important carrier, open and 

win-win as the mainstream development mode, and multiple 

co-governance as the core governance mode [4]. Utilize 

emerging technologies such as big data, artificial intelligence, 

5G, cloud computing, blockchain, and the Internet of Things 

to continuously promote productivity improvement and 

high-quality economic development [5]. The digital economy 

has increasingly become a crucial element of economic 

development, and it plays an irreplaceable role in expanding 

internal demand, enhancing endogenous power, enhancing 

scientific and technological innovation capabilities, and 

strengthening the national new infrastructure strategy. It 

provides a steady stream of impetus for the innovation, green, 

high-quality, and sustainable development of the national 

economy in the new era, and has become the core force 

leading technological change, industrial change, and the 

evolution of the international competition pattern [6]. 

Since the sudden outbreak of the COVID-19 in 2020, The 

world is actively exploring new offices, education, production, 

and lifestyles to promote the vigorous development of the 

digital industry. The digital economy is shining brightly, 

showing great development potential and tenacious vitality. 

According to the survey data released by the China Academy 

of Information and Communications Technology (CAICT), the 

scale of China’s digital economy is still in a booming 

development trend in 2020. Its overall scale is as high as 39.2 

trillion yuan, an increase of 3.3 trillion yuan compared with 

2019, accounting for 38.9% of GDP, and the growth rate is 3.2 

times higher than the nominal GDP growth rate over the same 

period, maintaining a growth level of 9.7%. From the 

perspective of the internal structure of the digital economy, 

digital industrialization accounts for 19.1% of the digital 

economy, while industrial digitalization accounts for 80.9%, 

accounting for 7.3% and 31.2% of GDP respectively, laying 

the foundation for the further improvement of the digital 

economy. In the context of the gradual normalization of the 

prevention and control of the COVID-19, the digital economy 

has become an important engine for China's economic 

development. Digital information technology has gradually 

become the core competitiveness of China to accelerate 

development, enhance its international status, and stand in the 

forest of international economy. However, while the overall 

development of the digital economy is growing rapidly, some 

problems have gradually emerged in regional development. On 

the one hand, there are differences in digital technology level, 

data factor endowment, and digital infrastructure among 

regions [7]. On the other hand, the spatial non-equilibrium 

characteristics of regional development will lead to the spatial 

heterogeneity of the development of the digital economy. 

Therefore, the level of regional economic development and 

industrial structure upgrading is the internal driving force for 

the development of the digital economy [8]. 

 
Figure 1. The impact mechanism of digital economy development on carbon emission. 

China’s “14th Five-Year Plan” and the outline of the 

long-term goals for 2035 propose to accelerate the 

construction of a digital economy, a digital society, and a 

digital government, and activate the potential of data 

elements. It further clarified the development principles of 

the digital economy, accelerated the construction of digital 

in-formation infrastructure, and laid a foundation for the 

digital economy to drive high-quality economic development. 

The digital economy can promote the development of a 

low-carbon economy by promoting industrial restructuring, 

transforming the mode of economic growth. First, the 

development of the digital economy will have a direct impact 

on energy consumption through different channels such as 

residents' life, enterprise production, and government 

regulation, thereby reducing carbon dioxide emissions [9]. 

Second, data, as an important factor of production, promotes 

the integration of the digital economy and traditional 

production factor resources to promote the upgrading of the 

industrial structure. In the process of the digital economy 

promoting the rationalization and up-grading of the industrial 
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structure, the energy dependence of the industrial-based 

secondary industry will be greatly reduced. The industrial 

structure is upgraded to high-tech industries with low energy 

consumption and zero pollution, thereby effectively reducing 

carbon emissions [10]. Third, technological innovation plays 

an important role in reducing energy consumption and 

improving energy efficiency [11]. Based on the penetration of 

industrial Internet, cloud computing and other technologies, 

real-time dynamic monitoring of energy consumption and 

pollutant emissions in enterprise production activities to 

improve energy conservation and emission reduction 

capabilities. 

Therefore, under the background that the development of 

the digital economy widely affects the sustainable 

development of China’s economy and society, this article will 

discuss the following questions: What is the relationship 

between the development of China’s digital economy and 

carbon emissions? How does the development of the digital 

economy affect carbon emissions? Does the development of 

the digital economy have a spatial spillover effect on carbon 

emissions? Are the effects the same across regions? The 

remaining paper is organized as follows: an analysis and a 

summary of the relevant literature are presented in Section 2. 

Measurement of digital economy and carbon emission, and 

spatial econometric model construction are provided in 

Section 3. The empirical analysis of spatial spillover effects 

of digital economy on carbon emissions is illustrated in 

Section 4. Conclusions and suggestions are presented in 

Section 5. 

2. Literature Review 

2.1. Carbon Emission Related Research 

Promoting effective energy conservation, emission 

reduction and low-carbon transformation and development is 

the inevitable choice to actively respond to climate change, 

and the key to practice ecological civilization construction. 

With the increasingly prominent global environmental 

problems, carbon emission has gradually become a research 

hotspot in academic circles. At present, the research mainly 

focuses on the measurement of carbon emission level and the 

influencing factors of carbon emission. 

Scholars mainly use input-output method, life cycle method 

and total energy consumption method to measure carbon 

emission level. With regard to the input-output method, Wassily 

W. Leontief (2000) first introduced the input-output analysis 

method in economics into the calculation of carbon emission 

level [12]. Su et al. (2017) analyzed Singapore's carbon 

emissions from the perspective of demand by using I-O method, 

and found that the direct emissions of high-income families 

increased the most, while the implied emissions of 

middle-income families increased the most [13]. Regarding the 

life cycle method, Shang and Geng (2021) established a carbon 

emission calculation model based on the whole life cycle 

assessment, and measured the carbon emission of residential 

buildings [14]. Li Yu et al. (2022) calculated the carbon 

emissions of dairy industry from 2008 to 2020 based on the 

whole industrial chain, and found that grassland carbon sink can 

effectively neutralize carbon emissions [15]. With regard to the 

total energy consumption method, Zhang Mei et al. (2019) 

estimated the provincial carbon emissions from three aspects: 

energy consumption, industrial material consumption and waste 

discharge with the help of statistical data of crude oil, raw coal, 

natural gas and steel bars [16]. Shi et al. (2019) calculated 

China's carbon dioxide emissions based on coal, coke, crude oil, 

gasoline, kerosene, diesel oil, fuel oil and natural gas, and found 

that it has multi-dimensional spatial-temporal hierarchy, and the 

emission reduction strategy adapted to local conditions is 

beneficial to the Chinese government's emission reduction [17]. 

As for the influencing factors of carbon emissions, the 

literatures have used LMDI factor decomposition method to 

study the influence of energy type, structure and in-tensity on 

carbon emissions (Obas et al., 2006; Bhattacharyya et al., 

2010; Simone et al., 2011; Zhang et al., 2019) [18-21], and 

some scholars have found that population growth is the main 

factor affecting carbon emissions (Sanglimsuwan, 2012; 

Chontana-wat, 2019) [22, 23]. In addition, Manta et al. (2020) 

used FMOLS method and VECM model to study the 

relationship between carbon emissions and economic growth 

and financial development in 10 Central and Eastern European 

countries, and found that there is a two-way causal 

relationship [24]. Song et al. (2021) used the bi-level 

stochastic frontier model to analyze the opposite bilateral 

effects of FDI on carbon emission performance [25]. 

Furthermore, FDI can affect energy intensity and then carbon 

emission (Wang et al., 2021) [26]. Jin et al. (2022) found that 

the change of solar radiation affects the global carbon cycle by 

influencing the climate through scenario simulation [27]. 

To sum up, the academic research on carbon emissions has 

formed relatively mature research results, and a lot of research 

has been carried out on the measurement of carbon dioxide 

emissions. However, at present, a unified measurement method 

has not been formed, the time span is short, the years are 

discontinuous, and there is no re-search on the latest changes. 

2.2. Research on Digital Economy 

Digital economy has become a new engine of high-quality 

development. Grasp the opportunities of digital economy 

development, and then seize the commanding heights of 

future development. Since Tapscoot (1996), the "father of 

digital economy", put for-ward digital economy [28], 

countries all over the world have carried out extensive 

re-search on digital economy from both qualitative and 

quantitative perspectives. 

This paper defines the definition of the digital economy, and 

analyzes the development trends and promotion policies of the 

digital economy. Aguila et al. (2003) divided the digital 

economy into four dimensions: infrastructure, e-commerce, 

software programs and intermediaries from two levels of 

goods and services [29]. Watanabe et al. (2018) put forward a 

new view-point of digital economy measurement, introducing 

GDP into digital economy and interpreting it as uncaptured 

GDP [30]. As a new economic form (Pei et al., 2018)[31], the 
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essence of digital economy is the real economy of digital 

technology (Xie et al., 2022) [32]. Building an information 

service platform can maximize the advantages of the digital 

economy (Xu et al., 2020) [33]. 

Based on the perspective of quantitative analysis, scholars' 

research on statistics and measurement of digital economy is 

relatively mature. Chen et al. (2022) formulated a digital 

economic accounting framework based on four dimensions: 

data and information infrastructure, urban services, urban 

government and industrial economy [34]. Chen et al. (2022) 

divided digital economy into basic sector, integration sector 

and alternative sector, and comprehensively analyzed the 

structure and contribution of digital economy [35]. With the 

rapid development of digital economy, scholars gradually 

began to study the impact of digital economy development on 

industrial structure optimization (Su et al., 2021) [36], 

urbanization construction (Chen et al., 2022) [37] and green 

growth (Ren et al., 2022) [38] with the help of panel data 

model and Spatial Dubin Model. Focusing on the social 

effects of digital economy, the linkage between green 

economy and digital economy contributes to the coordinated 

development of urban economy and the improvement of 

people's sense of well-being, thus promoting the elimination 

of urban polarization and the gradual realization of sustainable 

development (Savchenko 2020) [39]. 

To sum up, the definitions of the digital economy in the 

academic world are not uniform, and they mostly use a 

single-angle indicator system or separate statistical indicators 

to measure, resulting in differences in measurement results. 

Moreover, the indicator system constructed from a single 

perspective is difficult to objectively and comprehensively 

reflect the development of the digital economy, which is not 

conducive to the formulation of industrial policies and 

standards. 

2.3. Research on the Impact of Digital Economy on Carbon 

Emissions 

The environmental improvement effect of digital economy 

is one of the focuses of academic circles. For example, as an 

environment-friendly industry in digital economy (Yang et al., 

2021) [40], the Internet industry itself can squeeze the 

development space of industries with high energy 

consumption and high emissions through crowding out effect, 

which has a direct or indirect impact on carbon emissions, thus 

promoting green and high-quality development. 

Haseeb et al. (2019) found that Internet use and mobile 

cellular subscription have significant adverse effects on 

carbon dioxide emissions, while communication technology 

has made positive contributions to reducing carbon emissions 

[41]. Ulucak and Khan (2020), based on the panel data of 

BRICS countries from 1990 to 2015, found that the use of 

information and communication technology can reduce 

carbon dioxide emissions by promoting technological 

upgrading in various economic sectors [42]. Ujabal et al. 

(2021) studied the impact of ICT and foreign direct investment 

on environmental pollution in major Asia-Pacific countries 

from 1990 to 2018, and found that ICT and foreign direct 

investment had a negative impact on carbon emissions or 

environmental pollution [43]. On the other hand, Shobande 

(2021), using Mundlak and Hausman-Taylor methods and the 

feasible generalized least square method, found that the 

increase of Internet penetration has a positive temporary 

impact on the environment, and the temporary change of ICT 

usage will increase carbon emissions, while in the long run, 

ICT usage can reduce carbon emissions [44]. Xu (2022) 

selected the data of 286 prefecture-level cities, used spatial 

econometric model and spatial double difference model to 

study and found that the digital economy has a significant 

negative impact on carbon emissions [45]. 

To sum up, although academic circles have conducted 

extensive and in-depth discussions on the environmental 

improvement effect of digital economy, which pro-vides some 

theoretical support for explaining the effect of digital 

economy on carbon emissions, the above studies still fail to 

provide reliable evidence for the effect of digital economy on 

carbon emissions. On the one hand, the theoretical discussion 

of the effect of digital economy on carbon emissions in 

existing studies is still insufficient. On the other hand, the 

empirical test of the effect of digital economy on carbon 

emissions also needs to be improved. 

3. Method and Data 

3.1. Spatial Econometric Model 

3.1.1. Spatial Correlation 

In the first place, spatial correlation of variables is tested to 

judge the applicability of spatial econometric model. 

Generally, the global Moran's I index is used in the test, and 

is calculated as 
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where n is the number of units studied, Wij is the spatial 

weight matrix, 

3.1.2. Spatial Weight Matrix 

Describing the correlation between two objectives, spatial 

weight matrix has various construction forms, which are 

mainly divided into adjacency matrices and distance matrices. 

Further, the distance matrix can be established based on 

economic distance or geographical distance. In view of the 

multicollinearity problem of the matrix established based on 

economic distance, this paper selects the matrix established 

based on geo-graphical distance: 
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where iφ  and jφ  represent the latitude and longitude of 

the geometric center of an area, τ∆  is the longitude 

difference and R  is earth radius. 
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3.1.3. Spatial Econometric Model 
Among all spatial econometric models, Spatial Lag Model 

(SLM), Spatial Error Model (SEM) and Spatial Dobbin Model 

(SDM) are the most commonly applied. 

Spatial Lag Model (SLM) is often used to explore the 

impact of the research object in a certain place on that in the 

adjacent area. The impact of the spatial lag factor of the 

research object is considered in the model, and the model is 

expressed as: 

,Y WY Xρ β µ= + + 2~(0, )Iµ δ           (3) 

where W  is the spatial weight matrix; Y  and X  represent 

explained and independent variables separately; β  is the 

parameter vector; µ  is the vector of random error terms; ρ  

is the spatial coefficient, which indicates the influence of 

spatial lag WY  on Y . 

Inter Error Model (SEM) reflects the spatial dependence 

through the error term. The model formula is as follow. 

,Y Wy X WXλ β δ ε= + + + 2~(0, )Iε δ        (4) 

In the above formula, W is the spatial weight matrix and λ  

is the spatial error correlation coefficient, which represents the 

spatial dependence of perturbation terms. This model 

indicates that the missing variables also have spatial 

correlation. 

Spatial Dobbin Model (SDM) describes the spatial 

substantive correlation and disturbance correlation, and 

considers the spatial lag factor. In addition to the interaction 

between independent variables X of different regions, the 

model also includes the influence of independent variables X 

of a region on dependent variables Y of adjacent regions. The 

model is generally constructed as 

,Y Wy X WXλ β δ ε= + + + 2~(0, )Iε δ      (5) 

where WXδ is the influence of independent variables X from 

adjacent areas, and δ  is the corresponding coefficient 

variables. 

3.2. Characteristics of Core Variables 

3.2.1. Spatiotemporal Evolution Characteristics of the 

Development of China's Digital Economy 

(1) Measurement of development level of digital economy 

Based on the connotation of digital economy and the 

requirements of subsequent research on the impact effect of 

carbon emissions, considering the difficulty of data acquisition, 

and following the scientific and representative principles of the 

index system, this paper establishes a comprehensive 

evaluation index system of the development level of digital 

economy, including four secondary indicators and 15 tertiary 

indicators of digital infrastructure, digital industry, digital 

governance ability and digital Inclusive Finance. In order to 

make the indicators of different regions comparable in time 

section, the article tries to choose the proportional indicators. 

The data used in the calculation process are from the China 

Statistical Yearbook, China Statistical Yearbook on Science and 

Technology and China Academy of Information and 

Communication Technology. Digital Inclusive Finance is 

represented by the index compiled by Guo Feng et al. (2020). 

The detailed indicators are shown in Table 1. 

Table 1. Digital economy development level index system of China. 

Ⅰ level Ⅱ level Ⅲ level 

Digital economy development level 

Digital infrastructure 

Internet penetration rate (%) 

Mobile phone penetration rate (1/100 people) 

Optical cable line density (km/km2) 

Number of internet access port (10,000) 

Digital industry development 

Proportion of computer and software employees (%) 

Per capita Telecom traffic (Yuan/person) 

High tech R&D capital stock (10,000) 

Online mobile payment level (index) 

Digital governance capability 

Proportion of internal expenditure of R&D funds (%) 

Per capita fiscal expenditure on science and technology (Yuan/person) 

Average years of Education (year) 

Per capita technology contract transaction volume (Yuan/person) 

Digital Inclusive Finance 

Coverage of digital Finance (index) 

Depth of digital financial coverage (index) 

Digitalization degree of digital Finance (index) 

 

When determining the weight of the index system, considering 

that the subjective weighting method may be affected by human 

factors, resulting in bias in determining the index weight, the 

objective weighting method is used for calculation. The entropy 

weight method can reflect the utilization value of the index 

information entropy, and has high reliability and accuracy. This 

paper uses the entropy weight method to weight the indicators in 

Table 1 to obtain the national digital economy development level 

from 2011 to 2019.  

(2) The time evolution of the development level of the 

digital economy 

Figure 2 shows the trend chart of the development level of 

digital economy in 30 provinces in China from 2011 to 2019. 

As can be seen from the figure, all 30 provinces in China have 

shown a roughly similar upward trend in the level of digital 

economic development, and most provinces have grown faster 

in recent years than in early 2011, such as Tianjin (2), Fujian 

(13), Guizhou (24), etc. The growth rate of each province in 
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the past nine years is basically the same, such as Jiangsu (10), 

Shandong (15) and Hubei (17). It can also be found that the 

development level of digital economy in Beijing (1) and 

Guangdong (19) is significantly higher than that in other 

provinces, followed by Shanghai (9), Jiangsu (10) and 

Zhejiang (11). 

(3) Spatial evolution of the development level of digital 

economy 

Although the digital economy in all provinces and 

province-level municipalities has developed, there are 

regional differences in the improvement of development speed 

and quality, especially between the East and West. Judging 

from the results in Table 2, the spatial development of the 

digital economy presents obvious regional imbalances. From 

2011 to 2019, China's digital economy was mainly 

concentrated in the economically developed eastern region. 

The digital infrastructure was relatively complete, the talent 

pool was abundant, and the level of innovation and digital 

technology application was high, providing a good 

environment for the development of the digital economy. 

Although the central region started late, it has a strong 

development momentum and a high level of digital 

infrastructure. The innovation ability and technology 

application level in the western region are relatively backward, 

the infrastructure of digital economy development needs 

further improvement, and the development level of digital 

economy is lower than that of the eastern and central regions. 

However, with the vigorous promotion of regional 

coordinated development and the implementation of a series 

of western development policies such as "East and West", the 

development level of the digital economy in the western 

region is rapidly improving. 

 
Figure 2. Trend of provincial digital economy development level from 2011 to 2019. 

Table 2. Development level of digital economy in three regions of China. 

Year 2011 2012 2013 2014 2015 2016 2017 2018 2019 

Eastern region 0.137 0.1698 0.2021 0.2169 0.243 0.2607 0.2896 0.3368 0.3797 

Central region 0.0437 0.0651 0.0913 0.1107 0.1307 0.1545 0.1846 0.2148 0.255 

Western region 0.0363 0.0598 0.0852 0.1024 0.1171 0.1332 0.1612 0.2095 0.2605 

 

In order to further intuitively analyze the development level 

of China's digital economy, this paper draws a spatial 

distribution map of the development level of digital economy 

in China's provinces and cities in 2011, 2014, 2017 and 2019. 

Set the values for Tibet, Hong Kong, Macau, Taiwan to 0 due 

to lack of data. It can be seen from Figure 3 that the 
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development of China's digital economy has the 

characteristics of geographical and spatial aggregation. From 

2011 to 2019, it has concentrated to the eastern coast and then 

to the economically developed regions such as central and 

southern China, showing an obvious aggregation trend. In 

2011, the development of digital economy was mainly 

concentrated in Beijing, Tianjin, Guangdong, Jiangsu, 

Zhejiang and other regions. In 2014, it was mainly 

concentrated in Beijing, Zhejiang, Shandong, Jiangsu, 

Guangdong and other regions. In 2017, it was mainly 

concentrated in Beijing, Zhejiang, Shandong, Jiangsu, 

Guangdong, Fujian, Anhui, Jiangxi and other regions. In 2019, 

the development of digital economy was further concentrated 

in the southeast. In previous years, the provinces with high 

level of digital economy development were still in the leading 

position, while The Pearl River Delta, Yangtze River Delta 

and Beijing, Tianjin and Hebei have played a significant 

driving role in the surrounding areas. 

 
Figure 3. Spatial distribution of provincial digital economy development level from 2011 to 2019. 

3.2.2. Spatiotemporal Evolution of Carbon Emissions 

(1) Measurement of China's carbon emission level 

In recent years, frequent natural disasters and extreme 

weather events have drawn people's attention to the urgent issue 

of global warming, and the environmental issue of carbon 

emissions has increasingly become the focus of domestic and 

foreign scholars. The premise of studying carbon emission is to 

determine the calculation method of it. Considering that carbon 

dioxide and other greenhouse gases mainly come from the 

combustion of fossil energy, most scholars in China chose 

energy consumption to measure carbon emissions. By combing 

the literature, referring to a relatively mature carbon emission 

accounting method introduced in the IPCC greenhouse gas 

guide, this paper uses the consumption of a variety of fossil 

fuels to estimate the national and provincial carbon emissions, 

and then the conversion coefficient is applied to convert the 

carbon emissions into carbon dioxide emissions. The specific 

formula is: 

2 1

n
C k Eco i i

i
δ= ⋅ ⋅∑

=
            (6) 

In the above formula, 
2

Cco
 is carbon emissions; k  

conversion factor ( 44 /12k = ); iE is the consumption of the 

thi  fossil fuel; iδ  is the carbon emission coefficient of the 

thi  fossil fuel. iδ  can be obtained as: 

    

  

   

Carbon emission coefficient Default carbon oxidation

Default carbon content

Average low calorific value

=
×
×

 

Parameters in the above formula of different kinds of fossil 
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fuels are shown in Table 3.  

Table 3. Carbon emission factors of different fossil fuels. 

Fossil fuels 
Average low calorific value 

(KJ/kg/m) 

Default carbon content 

(kgC/CJ) 

Default carbon oxidation 

rate 

Carbon emission 

coefficient (tC/t) 

coal 20908 25.8 1 0.53943 

coke 28435 29.2 1 0.83030 

crude oil 41816 20 1 0.83632 

gasoline 43070 18.9 1 0.81402 

kerosene 43070 19.6 1 0.84417 

diesel oil 42652 20.2 1 0.86157 

fuel oil 41816 21.1 1 0.88232 

natural gas 38931 15.3 1 0.59564 

liquefied petroleum gas 50179 17.2 1 0.83632 

 

The fossil fuel consumption data is collected from the 

China Statistical Yearbook and China Energy Statistical 

Yearbook over the years. Since that the data of Tibet, Hong 

Kong, Macao and Taiwan are seriously missing, so this paper 

excludes them and selects the data of other 30 provinces as the 

research sample. For the estimation of national carbon 

emissions, in view of the fact that China's energy consumption 

is divided into three categories in statistics: coal, oil and 

natural gas, this paper only selects the carbon emissions of 

these three fossil fuels to measure the national carbon 

emissions; For the provincial carbon emissions, although there 

are 11 types of energy according to the statistics of each 

province, due to the serious lack of data of liquefied petroleum 

gas and oil in each province before 2013, and the possibility of 

double calculation of electric power as a secondary energy in 

the calculation of energy consumption, under all aspects of 

comprehensive consideration, this paper finally selects 8 kinds 

of fossil energy such as coal, crude oil, kerosene and natural 

gas to calculate the provincial carbon emissions. 

In addition, in order to measure the relationship between 

economic growth and carbon emissions, this paper also 

calculates the carbon emission intensity, i.e., the ratio of 

carbon emissions to real GDP is used to measure the amount 

of carbon dioxide emitted per unit of economic output. The 

real GDP is calculated based on 2011. 

(2) Temporal evolution of carbon emission 

As can be seen from Figure 4, the carbon emissions in 

each province shows different upward and downward 

trends. Carbon emissions in some provinces remain at a 

relatively stable level, such as Shanghai (9), Henan (21) and 

Qinghai (28). Most provinces show a fluctuating upward 

trend, such as Shanxi (4), Inner Mongolia (5), Jiangsu (10), 

Shandong (15), Xinjiang (30), and a few provinces show a 

downward trend, such as Beijing (1). In addition, due to the 

promotion of low-carbon and emission reduction policies in 

recent years, carbon emissions in some provinces have 

decreased slightly, say Jilin (7), Henan (16), Sichuan (23) 

and Yunnan (25). 

 
Figure 4. Trend of total carbon emissions of 30 provinces in China from 2000 to 2019. 
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(3) Spatial evolution of carbon emissions 

According to the result in table 4, the spatial 

development of China's carbon dioxide emissions shows 

significant geographical imbalance. From 2000 to 2019, 

China's carbon dioxide emissions are mainly concentrated 

in the eastern region, which accounts for about half of 

China's total carbon emissions. Most of the relatively 

economically developed eastern regions have high carbon 

emissions, mainly because these regions have a high degree 

of industrialization, leading to large corresponding energy 

consumption. The carbon emissions of the central and 

western regions account for a low proportion of the country. 

Before 2010, due to the slow economic development and 

the large population and multiple industries in the central 

region, the carbon emissions of the central region are higher 

than those of the western region. After 2010, due to the 

vigorous development of the western region by the state, 

opportunities for rapid development have been brought to 

western economy, resulting in the gradual increase of 

carbon emissions of energy consumption. 

Table 4. Carbon dioxide emissions in the east, central and western regions of China from 2000 to 2019. 

Year Eastern region Central region Western region 

2011 416340.0 223942.8 267443.8 

2012 424247.8 225605.5 287330.5 

2013 422445.8 225331.7 293476.9 

2014 431110.1 229022.8 300132.2 

2015 444205.8 231635.9 295777.9 

2016 460745.6 229932.7 299997.6 

2017 463866.6 240457.5 312780.2 

2018 475023.3 249407.4 323067.2 

2019 483979.8 253189.9 342782.2 

 

In order to further visually analyze China's carbon dioxide 

emission level, this paper draws the spatial distribution map of 

carbon emission levels of provinces and province-level 

municipalities in China in 2011, 2014, 2017 and 2019. Due to 

the lack of data, the values of Tibet, Hong Kong, Macao and 

Taiwan are set to 0. 

As can be seen from Figure 5, China's carbon emissions 

have the characteristics of geographic and spatial 

agglomeration. Eastern coast and other economically 

developed areas, especially provinces with industries as the 

main industries, are the main concentration of carbon 

emissions. In 2011, China's carbon emissions were mainly 

concentrated in Liaoning, Hebei, Shandong provinces and so 

on, and in 2014 and 2017, they were mainly concentrated in 

Inner Mongolia, Shanxi, Liaoning, Hebei, Shandong, Jiangsu, 

Guangdong and other regions. In 2019, the carbon emission 

level further concentrated in the southeast, and Shanxi, 

Liaoning, Shandong and Guangdong are still high carbon 

emission amplification provinces. Compared with 2014, the 

spatial distribution of carbon emission in 2017 and 2019 

didn’t change significantly, which may be due to the small 

span of years in the research. In addition, energy consumption 

and carbon emission levels have changed slowly over the 

years with the implementation of low-carbon policies. 

 
Figure 5. Spatial distribution of provincial carbon emissions from 2011 to 2019. 
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3.3. Model Variable Selection and Data Sources 

3.3.1. Model Variable Selection 

In order to explore the impact of the development of digital 

economy on carbon emissions, the following variables are 

used to construct the model: 

Explained variable: carbon emission (recorded as tpf). 

According to the consumption of eight common fossil fuels, 

the carbon dioxide emission is obtained by conversion. 

Explanatory variable: digital economy development level 

index (recoded as dig). According to the established 

evaluation index system, the development level of digital 

economy is measured from four aspects, and the development 

level index of digital economy is calculated by entropy 

weight-TOPSIS method. 

Control variables: in order to control the impact of other 

factors on the development of digital economy, referring to the 

research done in previous studies, this paper mainly selects 

five control variables to represent the level of economic 

development (gdp), urbanization (city), opening to the outside 

world (open), industrial structure (str) and technological 

innovation ability (tec). The economic development level is 

measured by per capita GDP. The urbanization level is 

measured by the urbanization rate, that is, the proportion of the 

total urban population in the total population at the end of the 

year. The improvement of the urbanization rate will lead to the 

improvement of the ag-glomeration level of economy and 

population, and then affect the regional carbon emission level. 

The degree of opening is expressed by the proportion of the 

total import and export of the region in the region's actual 

GDP in that year. With the strengthening of the scale of 

foreign trade, China has introduced foreign industries and 

technologies, which may also have an impact on carbon 

emissions to a certain extent. The level of industrial structure 

is measured by the proportion of the tertiary industry in the 

secondary industry. Due to different energy consumption, the 

carbon dioxide produced in the secondary industry is 

generally higher than that of the tertiary industry, and the 

optimization of industrial structure is helpful to reduce carbon 

emissions. Considering the fact that improvement of 

innovative technologies helps to improve energy efficiency, 

reduce carbon emissions from the source and promote energy 

conservation and emission reduction of industrial enterprises, 

the level of technological innovation is measured by the 

number of patent applications authorized per 10000 people. 

Table 5. Description of spatial econometric model variables. 

Variable type Variable symbol Variable interpretation 

Core variable 
tpf Carbon emission (10000 tons) 

dig Digital economy development level 

Control variable 

gdp Economic development level (Yuan / person) 

city Urbanization level (%) 

open Opening up level (%) 

str Industrial structure (%) 

tec Technological innovation capacity (PCs. / 10000 persons) 

 

3.3.2. Data Sources 

This paper selects the panel data of 30 provinces in China 

except Tibet, Hong Kong, Macao and Taiwan from 2011 to 

2019. All the original data are collected from China Statistical 

Yearbook, China Statistical Yearbook on Science and 

Technology, China Statistical Yearbook on Environment, 

provincial statistical communiques and statistical yearbooks, 

and the research reports on digital economy, Internet and 

e-commerce is-sued by national institutions. 

In order to eliminate the influence of heteroscedasticity, this 

paper do logarithm treatment on the explained and control 

variables, while the explanatory variable is not logarithmic. 

4. Results and Discussion 

4.1. Spatial Autocorrelation Test of Carbon Emissions 

First, by calculating the global Moran’s I index to examine 

the spatial correlation of carbon emissions and verify the 

spatial agglomeration performance of China’s carbon 

emissions. The results are shown in Table 6. 

According to Table 6, it can be seen that the global Moran's 

I index of carbon emissions from 2011 to 2019 are all positive 

values, and they all show significance at the 5% level. This 

shows that China's carbon dioxide emissions show a positive 

spatial correlation between regions, with the characteristics of 

spatial agglomeration. The regions with more carbon dioxide 

emissions tend to be close to other regions with relatively high 

emissions, while the regions with less carbon dioxide 

emissions tend to be close to other regions with relatively low 

emissions. This fully shows that the impact caused by regional 

differences should be considered in the following analysis and 

re-search process. 

Table 6. The global Moran's I index of China's regional carbon emissions 

from 2011 to 2019. 

Time Moran's I Variance Z value P value 

2011 0.156 0.095 2.004 0.045 

2012 0.155 0.095 2.006 0.045 

2013 0.167 0.095 2.130 0.033 

2014 0.165 0.095 2.096 0.036 

2015 0.153 0.094 1.989 0.047 

2016 0.156 0.095 2.017 0.044 

2017 0.159 0.095 2.034 0.042 

2018 0.173 0.094 2.200 0.028 

2019 0.167 0.095 2.128 0.033 

From the perspective of time trend, the global Moran’s I 
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index of China’s carbon dioxide emissions shows a trend of 

increasing volatility. The Moran's I value of global carbon 

emissions is between 0.153-0.173. The Moran's I index was at 

its smallest in 2015 and peaked in 2018. The change of 

Moran's I index shows that with the development of economy 

and society and the improvement of people's living standards, 

the connection between regions is getting closer and closer, 

the industrial development between regions is also affecting 

each other, and the independence between regions is gradually 

weakening, resulting in Spatial effects of inter-carbon 

emissions. 

In order to study the local spatial correlation of carbon 

emissions in China, Moran's I scatter plot is drawn to analyze the 

spatial correlation patterns of various provinces and cities. This 

paper will use the Moran's I scatter plot in 2011, 2014, 2017, and 

2019 to analyze, and the results are shown in Figure 6. 

 
Figure 6. Moran's I scatter plot of China's carbon emission levels in 2011, 2014, 2017 and 2019. 

Figure 6 shows the Moran’s I scatter plot of carbon 

emissions in 30 provinces and cities in China in 2011, 2014, 

2017, and 2019. It can be seen that the scatter points of 

Moran's I index are evenly distributed among the four 

quadrants, among which the first quadrant H-H is the high 

carbon emission-high aggregation area; the second quadrant 

L-H is the low carbon emission-high aggregation area; the 

third quadrant L-L is the low carbon emission-low 

aggregation area; the fourth quadrant H-L is the high carbon 

emission-low aggregation area. In 2011, 22 provinces showed 

positive spatial correlation, of which 8 provinces are located in 

the first quadrant and 14 are located in the third quadrant, and 

the spatial heterogeneity is strong; in 2014, 2017 and 2019, 70% 

of the regions shows positive spatial correlation, of which 8 

provinces are in the first quadrant, 13 provinces are in the third 

quadrant, 6 provinces are low carbon emission-high 

aggregation area, and 3 provinces are high carbon 

emission-low aggregation area. 

4.2. Research on the Adaptability of Carbon Emission 

Spatial Models 

The spatial correlation test of carbon emissions shows that 

China's carbon emissions have a positive spatial correlation. 

Therefore, when studying the relationship between the 

development of the digital economy and carbon emissions, 

the spatial effect cannot be ignored. The explanatory variable 

selected in this chapter is carbon emission (lntpf), the core 

explanatory variable is the level of digital economy 

development (dig), and the control variables are the level of 

economic development (lngdp), urbanization level (lncity), 

level of opening (lnopen), industrial structure (lnstr), 

tech-nological innovation capability (lntec). 

In this paper, Hausman test, LR test, LM test and Wald test 

are used to determine the specific form of the spatial 

econometric model. The test results are shown in Table 7. 
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Table 7. The global Moran's I index of China's regional carbon emissions 

from 2011 to 2019. 

Test methods Statistic P 

Hausman test Random test 22.97 0.001 

LR-test 
Space fixed effect 39.27 0.001 

Time fixed effect 57.68 0.001 

LM test 

LM test no spatial lag 10.145 0.001 

Robust LM test no spatial lag 5.381 0.02 

LM test no spatial error 7.894 0.005 

Robust LM test no spatial error 14.562 0.001 

Wald test 
Spatial lag 12.67 0.0486 

Spatial error 13.08 0.0418 

4.3. Analysis of Spatial Econometric Empirical Results 

The assumption of the spatial econometric model is that when 

the lag effect coefficient is not greater than 1, the lag model can 

be stable. Table 8 shows the empirical results of the SDM, SLM 

and SEM models. It can be seen that the spatial autoregressive 

coefficient (rho) of the SLM model is 0.171, which is smaller 

than 1, which indicates that the SLM model is relatively robust. 

At the same time, by comparing the Log-likelihood of the three 

models, it can be seen that since the Log-likelihood of the Spatial 

Lag Model (344.536) and the Spatial Error Model (344.155) are 

both smaller than those of the Spatial Doberman Model 

(350.820), it is considered more effective to establish an SDM 

model. And because at the 5% significant level, the null 

hypothesis that the SDM model is simplified to the SLM model 

and the SEM model is rejected. In addition, when the SLM 

model and the SEM model are used to carry out the analysis, the 

spatial effect of the independent variables in the study region and 

its adjacent regions are not considered, which further verifies the 

optimality of the double fixed SDM model established in the 

paper for empirical research. 

Table 8. Calculation results of spatial econometric model. 

Explanatory variables 
SDM SLM SEM 

Coefficient Z Coefficient Z Coefficient Z 

dig -0.825*** -2.92 -0.845*** -3.28 -0.830*** -3.27 

lngdp -0.934*** -4.61 -0.708*** -3.97 -0.731*** -4.00 

lncity 0.492** 2.35 0.658*** 3.49 0.680*** 3.57 

lnopen 0.010 0.35 0.007 0.26 0.005 0.18 

lnstr -0.132** -2.01 -0.101* -1.75 -0.096* -1.69 

lntec -0.063** -2.42 -0.050** -2.04 -0.053** -2.07 

W*dig -0.245* -1.86     

W*lngdp 0.657 1.59     

W*lncity 0.360 0.87     

W*lnopen 0.076 0.88     

W*lnstr -0.113 -0.74     

W*lntec -0.039 -0.78     

rho 0.197** 2.20 0.171* 1.90   

Log-likelihood 350.820  344.536  344.155  

Direct effect -0.813*** -2.77     

Indirect effect -0.168* -1.81     

Total effect -0.981*** -2.96     

Spatial fixed YES YES YES 

Time fixed YES YES YES 

Number of samples 270 270 270 

Note: ***, **, * represent significant at the 1%, 5%, and 10% level, respectively. 

4.3.1. Analysis of Influencing Factors 

For the core explanatory variables, under the SDM model, 

the regression coefficient of the digital economy 

development level (dig) is -0.825, and under the SLM model, 

the regression coefficient of the digital economy 

development level (dig) is -0.845. Under the SEM model, the 

regression coefficient of dig is -0.83, and the three models all 

pass the 1% significance level, showing negative significance, 

indicating that the development of the digital economy has a 

significant negative inhibitory effect on carbon emissions in 

their respective regions. According to the test results of the 

Space Durbin model, for every 1% increase in the 

development level of the digital economy, carbon emissions 

will decrease by 0.825%. The development of the digital 

economy plays an important role in energy conservation and 

emission reduction, and carbon emissions can be reduced in 

various ways: 1) The development of the digital economy has 

led some enterprises to actively look for ways to adjust and 

upgrade their industrial structure, and use the Internet 

platform to promote the research and development of 

products or services. In particular, the emergence and 

development of e-commerce, the promotion of online 

customization of products, and the promotion of paperless 

office have all reduced energy consumption to a certain 

extent. 2) The development of the digital economy has 

brought many new technologies, and big data has become the 

most important factor of production. With the further 

advancement of various smart cities and remote sensing 

technologies, the combination of the air quality monitoring 

and early warning platform and the Internet enables people to 

monitor changes in environmental levels anytime and 

anywhere, and share data in real time, thereby improving the 

supervision of air quality and the monitoring of enterprises 

with excessive carbon emissions. 3) The development of the 

digital economy has provided a relatively open space for 
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everyone. The role of public opinion can be used to promote 

some positive environmental behaviors, criticize some 

behaviors that damage the environment, enhance the public's 

sense of social responsibility, let people naturally carry out 

low-carbon activities, and monitor behaviors that pollute the 

environment anytime, anywhere. 

For the control variable, the coefficient of the level of 

economic development (lngdp) is -0.934, which passes the 

test at the 1% significance level. For every 1% increase in 

economic development, carbon emissions will decrease by 

0.934%. China's economic development model is changing to 

a high-quality development stage. Due to the use of clean 

energy and a series of high-tech applications, the dependence 

on fossil fuels has weakened, which has inhibited carbon 

emissions. At the same time, it also shows that China's 

low-carbon economic development has achieved initial 

results, and it is necessary to further develop green 

development and take the road of sustainable development. 

The coefficient of urbanization level (lncity) is 0.492, 

which passes the test at the 5% significance level. For every 

1% increase in urbanization level, carbon emissions will 

increase by 0.492%. With the improvement of urbanization 

level, the population gradually gathers in cities, and the high 

level of urban life will bring more travel and increase the 

demand for energy, which will lead to the increase of carbon 

emissions. 

The coefficient of level of opening (lnopen) is 0.01, but it 

has not passed the significance test, indicating that level of 

opening has no significant impact on carbon emissions. Some 

scholars have found that opening to the outside world can 

lead to an increase in China’s carbon emissions, and used this 

to verify the hypothesis of a “pollution paradise”, while some 

scholars have found that the vigorous development of China's 

foreign trade and the continuous optimization of its foreign 

trade structure have resulted in a continuous increase in the 

total import and export volume and a continuous 

improvement in the level of industrial development, which 

has a positive effect on reducing carbon emissions. 

The coefficient (lnstr) of the industrial structure is -0.132, 

which passes the test at the 5% significance level. For every 

1% increase in the industrial structure, carbon emissions 

decrease by 0.132%. With the transformation of the industrial 

structure, the heavy industry represented by high energy 

consumption is gradually transforming into refined light 

industry. There are fewer resource-intensive enterprises, and 

the proportion of technology-intensive enterprises is gradually 

increasing. This will help reduce the burning of fossil fuels and 

improve production efficiency and production quality, thereby 

reducing carbon dioxide emissions. 

The coefficient of technological innovation level (lntec) is 

-0.063, which passes the test at the 5% significance level. For 

every 1% increase in technological innovation level, carbon 

emissions will correspondingly decrease by 0.063%. The 

development of high-tech and the improvement of innovation 

ability will bring low-carbon environmental protection 

technology, the improvement of enterprise innovation ability 

will attract the arrival of talents, and the introduction of 

high-tech will have greater opportunities to optimize 

production and office methods, reduce energy consumption 

and carbon dioxide emissions.  

4.3.2. Spatial Effect Analysis 

From the calculation results in Table 8, it can be seen that 

the spatial spillover coefficient (rho) of China's carbon 

emission level is 0.197, and it passes the test at the 5% 

significance level, which indicates that carbon emission has a 

significant spatial spill-over effect as a whole, and it is 

positive the spatial externality. That is to say, the carbon 

emission level of a certain region is not only affected by 

various local factors, but also affected by the carbon emission 

level of adjacent regions, which further verifies that the 

influence of spatial effects cannot be ignored in the process 

of empirical research. 

From the regression results, the coefficient of W*dig is 

-0.245, and it passes the test at the 10% significance level, 

indicating that the development of China's digital economy 

has a positive externality and has an inhibitory effect on 

carbon emissions in adjacent regions. Every 1% increase in 

the level of digital economy development in adjacent 

re-gions will lead to a decrease of 0.245% in the level of 

carbon emissions in the region, which reveals the spatial 

spillover effect of digital economy development on carbon 

emissions. For the spatial spillover effects of other control 

variables, the positive spatial spillover effects of lngdp, lncity 

and lnopen on carbon emissions and the negative spa-tial 

spillover effects of lnstr and lntec are not significant. 

4.3.3. Decomposition of Spatial Spillover Effect of Digital 

Economy 

In order to further explore the spatial effect of the 

development of the digital economy on China's carbon 

emissions, the paper decomposes the spatial spillover effect. 

According to the results in Table 8, the direct effect 

coefficient of the development of the digital economy on 

carbon emissions is -0.813, which means that the 

development of the digital economy in a certain region has a 

direct reduction effect on carbon dioxide emissions in the 

region. This effect is generally referred to as a territorial 

effect, which shows the contribution of the development of 

the digital economy to the development of a low-carbon 

economy and the improvement of environmental protection. 

The indirect effect coefficient of the development of the 

digital economy on carbon emissions is -0.168, which 

indicates that the improvement of the level of the digital 

economy will have an inhibitory effect on the increase of 

carbon dioxide emissions in adjacent regions. This negative 

effect is mainly due to the spillover effect between provinces 

and cities. At the same time, it can be seen that the direct 

effect of the digital economy is greater than the indirect 

effect, which shows that the current level of China's digital 

economy development level has an inhibitory effect on 

carbon emissions mainly due to the influence of various 

elements in the region, and the influence of neighboring 

regions is second. 
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4.4. Robustness Test 

With the gradual expansion of the scale of the digital 

economy, many domestic commercial institutions have begun 

to study the digital economy in depth and published the 

measured digital economy development index. Among them, 

Caixin Insight is highly authoritative in the research of 

macroeconomic indexes. The agency cooperates with Brand 

Big Data (BBD) to formulate an indicator system for the 

development level of the digital economy from the four parts 

of digital economy infrastructure, industry, integration, and 

spillover, and releases the digital economy development 

index once a month. Many domestic scholars have also 

conducted a series of studies using this indicator. Therefore, 

the paper uses the data published by Caixin Insight to 

re-place the digital economy development index measured in 

the paper for robustness test. 

Table 9. Regression results of replacing core explanatory variables. 

Explanatory variables 
SDM 

Coefficient Z value 

dig -0.0664*** -3.12 

lngdp -0.7106*** -3.23 

lncity 0.7963*** 3.52 

lnopen -0.1148*** -3.60 

lnstr -0.0148 -0.21 

lntec 0.0917*** 3.23 

W*dig -0.2270** -2.30 

W*lngdp 0.3972 0.68 

W*lncity 0.7873 1.39 

W*lnopen -0.0308 -0.34 

W*lnstr -0.2223 -1.31 

W*lntec -0.1443* -1.93 

rho 0.2075** 2.23 

Log-likelihood 321.2887  

Direct effect -0.060** -2.14 

Indirect effect -0.2010*** -2.09 

Total effect -0.2616** -2.47 

Spatial fixed YES 

Time fixed YES 

Number of samples 270 

Note: ***, **, * represent significant at the 1%, 5%, and 10% level, 

respectively. 

It can be seen from the regression results in Table 9 that 

the regression coefficient of the digital economy 

development level (dig) is -0.0664, which passes the test at 

the 1% significance level. The development of the digital 

economy has an inhibitory effect on carbon emissions. At the 

same time, the spatial spillover effect coefficient W*dig of 

the development of the digital economy is also negative, that 

is, there is a negative spatial spillover effect, which is 

consistent with the previous empirical results and confirms 

the robustness of the conclusions drawn by the model. 

5. Conclusions and Recommendations 

5.1. Research Conclusion 

In the era of digital economy, the realization of carbon 

peaking, carbon neutrality and dual carbon goals is an 

important change related to the economy and society. It is 

urgent to use the digital economy to establish a long-term 

mechanism for energy conservation and emission reduction. 

In this context, the internal relationship between the 

development of the digital economy and carbon emissions is 

worthy of in-depth exploration. This paper selects 2011-2019 

national panel data of 30 provinces and cities except Tibet as 

research samples, constructs a spatial Durbin model, and 

studies the impact of digital economy development on carbon 

emissions from the national and regional levels. The specific 

research conclusions are as follows: 

First, from the perspective of the whole country, there is a 

positive spatial correlation between China's carbon emissions, 

and this spatial dependence shows a trend of increasing first 

and then decreasing. The negative effect of the digital 

economy on carbon emissions has a greater impact on the 

region to which it belongs than on adjacent regions. 

Second, there are obvious regional differences in the 

relationship between digital economy development and 

carbon emission levels in China. Most of the areas with high 

digital economy development level and high carbon emissions 

are concentrated in the developed eastern regions. In the 

eastern region, the development of the digital economy can 

reduce carbon dioxide emissions and also inhibit carbon 

emissions in adjacent regions. The reduction effect of the 

digital economy on carbon emissions in the central region is 

slightly higher than that in the eastern region, and the spatial 

spillover effect in the central region shows a positive 

promoting effect. The development of the digital economy in 

the western region has no significant effect on carbon 

emissions. 

Third, in the study of control variables, from a national 

perspective, the level of economic development, industrial 

structure, and technological innovation ability will all have a 

negative effect on carbon emissions, while the level of 

urbanization can promote carbon emissions. With the 

transformation and upgrading of China's high-quality 

economic development, the country has increased the 

investment and use of clean energy and high-tech, which has 

enabled China to improve the efficiency of energy utilization 

while economic development, thereby reducing the level of 

carbon emissions. The adjustment of industrial structure, the 

talents, and the enhancement of technological innovation 

capability will reduce carbon dioxide emissions. The 

improvement of urbanization level has improved the quality of 

life and energy demand, which in turn has promoted carbon 

dioxide emissions to a certain extent. 

5.2. Policy Recommendations 

This paper conducts an in-depth study on the impact of the 

development of the digital economy from a new perspective of 

carbon emissions, and can provide corresponding policy 

suggestions for giving full play to the low-carbon emission 

reduction effect of the digital economy:  

(1) Implement policies according to local conditions and 

comprehensively consider regional differences to 

achieve overall emission reduction. 



148 Xinman Lv et al.:  The Impact of the Digital Economy on China's Carbon Emissions  

 

Through empirical research, it is found that there are regional 

differences in the impact of digital economy on carbon 

emissions, and the impact of different digital economy scales on 

carbon emissions is also different. For the western region where 

the development of digital economy is relatively backward, we 

should effectively promote the construction of digital economy 

in combination with the local actual situation. Only when the 

digital economy develops to a certain scale can we give full 

play to the environmental dividends brought by the digital 

economy. For areas with more developed digital economy, we 

should further consolidate the foundation of digital 

infrastructure construction, accelerate the integrated 

development of digital economy and real economy, and provide 

a feasible path for energy conservation and emission reduction. 

(2) Give full play to the role of digital economy in 

optimizing industrial structure and take the road of 

modernization and informatization. 

The penetration of digital economy in all walks of life is 

reversing the existing irrational situation of China's industrial 

structure and realizing industrial upgrading. Therefore, we 

should develop the interconnection of agriculture, improve 

farmers' ability to use information technology, introduce 

information technology talents, and promote rural 

revitalization with digital economy; We should develop 

industrial intelligence, improve energy efficiency, and use big 

data and the Internet to dynamically monitor the pollution 

discharge of high energy consuming enterprises in real time; 

We should develop intelligent service industry, use 

information platform to achieve effective communication and 

improve service quality. 
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